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Sharper Bounds 
for the Chebyshev Functions 0(x) and {,(x). II 

By Lowell Schoenfeld 

Abstract. In this paper, bounds given in the first part of the paper are strengthened. 

In addition, it is shown that the interval (x, x + x/16597) contains a prime for all 

x > 2,010,760; and explicit bounds for the Chebyshev functions are given under the 

assumption of the Riemann hypothesis. 

We use the references and continue the paragraph numbering of the original papel 
by Rosser and Schoenfeld [11] and adhere to the same notations except as noted in 
Section 8 in the case of T1. New references are given below. 

6. Estimates under the Riemann Hypothesis. The result below is of the same 
strength as that given by von Koch [7] whose estimate used an unspecified constant 
in place of 1/(8ir). 

THEOREM 10. If the Riemann hypothesis holds, then 

(6.1) I;(x) -xI, I0(x) - xI < 8 x(log x - 2)log x if 23 108 S X, 

(6.2) (X) -xi < 8f log2x if 73.2 < x, 

(6.3) IO(x) - xI < Px log2x if 599 S x. 
8ir 

Also, 

(6.4) --1 log2x < ;x) - x if 59 < x, 

8iT~~~~i 
(6.5) o()-X < 

8, -,xlog x if O <x. 

Proof To handle (6.1), (6.2) and (6.3), we suppose that x > t > 82,800. By 
the Riemann hypothesis and the definitions (3.9) and (3.10), we have S3(m, 6) = 0 = 

S4(m, 6). Let 

log x log2x 1 
(6.6) 5 = - a 2 - ?2 

1Tr/- rf1x logx logx 

where 

log2 ~ ai log 
(6.7) , ' 2 = -= < 0.0126. 1 

7N/f 
2 log NT 
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With T1 defined by (4.2) and m = 1, we have T1 > D; and 

+T, V~ 2 + 26 +2 (+ 
log2- logx 2+6 + 1 log g + + 1 

< {/21logx -2 loglogx + 2(1 + 65)} lh(logx - a3), 
where 

(6.8) 6 = ( 2) < 0.00634, a3 = 2 log loge -2(1 + 61)>2.841. 
2 + a 2 

We now apply Lemmas 8 and 9 with m 1 to get 

1 1 / a1 IT, 

- ( 2xlog X ) - (log 2 + 1) + 1.038207 

271g 1 x log(2ir) + 2-gl (1T 

8 (1 + 2 )( log2x -2a3og x + a2 +4.15288 

logx log(2ir) 
+ ?+ 

27rW x 
(6.9) 

< 1 / a1 log 8iog2i2 

((1 + (log2x- a4logx) + a 4+ + 4(1)828 
log 2 logx 287T ( logx 

where 

(6.10) a4 = 2i3 - (t2 + 4.152828)/log t. 

As a3 < 2 loglog t < log #, we see that a4 increases as a3 increases; and hence, 

a4 > 2(2.841) - (2.84 12 + 4.152828)/log t > 0. 

Consequently, (6.9) yields 

(6.11) 1I(x) - xl/x < (log x)(log x - a5)/(87rVX), 

where 

(6.12) a5 = a4 - a1 /2 - 4 - {8irIog(27T)}/(Vt log t). 

From [10, (3.39)], we obtain for x > > 82,800 

1 1 1 /)< o 
(6.13) - IO(x) - xi < - 14(x) - xi + -(1.02.\/ + 3x113)< l (logx-a6) 

where 
8.167r 247T 

(6.14) a6 = a 5 - t1 -/61og t ' 
log ~ "lo 

On letting t = 23 *108, we find that az5 > a6 > 2 so that (6.1) follows from 
(6.11) and (6.13). 
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On letting t = e16, we find that a5 > a6 > 0 so that (6.2) and (6.3) hold for all 
x > e16. If 0 < x < e 6, then [10, Theorem 18], gives 0(x) -x<0;hence, (6.5)is 

completely proved. For 1400 < x < el 6, the same theorem gives 

(6.15) 0(x) - x > - 2.05282 \4 > - 2.05282(N/x log2x)/log21400; 

hence, if 1400 < x, then 

(6.16) 0(x)-x>- (log2x)/(8ir). 

For 1200 < x < 1400, we use [10, Theorem 19] to replace 2.05282 by 2 in (6.15) 
and, thereby, derive (6.16) once more. Finally, for 599 < x < 1200 we deduce (6.16) 
from the unpublished Rosser-Walker tables referred to in [10, Section 5]. This 

completes the proof of (6.3). 
As l(x) - x > 0(x) - x, we see that (6.4) holds for x > 599 by (6.3); the 

proof of (6.4) is completed by using Table VII of Gram [6] for 59 < x < 599. 
Further, [10, Theorems 18 and 24] gives for 0 < x < 108 

(x)- x < (x) - 0(x) <v ?+ 3x1/3 = \/X- log2x log2x + x1361og2X 

from which we get for 1,075 < x < e1 6 

(6.17) (x) - x <(v log2x)/(8ir). 

On using Gram's table again, we verify (6.17) for 73.2 < x < 1,075. This completes 
the proof of (6.2). 

COROLLARY 1. If the Riemann hypothesis holds, then 

(6.18) 1ir(x) - li(x)I <(F log x)I(8ir) if 2,657 <x, 

(6.19) ir(x) - li(x) < (vx log x)/(8ir) if 3/2 Ax. 

Proof Let x > 23 .108 > t > 1. Then [10, (4.17)] yields 

(6.19a) rx) - r() = 0(x) _0(t)+ x 0 ) x 0y) Y dy + fX dy (6.1a) 7) - rQ) 
log x log~ N y log 2y log2y 

By [10, (7.6)] we get, on putting 

(6.19b) = {li(Q) - 7(t)} -{ - 0 ( )}/log $, 

that for t > 599 

17r(x) - li(x)I - 
0(x) x + xO(y) -y dy - 

lo 
? 

ylog 2y d- 

< 81 x (log x - 2+ 
I x dy + 1x 

?- \/ (logx-2)?l-- -- 

8ir 4 I 7' 
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as a result of (6.1) and (6.3). Taking t 108, we obtain $' 88.26 so that (6.18) 
results for x > 23 - 108. 

It follows from Table 1 of Brent [41 that for all primes p < 50 - 108 we have [li(p) 
+ 1/21 - irT(p) < 4612. If 5 107 S x < 49 * 108 and p is the smallest prime exceeding x, 
then it is a consequence of Brent [3], [4] that 

17r(X) - li(x)l = {li(x) - 12} - 7r(x) + 2 < [li(x) + 1/2] - XT(x) + ? 

< [li(p) + ?] - {ir(p) - 1} + ?h < 4613.5 < (v7x log x)/(87r). 

Hence, (6.18) holds for all x > 5 107. Moreover, the Appel-Rosser table [1961] 
shows that 

(6.20) 0 < {li(x) - 7r(x)}(log x)/VTx < 2.523 

if 3,169 < x < 5 * 107. From this, we get (6.18) for x > 3,169. For 2,659 < x < 
3,169, the inequality (6.20) holds with 2.523 replaced.by 2.444; hence, (6.18) holds 
for x > 2,659. A direct calculation shows that (6.18) holds for 2,657 6 x < 2,659. 

As iT(x) - li(x) < 0 for 2 < x < 2,657 by [10, (4.2)], we easily complete the 
proof of (6.19). 

In the next two corollaries, B, E and C are as defined in [10, Section 2]. 
COROLLARY 2. If the Riemann hypothesis holds, then 

(621) 1E I - loglo?gx-B| < 3 log x+ if 1 3.5 AX, (6.21) 
'p 

<X 
____7 _ _x 

(6.22) IE -log x - E < 3,(1og2x + 2 log x + 4) if 8.4 < x. 

