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19 [7] .-JEFFREY SHALLIT, Calculation of \/5 and 0 (the Golden Ratio) to 10,000 
Decimal Places, ms. of 12 typewritten sheets deposited in the UMT file. 

In a two-page introduction the author briefly describes his method of calculating 
these related numbers to 10015D on an IBM 360/75 system. He states that he success- 
fully compared the first 4599D of his approximation to 0 with the value given to that 
precision by Berg [1]. 

Following the tabulation of \/5 and b to lOOOOD, there appear tables of the 
frequency distribution of the decimal digits in each number. 

As a further check on this calculation, this reviewer has successfully compared 
the present approximation to \/5 with more extended, unpublished values of Jones [2] 
and of Beyer, Metropolis and Neergaard [3], which were carried to 22900D and 
24576D, respectively. 

J. W. W. 

1. MURRAY BERG, "Phi, the golden ratio (to 4599 decimal places) and Fibonacci num- 

bers," Fibonacci Quart., v. 4, 1966, pp. 157-162. 
2. M. F. JONES, 22900D Approximations to the Square Roots of the Primes less than 100, 

reviewed in Math. Comp., v. 22, 1968, pp. 234-235, UMT 22. 

3. W. A. BEYER, N. METROPOLIS & J. R. NEERGAARD, Square Roots of Integers 2 to 
15 in Various Bases 2 to 10: 88062 Binary Digits or Equivalent, reviewed in Math. Comp., v. 23, 
1969, p. 679, UMT 45. 

20 [9] .-P. BARRUCAND, H. C. WILLIAMS & L BANIUK, Table of Pure Cubic Fields 

Q('YDi) for D < 104, University of Manitoba, 1974, 133 pages computer output 
deposited in the UMT file. 

There are 8122 distinct pure cubic fields Q(Xff) for 1 < D < 104. They are 
listed here in order of D, not in order of their discriminants - 3k2. For the calculation 
of k, see the paper [1] in this issue for which this table was computed. There are listed 
here D; k; J, the period length of Voronoi's algorithm for computing the fundamental 
unit; R, the regulator to lOS; h, the class number; and F(1) = 27rhR/V3k, Artin's 
function, to IOD. 

Concerning Tables 1-5 in [1], the following comments may be of interest. In 
Table 1, for every natural number n < 53, there is at least one D for which nlh. But 
there are none here for n = 53, 55, 59, .... In analogy with the results of Yamamoto 
[2] and Weinberger [3] for real quadratic fields, it is reasonable to conjecture that 
every n will be a divisor as D -) oo. One finds no less than 142 D here with 81 ih, but 
since the class groups are not computed in [1], nor even the 3-rank r1 (see Section 7), 
it is left open whether r1 = 4 or 5 occurs for D < 104. 

Table 2 shows that the density of D with h = 1 declines as D increases. Of 
course, the density must 0 since almost all D will have 31h (and even 3nlh) as 
D > oo. But if one restricts D to the primes q 2 (mod 3), then 3th, and it is rea- 
sonable to ask if the number of Q(X~/) having h = 1 has an asymptotic density as 
q - oo. That is plausible. I find that 294 of the 617q here have h = 1 and the 
density remains close to 48%. It would be of interest to extend the table of such 
Q(T) having h = 1 for q > 104 to study this further. Since the Euler product method 
(see Section 5) should be able to distinguish h = 1 and h > 2 with a modest value of 
Q, this extension could be done very efficiently. 

Tables 3 and 4 are analogous to the lochamps and hichamps of [4] for quadratic 
fields. Note that all D in Table 3 are +2, +4 or +6 (mod 18). That guarantees that 
2 and 3 ramify completely and thereby contribute the minimal factor 1 to '1(1). In 
Table 4 all D > 29 are ?1 (mod 18), and now 2 and 3 contribute the maximal factor 
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2. Note that the largest and smallest 4(1) here have the very modest ratio 
3.81191/0.61997 = 6.14850. That is much smaller than the ratios obtainable in 
quadratic fields with comparable discriminants, cf. [4]. The reason is that all primes 

2 (mod 3) split the same way in every Q(kI5), unless they divide D, and so the 
variation possible in FD(1) is much diminished. 

