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19 [7] .—JEFFREY SHALLIT, Calculation of \/S and ¢ (the Golden Ratio) to 10,000
Decimal Places, ms. of 12 typewritten sheets deposited in the UMT file.

In a two-page introduction the author briefly describes his method of calculating
these related numbers to 10015D on an IBM 360/75 system. He states that he success-
fully compared the first 4599D of his approximation to ¢ with the value given to that
precision by Berg [1].

Following the tabulation of 4/5 and ¢ to 10000D, there appear tables of the
frequency distribution of the decimal digits in each number.

As a further check on this calculation, this reviewer has successfully compared
the present approximation to /5 with more extended, unpublished values of Jones [2]
and of Beyer, Metropolis and Neergaard [3], which were carried to 22900D and
24576D, respectively.
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20 [9].—P. BARRUCAND, H. C. WiLL1IAMS & L. BANIUK, Table of Pure Cubic Fields
QD) for D < 10*, University of Manitoba, 1974, 133 pages computer output
deposited in the UMT file.

There are 8122 distinct pure cubic fields QYD) for 1 < D < 10%. They are
listed here in order of D, not in order of their discriminants —3k%. For the calculation
of k, see the paper [1] in this issue for which this table was computed. There are listed
here D; k; J, the period length of Voronoi’s algorithm for computing the fundamental
unit; R, the regulator to 108S; 4, the class number; and ®(1) = 27AR/A/3 k, Artin’s
function, to 10D.

Concerning Tables 1-5 in [1], the following comments may be of interest. In
Table 1, for every natural number n < 53, there is at least one D for which n|h. But
there are none here for n = 53, 55,59, . . .. In analogy with the results of Yamamoto
[2] and Weinberger [3] for real quadratic fields, it is reasonable to conjecture that
every n will be a divisor as D — oo, One finds no less than 142 D here with 81|4, but
since the class groups are not computed in [1], nor even the 3-rank r; (see Section 7),
it is left open whether r, =4 or § occurs for D < 10%.

Table 2 shows that the density of D with # = 1 declines as D increases. Of
course, the density must — O since almost all D will have 3|4 (and even 3"|h) as
D — . But if one restricts D to the primes ¢ = 2 (mod 3), then 31h, and it is rea-
sonable to ask if the number of Q(+/g ) having 2 = 1 has an asymptotic density as
q — oo. That is plausible. I find that 294 of the 617¢ here have # = 1 and the
density remains close to 48%. It would be of interest to extend the table of such
Q) having h = 1 for ¢ > 10% to study this further. Since the Euler product method
(see Section 5) should be able to distinguish # = 1 and % > 2 with a modest value of
0, this extension could be done very efficiently.

Tables 3 and 4 are analogous to the lochamps and hichamps of [4] for quadratic
fields. Note that all D in Table 3 are = +2, #4, or +6 (mod 18). That guarantees that
2 and 3 ramify completely and thereby contribute the minimal factor 1 to ®(1). In
Table 4 all D > 29 are = #1 (mod 18), and now 2 and 3 contribute the maximal factor