Proof By [10, (2.27)], we obtain for a suitable constant K that 

E 

1 = | 
~~+ K + 7rx ix rdy. 

p< 2y logy + + x - I y 2 d 

By (6.18), we obtain for x > 2,657, 

log x I _01 logz x + 4 | E 1 - (log log x + K - log log 2) < + d 
P<X P ~~~~~8 irN/xf Tx y3/ 

As the right side tends to 0 as x > oo, K - log log 2 must be the constant B appearing 
in [10, Theorem 5]. Now [10, Theorem 20] gives 

E I - (log logx +?B) < 2 < 3 logx + 4 
pax Pvlogx 87rwx 

for 32.5 6 x < 2,657. It is then a simple matter to complete the verification of (6.21). 
Similarly, [10, (2.27)] gives 

~~ logp - ~ ~ ~ 7jX) j lcx)0 1 -log y 
psx 12 rx y +K* + K* l logx + y2 {y( ) - li(y)} dy. 

By (6.18), we get for x > 2,657 
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(lo x E l< i2x + I 0 (log y- I) logy dy. 
p < X ) 8 irfx 8x r I x Y3/2 

This yields (6.22) for x > 2,657. For 16.1 < x < 2,657 we obtain the result by 
using [10, Theorem 21]. Direct verification completes the proof of (6.22). 

COROLLARY 3. If the Riemann hypothesis holds, then 

(6.23) |eC(log X) I-I - 
I 

- I < 
3 

logx if 8.0 < X, 

(6.24) logx PrI - < 8<Ji-XIx if 13.16x. 

Proof Let 

(6.25) 3 logx?+4 1 
s=~ log(i- +i' 

Y 87rNY 8?Vx P>X{ g p)p 
so that this definition of S agrees with that below [10, (8.10)] where it is proved that 

1.02 - 

(6.26) (x - 1)logx - S0 if 1 <x. 

By (6.21), if x > 13.5 there is a i = O (-1, 1) such that 

log log x + ?y = I - B = - E: 1 S - C 

as a result of [10, (2.7)]. Hence, 

(6.27) eC(log x) (I (I) = e-6y-S. 

We easily verify that y + S0 < 2.4 * 10-4 if x > 108 so that 

(6.28) exp(-y -S)<exp(y +S0)< + (y +S0) + 0.501(y +So)2 < 1 +z. 

Hence, (6.27) gives for x > 108 

(6.29) eC(logx) ( k < + Z. 

By [10, Theorem 23], we see that this holds for all x > 1. As a result, for x > 1, 

(6.30) log x pe p > 1+ > 1 -z. 

Similarly, if x > 108 then (6.27) and (6.28) give 

(6.31) e-C L P =e6y++S < ey < eY+S < 1 + z. 
log x P Ax P -1 

Also, [10, Theorem 23] gives 
e-c p <+ 2 

logx p\x P - I / log x 

provided 28.4 < x < 108. Moreover, the extreme inequality in (6.31) is easily seen to 
hold for 13.1 < x < 28.4 as well; and this verifies (6.24) when use is made of (6.30). 
As (6.31) holds for all x > 13.1, we have 
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eC(logx) 1 I 1 > Z 
p < p I+z >- 

for x > 13.1. Again, the extreme inequality holds for 8.0 < x < 13.1 so that (6.23) 
follows from (6.29). 

7. Bounds for Large x. The following result improves both Theorems 2 and 3 
Moreover, even better results are given by the Corollary to Theorem 11. 

THEOREM 11. Let X = (log x)/R where R = 9.6459 08801, and let 

(7.1) E0(X) = 8/l7rx1 /2e-X. 

Then, 

(7.2) 14(x)-xI <xco(x) if 17 Sx, 

(7.3) IS(x) - xI < x O(x) if 101 < x, 

(7.4) O(x)-x?<k(x)-xc0(x) if 1Ix. 
Proof. The main part of the proof is concerned with large x in which case the 

proof is similar to that given for Theorem 3, but we ultimately take m = 2 rather 
than m = 1. In place of (3.36), we let 

(7.5) T2 = 17eVx, 

where v will be specified later. We assume that v, m, X are such that 

(7.6) A<T2, 1/ m+1 ?v<1, 

from which we deduce X > log(A/17) > 11.62 and Wm < T2 < WO by (3.24). 
In place of (3.37), we get 

(7.7) S3(m, 6) 6 2 ?m ({I -q(T2)}fA J 0(y)log 2Y dy + El 

where (3.2) gives 

El = {N(T2) - F(T2) + R(T2)}O0(T2) - {N(A) - F(A) + R(A)}JO(A) 

(7.8) < 2R(T2) fo(T2) 

and R(T) = 0.137 log T + 0.443 log log T + 1.588 as in Rosser [19411]. Putting 
V - = X2/log(T2/17), we have 

(7.9) VI' = Xlv = X{2 - v + (1 - v)2/V} = Y+2X-vX, 

where 

(7.10) Y= X(1 - v)2/v. 

Proceeding as in (3.38) and (3.41) and using (7.8), we find 

S3(m,6 2 +) <2 m6 * e- t?{X4( )-3+ X2d('P)-2} + 2 + E 3 (MI 2 2ir 2 

(7.11) < 2 ?m6 G e-YXe-2XT2 + (2 + m5)R(T2)00(T2), 68fr 0 e ? (2d 

where d = log(17/2ff) = 0.99533... and 
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(7.12) Go = v2(v + dIX). 

As R(y)/log y decreases for y > ee, we have 

R(T2) lo___ -vi 
R(T2)00(T2) = log T fo(T2)10g T2 e L(A) l T'2 log T2 

~~log A 1'2 

= R(A) eY e 2Xlog T2 
17 log A 

by (7.9). Then (7.5) and (7.6) yield 

log T2 = vX + log 17 < X + log 17 < 1.244X; 

hence, 

(7.13) R(T2)q0(T2) < 0.0241e-YXe-2X. 

In place of (3.42), we have 

(7.14) S4(m, 6) < Rm()6 r + q(T2)}fT fP(y)log 2- dy ? ) 

where, by (3.2), 

Eo = {R (T2) + F(T2) -N(T2) } bm (T2) 

(7.15) < 2R(T2)bm(T2) = 2R(T2)qb0(T2)T2m. 
By (3.16), 

(7.16) fT2 q(y)log 2- dy = z2 {K2(. U') + 2dm K (z, u' 

where we put z = 2X/'; and 

U' = (2m/z)log(T2 /17) = v ". 

We strengthen part of (7.6) by assuming 

(7.17) v > 1 /'m- 

sothat U'> 1;alsom>2since 1> vby(7.6). 
By Lemma 4 and the Corollary of Lemma 5, 

K2(z, U') + 2dm K(z, U') < (U' ? + 2dm) Q1 (z U') 

<v~ Qm 1v ?mX) z(U'2 - 1) exp{2 (U U 

Now 

2 (U X-U) {v\ ? + } = mvX + (Y + 2X - vX) 

by (7.9). Hence, 

(7.18) K2(z, U') < Gle-e m X-1e-2X(i - K ) 2(m - 1) 17 
where 
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(7.19) G m r i 
12 (- 

?l m) = (m 2)v (? 1 dm ) 

Then (7.16) and (7.18) give 

Om (y)log 2 dy < 1 _ Xe-2XT2-(m-l). 
2T 27Ty1od 17(mn- 1)2 

We define 

Rm(5) m1+5) '+1 I 
(7 .20) G2 = m - {1 + 2irq(T2)} = {1 + 2irq(T2)} } (1 )2 + 1 + 

Then (7.14) yields 

S4(M ) < (2 me-2XT-(m-l) + G2() Eo 

Now 1 + mr/2 < Rm(6)/2m < G2 . Using (7.1 1) and (7.15), we obtain 

S3(M, 6) + S4(MI 6) < 34T Xe-2X GOT2 + G (_) T-(M-1) 

+ 2G2R(T2)0o(T2) 1 + ( T ) } 

If Go and G1 were independent of v, and hence of T2, then the expression inside the 

first braces would be minimized by choosing 

(7.21) T2 = (G1 /G0)l'/m * 2/6. 

Postponing the reconciliation of this with (7.5), we obtain 

S3(m, 6) +S4(M, 6) + 2rM < 2 r2 0 177Tr(m - 1) 

+ 2G2(1 + GO/G,)R(T2)q0(T2). 

The expression inside the last braces is minimized by choosing 

(7.22) G1-11mG1/m 2' 
e 1/2 

X112&X 

so that (7.21) becomes 

(7.23) T2= (G1 /G0)1 /2 m {347r(m - 1)eYIG0}1/2XlI/2ex. 

Moreover, (7.13) gives 

S3(M, 8) + S4(Mr, 6)?! 6 <G2 G ImG1Im 2-Y ?1/2 rn X e- 

+ 0.0482G2(1 + GO/G,)CYXe-2X. 

The coefficient m/N[i~-7 in the next to the last term is miniiiiized by choosing 

m = 2. For this value, we obtain from (7.22), (7.23) and (7.19), 
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(7.24a) 6 = (GOG1 )1 24e 2/1x7 7Xl/2e-x 

(7.24b) T2 (G1 /GI ) 4eY2X-1 /I2eX 

(7.25) G v2 {v + (1 + 2d)/(2X)}/(2v2 - 1). 

Also, 

S3(2,6) + S4(2,6) + 6 < G2(GOG1)l4e-YI2.,./87T7Xl2e-X 

(7.26) + 0.0482G2(1 + GO1G,)&-YXe-2X 

provided the choice of T2 in (7.24b) is consistent with (7.5) and provided both (7.6) 
and (7.17) hold when m = 2. 

We readily see that the T2 of (7.24b) satisfies (7.5) if and only if v is such that 
k(v) = 1 where 

(7.27) k(v) = 127X (G?r ) e2x(l-v)e-x(r-v)2/r 

and (7.10) has been used. If 1/\/2 < v < 075, it is not hard to see that G1 decreases 
as v increases. By (7.12), it then follows that k(v) is strictly increasing for increasing 
v E (1/N/2, 1]. Now k(v) O 0 as v -> 1/N/2 from the right; and we easily see that 
k(l) > 1 (for all X > 1). As a result, there is a unique v E (1/-', 1) such that k(v) = 1. 
Henceforth, let v be this number so that v depends on X; then GO' G1, Y and T2 
are defined in terms of v by (7.12), (7.25), (7.10), and (7.5), (7.24b). Of course, (7.17) 
holds since m = 2. Hence, (7.26) will be fully established once it is shown that T2 > A. 

We have, for 1/-/F <v? 1, 

0 4(22 1) v?+d/X)3 
(7.28) H(v)-- ? = v4(2U2 - 1) U + (1 + 2d)/(2X) > v6(2V2 - 1). 

If we define, for j = 0 and 1., 

t.= 1Ilo 17X 
(7.29) v11- 2X (2 + 3j7 5 

then H(vo) < 1 if X> 17/(2ir); also, H(vj) > 0.22318 if X> 8.579. Inasmuch as 

k(v,) - 2 + Hiiv/ ) ex p 4vX log(2 + 31)ir 

we see that k(vo) < 1 = k(v) if X> 17/(27r); also k(vl) > 1 = k(v) if X > 8.579. So 

(7.30) vO<V if logx>71; v<v1 if logx>710. 

Of course, vo < v1 in all cases. For log x > 1737, we now get from (7.5) and (7.29) 

that T2 > 17e ?X >A. 

Hence, (7.26) is completely established when log x > 1737; for these x, we have vo > 

0.8661 > 0\/4. It is a simple matter to use (7.12), (7.25), (7.10), (7.30) and (7.29) 
to verify that 

(7.31) GO/G, < 2v2 - 1 < 1, Y < X(1 - VO)2/vO < 0.278, 
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(7.32) GG= (11 + d ( 1 +2d < (1 + l/vX)(1 + 3/2vX) < 1.227 
2v2 - K vX 2vX > V6/(2V2 - 1) > 0.843 

for log x > 1737. Then (7.26) yields 

(7.33) S3(2, 6) + S4(2, 6) + ? < G2(Gc,G )1I4CY/2 Xl X1I2eX + 0.11XC2X . 

Taking T1 = 0 in (3.7) and (3.8) and using Lemma 17 of Rosser [1941], we 
obtain 

1{S(2, 6) + S2(2, 6)} < 
y y 

? 3 <RG2) ) 14 13 2 

4 0.0463 -Y/2 1l 2XX-11/2 < ^2fi G2 14.13 < 0.61 G2(GOG)"/4e X e 

by (7.24a), (7.31) and (7.32). Putting 

Q = {S1(2, 6) + S2(2, 6)} / + S3(2, 6) + S4(2, 8) + 8, 

we obtain from (7.33) that for log x > 1737 

Q2 < G2(G0Gl)1)/4 -Y/2 8 X1 /2e-x 

(7.34) 
+ 0.11 XC2X + 0.61 X-le2XX-112 

By Lemma 8 

X 14(x) -xl < - log(27r) + 1-log(l - X-2) + Q < ? log(2ir) 
X X( 2 X 

Now [10, Theorem 13] gives 

- 10(x) - xl < E + log(2ir) + 1.43 x x NAX 

< Q + 0.01 G2(GOG1)1/14e-Y12 * Y-le2XX-112 

Hence, (7.34) and (7.1) give 

X-l5(x) -xl, X- 10(x) - xl < G3 l Xl I2e X = G3e0(x) x x3 77 e 3 ) 

for log x > 1737, where 

G3 = G2(G0G1 )14 4e- Y/2 1 ? (0. I I Xl /2 e-x + 0.62 X3 /2e3Xx-112) 

< G2(GOG1) 14 e- Y2 {1 + 0.29 XlI2e-x} 

(7.36) < G2 (GoG1 )1 /4e-/2exp(0.29X 126CX). 

Also, by the definition of q(y), (7.24b) and (7.28) 
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1 + 2frq(T2) =1 + 27T 0.137 + 0.443/log 12 
T2 log(T2 /27T) 

<1 ?+ 
IT 

G\4 Y/2 0.137 + 0.443/log A Xl2e-x 17 G 1) 
e 

~~log(A/27T) 

< 1 + 0.01 Xl/2 CX < exp(0.01 Xl/2e-x). 
Further, 

R2(6) = (1 + 6)3 +?1 (2 = ? +6(3 + 36 + 624) < ?1 + 3 6) 

< lexpQ2" 6)2 =exp(3.0l6) < exp(0.62Xl/2& X). 

Then (7.36) and (7.20) give 

G3 < (G0Gl )l14e- Y/2 exp(0.92 Xl1/2 e-x) = {G0G1 -2 Yexp(3.68 X1/2 e-X)}l/4. 

By (7.12), we obtain for log x > 1737, 

- Goexp(3.68Xl/2e X) <X(v +d/X)(1 + 3.69XlI2 -X) 

= Xv + d + (Xv + d)3.69Xl 2 CX 

< Xv + d + 0.0003 < X(v + 1/X). 
Hence, (7.25) yields 

G3 < {v (v+)Gle-2Y} < (v +? )(V+ ) -2Y14 

As a result of (7.35), we deduce for log x > 1737, 

(7.37) W(x) -xl, 0(x) -xI <xeo(x)M(v)L(v), 

where 

(7.38) L(v) = {V6/(2V2 - 1)}1/4, 

(7.39) M(v) = {(1 + 1/vX)(1 + 312vX)e-2X(l-v)2V}l 1/4 

The function L(v) is real-valued for v > 1/\/2 and, as is easily seen, has a mini- 
mum value at v = 0\/74. If log x > 164, then v > vo > 1/\/2 by (7.29). Also, if 

log x > 448, then v > vo > 0.78617 by (7.29). Hence, 

(7.40) L(v)> (27/32)1l4 if x > el64; L(v) < 1 if x > e448. 

In addition, (7.30) and (7.29) yield for log x > 710 

M(v) < exp {vX+2vX -I (1 3- v )2 

(7.41) =exp { X (log2 1X -5)} < E(x), 
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where 

(7.42) E(X) = exp X (log2 7 -a =exP4v {2Xw - 2X(1 - v2}. 

It is clear from the first part of (7.42) that E(x) < 1 if log x > 721. By (7.37), (7.40) 

and (7.41), it follows that (7.2) and (7.3) hold for all x > e1737. 
Next, we prove the following strengthened form of (7.2) and (7.3) for 108 S 

x < el 737 

(7.43) IQ(x) - xt, 10(x) - xl < 0.802xeo(x). 

By [10, (3.36)], we have 

0 S 4(x) - 0(x) < 1.427\/x < 0.00015x if 108 Sx. 

The table in Section 5 then shows that for 108 S x, 

10(x) - xl S l;(x) - xl + 4(x) - 0(x) < 0.0012lx + 0.00015x = 0.00136x. 

As a result, if 108 S x S e350 then 

COWx 0.00136 
10(x) - xi, I~(x) - xl < 0.00136x1 

35 0 <??0.00229 xeO(x) < 0.594xeo(x). 

Similarly, if x > e3 5 0 then 4(x) - 0(x) < 10-75X so that for e35 0 < x el 200 the 

table yields 

0(x) - I, 14(X) -xI < 1.42 05 x) < 0768xe(x) 
1.85 * 10-5 

We continue in this way using the table in Section 5 for b = 1200, 1400, 1500, 1600 and 

the table below for b = 1650 and b = 1700; we thereby prove (7.43), and, hence, (7.2) 

and (7.3) for 108 -x<ex737. 

For smaller x, we proceed as in the proof of Theorem 9.* Inasmuch as co(x) in- 

creases for 0 < X < 1/2 and decreases for X > 1/2, we have that 

(7.44) %O(x)>rmin{e0(2),e0(108)}>0.11 if 2<x? 108. 

Now [10, Theorem 10] gives 

0(x) > 0.89x > x - xeo(x) if 227 S x < 108. 

If 149 S x < 227 then eo(x) > 0.15, and if 101 < x < 139 then co(x) > 0.16; apply- 

ing [10, Theorem 10], we obtain 

(7.45) 0(x) - x > -xeo(x) if x > 101 

except for 139 6 x < 149. For these x, we have eo(x) > 0.159 and 0(x) > 126 > 

0.845x > x - xco(x) so that (7.45) is completely proved. As a consequence of this 

and an easy verification for 17 < x < 101, we get 

*Note that in (5.10), the correct range for x is given by 1 < x, but in (S.11) the correct 

range is 41 < x. 
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(7.46) 4(X) > x - xeo(x) for x > 17. 

Moreover, [10, (3.35)] and (7.44) give 

0(x)i p(x)<1.04x <x +xeo(x) if 2 < Sx 108. 

For 1 < x < 2, we have ;I(x) = 0 < x + xeo(x). On using (7.46) and (7.45), we 
obtain the complete proof of (7.4), (7.2) and (7.3). 

COROLLARY. If v1 is defined by (7.29) and v E (1/Vs, 1) is the unique solu- 
tion of k(v) = 1, then 

(7.47) 14'(x)-xi, l0(x) -xi <xeo(x)E(x)L(Vl) if e710 Sx, 

(7.48) Ii(x) - xi, 10(x) - xI <xeo(x)M(v)L(v) if e687 < x. 

Proof. If log x > 687, then (7.39), (7.30) and (7.29) give 

2v0 
- VO 

xp 
- 2 7X 

M(v) > exp 2X( e0o)2 Xlog 2 r ~>0.837. 

For arbitrary V' > I/x/2 and 687 < log x < 1737, we obtain from (7.43) and (7.40) 

IQ(x) - Xl, 10(x) - xl < 0.802xeo(x){M(v)/0.837} {L(v')(27/32)_1/4 } 

(7.49) < x6(x)M(V)L(V'). 
We use (7.41) and v1 > 1/\/1 to get (7.47) for 710 S log x < 1737; the proof is 
completed by using (7.37), (7.41) and (7.30) which imply /-3T4 < v < v1. As v > vo 
> 1/f1 for log x > ] (6t,L) (7.30), we deduce (7.48) from (7.49) and (7.37). 

Thus, apart from tne most easily computed bound xeo(x) given by (7.2) and 
(7.3), we have the more precise bounds of (7.47) and (7.48). Of the latter two, (7.48) 
provides a tighter bound, but it is more difficult to compute because of the effort 
required to solve k(v) = 1 for v. In the next section, we make further remarks on 
these bounds. 

We also note that the range for x can be extended in (7.47) and (7.48), but 
there is no point in doing so because (7.43) is better as is the table, Also, by a more 
careful treatment of the estimates for F(- 2, VI), r(- 1, V"), K2 (z, U'), K1 (z, U') in 
the work leading to (7.11) and (7.18), we could derive a version of (7.37) with a 
slightly smaller M(v). 

This Theorem 11 provides better results than both Theorems 2 and 3. For, eo(x) < 
e(x) if 1 < x as a consequence of the fact that 

e(x)/e (x) = 0.257634(8/17iT)-1/2(X114 + 0.96642X-314) > 1, 

as we see by evaluating the expression in the middle for X = 3(0.96642) where it 
assumes its minimum value. It follows from a remark just below (3.35) that e0(x) < 
e(x) < e*(x) for 0 < X < 59; and if X > 59, then 

co(X) = 87 X-114 . X314e-X < 0.14X314e-X < e*(x) 

Thus, eo(x) < e*(x) for all x > 1. 
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It is clear from the proof of Theorem 11 that, with the present methods of 
estimating the various sums and integrals, the choice m = 2 is optimal although the 
main portion of the paper contains statements that might appear to suggest that m = 1 
is the best choice. 

It is interesting to note that for large x each of the terms S3(2, 6) and S4(2, 6) 
contributes about ?26 - 1'4co(x); the remaining contribution comes from ?2m6 = 6 - 

%eo(x) so that the three terms indicated contribute a total of about eo(x). We also 
note that 6 O 0 as x -0oo and that 6T2 -+ 2. 

We remark that incomplete Bessel functions have been studied in the book of 
Agrest and Maksimov [1] . Our function Kj(z, x) of (2.1) does not appear in this work 
which assigns a different meaning to this symbol on page 26 of the English translation. 
See Binet [2], where K112(z, x) is expressed as the sum of two terms involving the 
complementary error function; cf. the work above beginning at (2.20). Also, Faxe'n 
[5] gives series expansions in ascending powers of z (which are not useful for our 
purposes). 

8. Numerical Bounds for Moderate Values of x. In this section, we show how 
the results of Section 4 can be improved. One source of improvement is through the 
replacement of the D of (4.3) by a larger value. Another results from using closer 
approximations to r(v, x) in Theorem 5 than those given in (4.12) and (4.13). A third 
source stems from the selection of m = 2, rather than m = 1, for large b, coupled with 
the proper choice of T2 rather than that given by (3.36). 

To facilitate the discussion of the latter point, let us define 

(8.1) T = I(2R(- )1 

earlier, in (4.2), the quantity on the right was called T1, but we now leave T1 unspeci- 
fied for the moment. It is clear from (7.7), (7.14), (7.8), (7.15) and (7.5) that 

(8.2) S3(m, 6) + S4(m, 6) < h3(T2)/(27r) + e3(T2), 

where 

h3() = 2 j0o(y)log f, dy + Rmo(6)6m Tfm(y)log 2T dy, 

e3(M) = q(T) 2 +m6 f 0(y)log 2 dy + Rmowm om(y)l?g 2- dy 

+ R(T)40(7){2 + m6 + 2Rm(6)(6Tym}. 

As e3(T2) corresponds to the last term in (7.26), it is easy to see that it is small com- 
pared to h3(T2) so that we can approximately minimize the right side of (8.2) by 
minimizing h3(T2). (If, in place of (7.6), we only assumed that A < T2 S WO as in 
Theorem 5, then the form of e3(T) changes, but it is still small compared with h3(I).) 
We have 
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2 + m T T 
h3(I) = 2 40(T)log m() - 5R(8)&mqm()log 2T 

(8.3) 0(IMlg Rg2m2 m(8)(5 7) }( 

and this is clearly negative, zero or positive for T > 27r according as T < To, T = To 
or T > To. Consequently, h3(T) is minimal for T = To. Hence, in Theorem 5, we 
should choose T2 = To provided To > A. If the last condition is not satisfied, then 
Theorem 4, corresponding to To = 0 (or, equivalently, To = A), should be used. 

We note from (7.21) that in Theorem 11 we had defined T2 and 8 in such a 
way that T2 = (G1 /GO)' /m * 2/8 which does not exactly coincide with the optimal 
choice To of (8.1). The reason for this is that T2 essentially minimizes an upper bound 
for h3(T) whereas To minimizes h3(T) itself. Nevertheless, (8.1) and (3.6) show that 
T To- 2 as 8 )- 0 so that To 

- 2/8 - T2 as 8 - 0; this confirms that the choice of 
T2 in Theorem 11 is asymptotically best. However, for the 8 and T2 of (3.35) and 
(3.36), we have T2 - co/8 where c0 is just about (17/-Fr)1/2 3.097; hence, the "2 

of (3.36) is about 50% too large and should not have been used in calculating 
the last three entries in the table on page 267 of the main part of this paper. 

The situation for S 1 (m, 8) + S2(m, 8) is entirely similar. If we leave T, and D 
unspecified but subject to 2 S D < A and T1 > D, then, proceeding as in the proof of 
Lemma 9, we get 

(8.4) S1(m, 8) + S2(m, 8) < h1(Tl)/7r + e (Tl 

where 

h1(T) = 2 DY y1log 2 dy + Rm(8)8-m fy log -2 dy 

+ (2 + m8)ir {G(D) + 1 
log2 D , 

O <z<D ~4) 47Tr 27r ) 
(8.5)( \ 

+ D{0.137logD + 0.443 (log logD + logD) + 2.6 - N(D) 

21T 2 + mS 0.443 _ RMM6 0.443 0 e(I = 2+8(.137 + 04) R() 0.137 +043 J D=T < 2 0.3+log D ( +)^m 0l7log TJ 
(Mn + 1X81)m) 

+ T2i {2 78 Rm(8)(8T)m} {N(T) - F(7) -R(7T)}. 

Here, also, e1 (Tl) is small compared with h1 (Tl). Furthermore, 

; 2 + m6 T-llog T -Rm()-mT-m llog T 

2ir 2 R(8)(87:m} 
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Referring to (8.3), we see that for T > 2rT, h1 (I) is minimal for T = T0 
Let us put 

0.443 \ ( 1 -112 
(8.6) C(D) = .137 + D,' S(D) = Z +4 

If we apply (8.4) with T1 = To and replace the term 0.443/log T1 appearing in 
e1 (Tl) by 0.443/log D, then we immediately obtain the following generalized version 
of Lemma 9 where D is no longer specified by (4.3). 

LEMMA 9*. Let To be defined by (8.1) and satisfy To > D, where 2 S D S A. 
Let m be a positive integer and let 6 > 0. Then S1(m, 6) + S2(m, 6) < Q* where 

(8.7)~ ?'~2 2+m6 TO 1 2_ mC(D) 8 E2 11( qlg- +- + 47rG(D) +- I 4iTr u 27T fli m2 (Mn+1)TO) 

and G(D), C(D) are defined by (8.5) and (8.6). 
The early zeros Pn = ? + i'y, of ,(s) have been calculated for 1 S n S 12,556 

to an accuracy better than 2 10-7 by R. Sherman Lehman as stated in his paper 
[1966]. From these zeros, the following information was calculated; we note, in 

passing, that G(D) can be shown to have a limit as D - oo. 

D N(D) S(D) S 47rG(D) S C(D) > 
7,436.76651 7,192 3.9674 2351 -0.210075 2.34 

8,929.80867 8,896 4.1761 6893 -0.211150 2.33 

12,030.00896 12,555 4.5275 6275 -0.212544 2.31 

(This may be compared with our earlier choice D = 158.84998 which yields N(D) = 

57, 47rG(D) < 0.038207 and C(D) > 2.82.) This table was extracted from calculations 
performed by Professors Lehman and de Vogelaere of the University of California at 
Berkeley to whom we express our indebtedness and thanks. The computations were 
done in double precision with fifty-six bits or to more than sixteen significant decimal 
digits, and due allowance was made for the precision with which Lehman's values of 

yn were computed. The values selected for D were slightly below some ym + 1 so that 

N(D) = n and S(D) = S('yn). The effect of using the above values of D rather than that 
in (4.3) is to lower the value of Q1 in Theorems 4 and 5 thereby obtaining a smaller 
value of e in (4.1). Of course, in Theorems 4 and 5, 21 is to be replaced by E2*, and 
T1 is to be replaced by To. 

We also note that (4.12) and (4.13) can be strengthened considerably by integrat- 
ing by parts k + 1 times. If x > 0 we get 

(8.8) P(v, x) = Gk(v,x) + (V - 1)(v - 2) ... (v - k - 1)P(v - k - 1, x), 

where 

(8.9) Gk(v, x) = xv1ex{1 + +(v 1)(P2) + + ( v 
) ( ) 

x x 2 ~~~~~~~~~x k 

For v < 1, the last term in (8.8) has the same sign as (_l )k+ 1. As a result, if x > 0 
and v< 1,then 
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(8.10) G2 _1-(V', x) < "(V), x) < G2k(V, x) 

for all positive integers 1 and k. The most advantageous choice of 1 and k is such that 
21 - 1 and 2k are close to x + v - 1. 

It may also be remarked that the proofs of Theorems 4 and 5 are facilitated by the 
observation that the definitions (3.7)-(3.10) show that the S1(m, 6) decrease as x 
increases. Hence, one first applies Lemma 8 using x and then replaces x by eb in all 
S1(m, 6); finally, the resulting S1(m, 6) are estimated. 

Using the various devices mentioned, we have recalculated the table in Section 5 
of this paper to get the one given below. We have used Lemma 9* with the first D 
given in the small table for b < 18.7; the second value of D was used for 19.0 < b < 

19.5; and the third value of D was used for b > 20 although this did not produce any 
decrease in e for b > 40. We have added entries for b = 25.32843, b = 28.78 and b = 
550 (100) 1050 (200) 1450 (100) 1650, 1950. For b > 1750 we have used Theorem 5 
and (8.10) with T2 = To and m = 2 thereby getting smaller values of e. In addition, we 
have adjusted the old values of e downward by 1 or 2 units for 6 of the values of b 
satisfying 800 < b < 1350; as a result, the value of e given in the table below probably 
does not exceed the value stipulated by Theorems 4 and 5 by more than 2 units 
throughout the table. 

If it is not convenient to use Theorems 4 and 5, then the table will give better 
bounds for 1(x) - x lx than Theorem 11, provided log x < 2000. Also, the table 
gives better results than (7.47) if log x < 1900; and if log x < 1850, then the table 
is better than (7.48). For larger values of x and depending on how near log x is to the 
next largest entry b in the table, any one of (7.48), (7.47) or Theorem 11 may provide 
better results than the table. 

We can illustrate the degree of precision of the various bounds by the following 
small table: 

e eo (X) 60 (x)E(x)L (v 1) e0(XW(V)L(V) 

log x (table) (7.1) (7.47) (7.48) 
value % value % value % 

2000 6.6880(-7) 8.1913(-7) 22.4 7.6998(-7) 15.1 7.5719(-7) 13.2 

4000 2.1591(-9) 2.5021(-9) 15.9 2.3507(-9) 8.9 2.3071(-9) 6.8 

10000 2.0331(-14) 2.2817(-14) 12.2 2.1575(-14) 6.1 2.1183(-14) 4.2 

Thus, the last entry shows that for log x = 10,000 the value e0(x)M(v)L(v) = 2.1183 - 

10-14 is 4.2% in excess of the tabulated value of e = 2.0331 * 10-14. The correspond- 
ing figures for log x = 100,000 are about 6%, 3%, 2%. 

9. Applications. Apart from proving the new Theorem 12, we strengthen the 
results of Section 5. We need the following result which is an improved version of a 
result communicated to us by Robert Mandl and included here by his kind permission; 
this result will be applied with h(x) = x and a = 1. To Mandl is also due the idea, occur- 
ring in Theorem 12, of using numerical information on the gaps between primes. In 
what follows, Pn is the nth prime so that p1 = 2. 
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LEMMA 10. Let rq > 0, let h(x) > 0 be continuous and monotone increasing for 
x > a, and let P', P be consecutive primes such that a + i7h(a) S P' < P. Let Q be 
real and suppose that (pn + 1 - p,)/h(pn) < 71 for all n such that P S p,n S Q. Let x' 
> a be the unique solution of x + rqh(x) = P' and x > x' be the unique solution of 
x + rqh(x) = P. Then xo < P, and the open interval (x, x + rh(x)) contains a prime for 
all x such that xo < x S Q. If P' > x0, then the interval (x, x + nh(x)) contains a 
prime for all x in the wider range x, < x S Q; but if P' S x 6 xo, then (x, x + i7h(x)) 
does not contain a prime. 

Proof. Clearly, g(x) x + -qh(x) is continuous and strictly increasing for x > a. 
As g(a) S P' <P and g(x) - oo as x - oo, we see that the equations g(x) = P', P have 

unique solutions xo, x satisfying a 6 x < Ax. lso, g(P) > P = g(xo) so that P > xo. 
First, suppose that P S x S Q. Let Pn be the largest prime not exceeding x; then 

Pn + >x and, asx >P, we have Pn >Pas well as pn < Q. Hence 

x < Pn + < Pn + lh(Pn) =g(Pn) S<g(x) 

so that (x, g(x)) contains the prime Pn +1 Second, if xo < x < P, then 

x <P=g(xo) <g(x); 

hence (x, g(x)) contains the prime P for x C (xo, P). Therefore, (x, g(x)) contains some 
prime for all x E (xo, Q]. If P' > xo and x' < x < P', then the same argument shows 
that (x, g(x)) contains the prime P'; as P' > x0, it follows that (x, g(x)) contains a 
prime for all x satisfying x' < x S Q. But, if P' < x S xo, then 

P' ?x <g(x) ?g(xo) = P 

so that, since P' and P are consecutive primes, the interval (x, g(x)) contains no prime. 
THEOREM 12. The open interval (x, x + x/16597) contains a prime for all x > 

2,010,759.9. 

Prooff Let 
00 

X(X) = (X) 0(X) - 0(X112) - 0(X113) - Z O(Xllk). 
k=4 

Ifx<242 =e29.1l2l18..,then0(Xl/k)=0fork>42. Letv =617 =e28.77611 .., 

v = 3.155 * 1012 = e28.78000..., and v1 = 14094 = e29.00254...; then vo < v < v1. 

For vo 0x?y<v1 and k>4,wehave 

O S 0(yllk) - 0(xllk) = E log p Z log p = 0, 
X Il /< P<yll/k Vllk <p< vIlk/ 0 

except for k = 4, 5, 8, 18 where, summing over five consecutive primes when k = 4, 

log 1361 + + log 1399 < 36.136 if k = 4 

0()1k)- 0(X1/k) < 

log 317, log 37, log 5 if k = 5, 8, 18. 

Hence, if v0P x ?y<v1 

(9.1) X(y) - X(x) < 36.136 + log 317 + log 37 + log 5 < 47.12. 
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For x > v, the table below as well as (5.2), the Corollary of Theorem 6, and (5.1) give 
0(X) = ;(x) - 0(x'12) - 0(X1/3) - X(X) 

{ < (1 + 3.01242 10-5)x - 0.998684x"/2 - 0.985x"/3 - X(X) 

> (1 - 3.01242 I 0-5)x - 1.001 102(x"1/2 + Xl /3) - x(X). 

Putting no = 6.025179 - 10-5, we obtain for v- < x < e29, as a result of (9.1), 

0(x + qox) - 0(x) > (1 - 3.01242 * 10-5)(i + qo)X - (1 + 3.01242 - 10-5)x 

- {1.001102(1 + 710)1/2 - 0.998684}x1 /2 

- {1.001102(1 + 71o)1/3 - 0.985}xl /3 - {X(X + 0X) - X(X)} 

> {1.5749 * 10-9 - 2.4482 * 1073x-1/2 - 1.6123 * 10-2x-2/3 - 48x-1}x 

-f(x)x, 

say. Clearly, f(x) is increasing; as we easily check that f(zv) > 0, it follows that f(x) 
>0 for allx > v. Hence, 0(x + 7nox)-0(x)>0 for v <x <e29. If x >e29, then 
[10, (3.36)] gives, similar to the above, 

0(x + 7 0x) - 0(x) > 4i(x + 7 0x) - 1.43 /(1 + 7Ro) - (x) 

> (1 - 2.8856 * 10-5)(1 + qo)x - (1 + 2.8856 10-5)x - 1.44vx 

> (2.5 3 * TX6 1.44)-x > 0. 

As 0(x + 7nox) - 0(x) > 0 for all x > v, it follows that the half-open interval 
(x, x + 7qox] contains a prime. Putting q = 6.02518 * 10-5 > no, we see that 
(x, x + 7qx) contains a prime for each x > v. 

Now Brent [3] has shown that pn + 1 - p, < 652 for all pn < 2.686 * 1012; in 
a private communication, he has informed me that Pn, + 1 - p,n < 652 is valid for all 
Pn < v. Let P = 11,622,91 1; then, for all n such that P < Pn < v, we have 

(Pn+ 1 - Pn)/Pn < 652/P < 5.61 10-5 < 7. 

Hence, (x, x + 7qx) contains a prime for all x > P as a result of Lemma 10. The 
Appel-Rosser table [1961], or the table in Lander and Parkin [8], shows that the 
largest prime gap up to P does not exceed 154. If P1 = 2,745,209 and P1 < Pn < P, 
then (Pn + 1 - Pn)lpn < 5.61 10-5 so that (x, x + 7qx) contains a prime for all x > 
P1. Putting P0 = 2,010,881, the D. N. Lehmer [9] and Appel-Rosser tables show 
that Pn1 -Pn < 112 for Po < Pn < P1; for these n, (Pn+i -Pn)lpn < 5.5>7 *10-5 
< 71. Lemma 10 now shows that (x, x + 7qx) contains a prime for all x > Po/(I + q) 
and hence for x > 2,010,759.9. As q < 1/16597, this completes the proof. 

We observe that if x1 = 2,010,759.8, then x1 > 2,010,733 = P149689 and 
x1 + x1 /16597 < x1 + 121.2 = 2,010,881 = Pl 49 690; thus, (x1, x1 + x1/16597) 
does not contain a prime. Hence, the stated lower bound 2,010,759.9 for x is 
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essentially best possible. We remark that Mandl has worked out a comprehensive set 
of alternative versions of Theorem 12 which are valid in wider regions for x but have 
16,597 replaced by correspondingly smaller values. 

We now indicate how to modify the proofs in Section 5 to obtain stronger 
inequalities. In place of Theorem 6, there is the following result which, however, 
yields no improvement of the Corollary to Theorem 6. 

THEOREM 6*. We have 

(5.1*) 0(x) < 1.001 093x if 0 <x, 

(5.2*) 0.998697x <0(x) if 1,155,901 Ax, 

(5.3*) i (x) - 0(x) < 1.001 093 + 3x"/3 if O < x, 

(5.4*) 0.998697V?x < ;(x) - 0(x) if 121 < x. 

Proof As in Section 5, it suffices to establish (5.1*) and (5.2*). Putting c = 

616.78 72256... we note that 
26 

(9.2) kx)-0O(x)-0O(x 1I2) =L 0(xlIk) = c, 
k=3 

for all x satisfying 108 < x < 4673 = e18.43898-. If 108 < x < 100072 then ; (x) 
- 0(x) = 0(9973) + c > 1.04980 - 10-4x. By examining each of the intervals 
[100072, 100092), [100092, 100372), [100372, 100392), [100392, e18-43), we get 

(9.3) 4(x) - 0(x) > 1.04517 - 10-4x if 108 < x < e18.43. 

Using Il'(x) - xl < 1.19721 103x from the table, we obtain (5.1 *) for 108 ?x 

<e1843 Ife1843 Ax <e 45 we have (x) -0(x) -0(x) > c. Using [10, 
Theorem 10], we get 

4(x) - 0(x) > 0.98yx + c > 1.02563 
_ 

10-4x 

and this leads to (5.1*) for e18 43 Ax < e18 45 If x >e'845,then [10, Theorem 
10] gives 

4i(x) - 0(x) > 0(yx) + c + log 467 > 0.98yx + c + log 467. 

Applying the table to the intervals [e18.45, e18.5) and [e185, e18.7), yields (5.1*) 
for e18.45 < x < e18.7. For x > e18.7, we use 0(x) < 4(x) and the table to deduce 
(5.1*). As (5.1*) holds for 0 <x < 108 by [10, (4.5)], it has now been proved for 
all x > 0. 

By the same reasoning as that which established (9.3), we can prove ;(x) - 0(x) 
< 1.05 128 * 10-4x for 108 < x < e 18.43 . For these x, we then deduce (5.2*). If 

e 843 x < e1 8.45, we have ;(x) - 0(x) - 0( ) < c + log 467; we then apply [10, 
(4.5)] and the table to obtain (5.2*) for the x mentioned. If x > e18.45, then [10, 

(3.39)] gives 
4(x) - 0(x) < 1.02x"/2 + 3x1/3 < 1.14171 * 10-4x; 

an application of the table again yields (5.2*) which has therefore been established for 
all x > 108. We use [10, (4.6)] for 2,370,000 < x < 108 and then the Appel-Rosser 
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table to prove (5.2*) for x > 1,346,533. The proof of (5.2*) is completed by a tedious 
use of the Lehmer table which also shows that (5.2*) is false for x just a bit below 
1,155,901. 

THEOREM 7*. We have 

(5.5a*) 14(x) - xl < 0.022 0646x/log x if 161,971 6 x, 

(S.Sb*) - 0.022 0646x/log x < 4(x) - x if 89,909 < x, 

(5.6*) 10(x) - xl < 0.023 9922 x/log x if 758,711 6 x, 

(5.6a*) 0(x) - x < 0.020 1384x/log x if 1 < x, 

(5.6b*) 14(x)-xl, 10(x)-xl <0.0077629x/logx if e22 6 x. 

Proof We first prove (5.6b*). If e22 < x < e23, we apply the table to get 

l(x) - xl < 2.9941 - 10-4x < 0.00689x/log x. 

By [10, (3 36)], we have 

0 6 ;(x) - 0(x) < 1.43VIx < 0.00053x/log x 

so that (5.6b*) follows for e22 6 x < e23. We continue to use the table for b = 23, 
35, 400, 550, 650(50)1050, 1150, 1350 and thereby get the result for e22 6 x < 
e 950. For x > e 950, we apply Theorem 11 to complete the proof of (5.6b*). 

Next, we apply the table for b = 19, 19.5 and use (5.6b*) to get 

(9.4) 1li(x) -xl <0.018 7514x/logx if e19 6x. 

By applying the table for b = 18.45, 18.5, 18.7 and using (9.4), we obtain 

(9.5) 1(x)-xl <0.021 9022x/logx if e 845 x. 

Finally, we use the table with b = 18.42068 and 18.43, thereby establishing (5.Sa*) for 
108 Ax. 

If 643,000 6 x < 108, then [10, (4.12) and (4.5)] yields 

(9.6) 0(x) - x < 0.022 0646x/log x. 

We then use [10, (4.12)] and the Appel-Rosser table to verify (9.6) for 205,950 6 
x < 108. By using the value for 0(205553) in this table and considering each of the 
intervals [205553, 205721), [205721, 205951),we easily see that {x - 0(x)}f/x > 
0.866 throughout [205553, 205951); from [10, (4.12)] we get (9.6) for 205,553 6 
x < 108. Additional applications of [10, (4.12)] and the Appel-Rosser table give a 
verification of (9.6) for 161,971 6x < 108. 

We use [10, (4.11) and (4.6)] to obtain (5.Sb*) for 332,000 6 x < 108. An 
application of [10, (4.11)] and the Appel-Rosser table gives (5.Sb*) for 89,909 6 x 
< 108. This completes the proof of (5.Sb*) and, hence, of (5.Sa*). 

To prove (5.6a*), we first note that ;(x) - 0(x) has the constant value c' = c + 
0(9973) if 108 < x < 100072 where c is given by (9.2). On using the table below, as 
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b m 6 b h m 6 c 

18.42 2 2.69(-4) 1.1976(-3) 750 7 2.41(-6) 9.6493(-6) 

18.43 2 2.68 (-4) 1.1930(-3) 800 7 2.28(-6) 9.1328(-6) 

18.44 2 2.67 (-4) 1.1885 (-3) 850 6 2.45 (-6) 8.5876 (-6) 

i8.45 2 2.66(-4) 1.1839(-3) 900 6 2.30(-6) 8.0655(-6) 

18.5 2 2.61(-4) 1.1615 (- 3) 950 6 2.16 (-6) 7.5754 (-6) 

18.7 2 2.45 (-4) 1.0765 (-3) 1000 5 2.35 (-6) 7.0481 (-6) 

19.0 2 2.24(-4) 9.6161 (-4) 1050 5 2.18 (- 6) 6.5529 (-6) 

19.5 2 1.97 (-4) 8.0011 (-4) 1100 5 2.03 (-6) 6.0923 (-6) 

20 3 8.47 (-5) 6.5759 (-4) 1150 4 2.24 (-6) 5.6055(-6) 

21 3 5.88 (-5) 4.4060(-4) 1200 4 2.06(-6) 5.1392(-6) 

22 3 4.61 (-5) 2.9941 (-4) 1250 4 1.88 (-6) 4.7118 (-6) 

23 4 2.11 (-S) 2.0171(-4) 1300 3 2.16 (-6) 4.3179 (-6) 

24 5 1.18(-5) 1.3706(-4) 1350 3 1.94(-6) 3.8789(-6) 

25 6 7.75 (-6) 9.3932 (-5) 1400 3 1.'74 (- 6) 3.4850(-6) 

26 8 4.69 (-6) 6. 5552 (-5) 1450 3 1.56 (-6) 3.1312 (-6) 

27 9 3.90 (-6) 4.7352 (-5) 1500 3 1.41 (-6) 2.8135 (-6) 

28 11 3.05 (-6) 3.5927 (- 5) 1550 3 1.26 (-6) 2.5283 (- 6) 

29 11 3.02 (-6) 2.8856 (-5) 1600 2 1.48 (-6) 2.2220 (-6) 

30 12 2.76 (-6) 2.4527 (-5) 1650 2 1.29(-6) 1.9368(-6) 

35 12 2.73 (- 6) 1.8314 (-5) 1700 2 1.13 (- 6) 1.6887 (-6) 

40 12 2.72 (-6) 1.7748 (-5) 1750 2 9.56 (-7) 1.4701(- 6) 

50 12 2.70 (-6) 1.7583 (-5) 1800 2 7.96 (-7) 1.2680 (-6) 

75 12 2.66 (-6) 1.7285 (-5) 1850 2 6.64(-7) 1.0861 (-6) 

100 12 2.61 (- 6) 1.6993 (-5) 1900 2 5.55 (-7) 9.2613 (-7) 

150 12 2.53 (-6) 1.6424(-5) 1950 2 4.65 (-7) 7.8760 (-7) 

200 11 2.64(-6) 1.5830(-5) 2000 2 3.90(-7) 6.6880(-7) 

250 11 2.54 (-6) 1.5257 (-5) 2100 2 2.77 (-7) 4.8169(-7) 

300 10 2.67 (- 6) 1.4682 (-5) 2200 2 1.98 (-7) 3.4752 (-7) 

350 10 2.56(-6) 1.4104(-5) 2300 2 1.42(-7) 2.5169(-7) 

400 10 2.46 (-6) 1.3548 (-5) 2400 2 1.03 (-7) 1.8319 (-7) 

450 9 2.59(-6) 1.2968(-5) 2500 2 7.54(-8) 1.3405(-7) 

500 9 2.48 (-6) 1.2407 (-5) 2700 2 4.09 (-8) 7.2946 (-8) 

550 8 2.63 (-6) 1.1854 (-5) 3000 2 1.70(-8) 3.0427 (-8) 

600 8 2.51 (-6) 1.1288 (-5) 3500 2 4.30 (-9) 7.7413 (-9) 

650 8 2.39 (-6) 1.0748 (-5) 4000 2 1.19 (-9) 2.1591 (-9) 

700 7 2.55 (-6) 1.0196 -5) 10000 2 1.09 (-14) 2.0331 (-14) 

For b=18.42068, m=2 and 6=2.69(-4), one gets E<1.19721(-3). 

For b =25.32843, m =7 and 6 =5.90(-6), one gets E <8.32458(-5). 

For b=28.78, m =11 and 6=3.03(-6), one gets E<3.01242(-5). 

well as the Rosser-Walker table, we obtain for these x 

O(x) - x = ~(x) - x - c' < 1.19721 - 10-3l0g X - 1.0512 7785 *14 109 X x 

< 0.020 1212x/log x. 

We continue in this way with the intervals [100072, 100092), [100092, 100372), 
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[100372, 100392), [100392, e18.43) thereby proving (5.6a*) for 108 Ax < e18.43. 
For x > e1 8.43, we have ;1(x) - 0(x) - 0(sfx) > c so that we obtain from [10, (3.37)] 

0(x) - x < {4(x) - x} - 0.98W - c. 

Using the table for b = 18.43, 18.45,18.5, 18.7, we obtain (5.6a*) for 108 < x < el 9. 
Also, if x > el 9, then 0(x) - x < 4'(x) - x and (9.4) establish (5.6a*) for all x > 108. 
Finally, (5.6a*) holds for 1 < x < 108 by [10, (4.5)] . 

Proceeding as above, we find that for 108 < x < 100072 

0(x) -x>-{1.19721 - 10-3ogx? + c' Ix >-0.023 9900 x 
x)log x log x 

inasmuch as the expression inside the braces is a decreasing function of x in the stipu- 
lated range of x. Continuing as above, we obtain 

(9.7) 0(x)-x>-0.0239922x/logx if 108 <x< e1843. 

If e18.43 A x <e18.45, then 4(x) - 0(x) - 0(vx5) < c + log 467; we apply the table 

above and [10, (4.5)] to obtain (9.7). If e18.45 Ax < el9, we use [10, (4.12)] and 
(9.5) to obtain (9.7). If el 9 < x, we use [10, (3.36)] and (9.4) to obtain (9.7) 
which has now been proved for all x > 108. We extend the range of x to x > 

1,400,000 by using [10, (4.6)]. Finally, the Appel-Rosser and Lehmer tables are used 
to extend (9.7) to x > 758,71 1. On using (5.6a*), we see that (5.6*) has been 
completely proved. 

Of these results, only (5.5a*) and (5.Sb*) concerning 4(x) may hold in a wider 
range for x. In place of the earlier Corollary 2 of Theorem 7, we have the following 
result which is proved by using the tables of Appel-Rosser, D. N. Lehmer and Rosser- 
Walker. 

COROLLARY 2*. For d < x, we have 

(9.8) x - x/(c log x) < 0(x) 

for each of the following pairs of values of c and d: 

c 41 40 39 37 35 29 25 

d 758,231 678,407 644,123 486,377 468,577 315,437 302,969 

_ _23 19 18 15 13 12 1_ 1 

d 181,889 120,557 89,513 70,877 48,751 40,813 32,353 

c 9 8 7 19416 5 9/2 4 

d 20,873 19,42 1 11,923 8,623 5,407 3527 3,301 

c 7/2 10/3 3 J 5/2 ] 7/3 2 9/5 

d 2,657 J 1,973 1,429 809 599 563 347 

c 5/3 7/5 9/7 7/6 8/7 1 4/5 

d 227 / 149 f 101 67 59 41 2 
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We conclude with the following strengthened and modified form of Theorem 8. 
Its proof, apart from using Ix - [xJ I < 1, is similar to the proof of Theorem 8 and is 
therefore omitted. By introducing additional values for b in the range 900 < b < 

1950, it might be possible to reduce the listed values of %12' 713 and 714 to 7.4133, 
9562.9 and 1.4594 107, respectively. 

THEOREM 8*. If x > 1, then 

(5.8*) I0(x)-xi, l0(x)- [x l, l,(x)-xl, l;(x)- [xI I < 71kX/1ogkX, 

where 

(5.9*) 712 = 8.0720, 713 = 10644, 714 = 1.6570 * 107. 

With regard to the bounds (5.6*), (5.8*) and (7.3) for l0(x) - xl, we note that 

0.023 9922 x<8.0720 < 10644 x<1.6570~ i 07 <co() 
log x log2x log3x log4x 

if log x does not exceed 336, 1318, 1556, 1839, respectively. 

Note Added in Proof. From Table 1 of Brent [4], the extended version of this 
in UMT File 4, Math. Comp., v. 29, 1975, p. 331, and the updated version of this in 
UMT File 21, Math. Comp., v. 30, 1976, p. 379, as well as the more detailed copy in 
Brent's possession, it is possible to improve a number of the results in the present 
paper. Thus, one can show that 0(x) < x for 0 < x < 101 1; from this one can im- 
prove (5.1*) to get 0(x) < 1.000 081x for all x > 0. Also, (5.6b*) holds for all x > 
1.04 * 107 These and other improvements will be dealt with in a subsequent paper. 
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