Note that one cannot assure an exceptionally large FD(1) merely by selecting D 
that are cubic residues of all small p-1 (mod 3). Thus, (D/p)3 = 1 for D = 1546 
and p = 7, 13, 19, 31, 37, 43. No D in Table 4 has such a long run, but 1546 -2 
(mod 18), its FD(1) loses a factor of 2 as above, and so D = 1546 does not appear in 
Table 4. The FD(1) in Table 4 are also somewhat restrained by the competition of 
their D with perfect cubes, cf. [4, p. 275]. 

In contrast to pure cubic fields, cyclic cubic fields have discriminants d that are 
perfect squares and all primes either split completely in the field or are inert. Thus, 
[5], one finds 

F(1) = 0.17377 and 4F(1) = 0.16850 

for d = 1392 and 25572, respectively. These F(1) are even smaller than occur in com- 
parable quadratic fields. Correspondingly, the polynomial f(x) = x3- 49X2 - 52x - 1, 
having d = 25572, has a very high density of primes considering the fact that f(x) is 
cubic. At the other extreme, Q(x) for x3 + x2 - 1332x + 15840 = 0 having d = 
(7 - 57 1)2 has the astonishingly large D(1) = 11.63136. This is far larger than occurs 
in comparable quadratic fields. As H. Stark pointed out to me, this can occur since 
cyclic cubic fields have Artin functions 4>(s) that are the products of two L functions. 
It would be desirable for someone to extend Littlewood's analysis [6], [4] to such 
cyclic (and other) algebraic fields and thereby determine bounds on their F(1) when the 
Riemann hypothesis holds. 

Table 5 gives the D having champion values of R. All D > 15 there have h = 1 
and one notes that the ratio R/J always remains close to 1.12 when R and J are large. 
For quadratic fields the analogous ratio is [7] Levy's constant: 7r2/12 ln 2 = 1.18657. 
It would be interesting to obtain an analytic expression for the ratio (- 1.12) here, but 
Voronoi's algorithm is quite intricate. That makes any such analysis quite complicated 
relative to the quadratic case which is based upon regular continued fractions. 

As stated in [1], this table was computed using a formula of Barrucand for 1D(1); 
and this method is said to be much faster than Dedekind's method based upon Epstein 
zeta functions. But there are different ways of doing the latter: if the quadratic forms 
and their weights are determined by trial and error factorizations, then Dedekind's 
method is certainly very slow for large D. But if one used group-theoretic methods of 
generating the forms and determining their weights [8, pp. 278, 281], it may go much 
faster. Nonetheless, it would take time: these are large discriminants and the number 
of forms needed goes as 0(k). 

D. S. 

1. P. BARRUCAND, H. C. WILLIAMS & L. BANIUK, "A computational technique for 
determining the class number of a pure cubic field," Math. Comp., v. 30, 1976, pp. 312-323. 

2. Y. YAMAMOTO, "On unramified Galois extensions of quadratic number fields", Osaka 
J. Math., v. 7, 1970, pp. 57-76. 

3. P. J. WEINBERGER, "Real quadratic fields with class numbers divisible by n", J. 
Number Theory, v. 5, 1973, pp. 237-241. 

4. DANIEL SHANKS, Systematic Examination of Littlewood's Bounds on L(l, X), Proc. 
Sympos. Pure Math., vol. 24, Amer. Math. Soc., Providence, R.I., 1973, pp. 267-283. 

5. DANIEL SHANKS, "The simplest cubic fields", Math. Comp., v. 28, 1974, pp. 1137- 
1152. 



REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS 379 

6. J. E. LITTLEWOOD, "On the class-number of the corpus P(\/Fk)", Proc. London Math. 
Soc., v. 28, 1928, pp. 358-372. 

7. P. LEVY, "Sur le developpement en fraction continue d'un nombre choisi au hasard", 
Compositio Math., v. 3, 1936, pp. 286-303. 

8. DANIEL SHANKS, "Calculation and applications of Epstein zeta functions", Math. 
Comp., v. 29, 1975, pp. 271-287. 

21 [9] .-RICHARD P. BRENT, Tables Concerning Irregularities in the Distribution of 
Primes and Twin Primes to 101 1, Computer Centre, Australian National University, 
Canberra, August 1975, 2 pp. + 12 computer sheets deposited in the UMT file. 

These tables supersede the author's earlier incomplete UMT [1], which one can 
see for further detail. The previous Tables 1 and 2 are here extended to n = 101 1, and 
the author thereby also completes two tables in his paper [2] as follows. To Table 1, 
page 45, add a final row: 

8 x 1010 1011 8176 16088 -5618 3037 -9881 1786 

and to Table 4, page 51, add two more rows: 

9 x 1010 203710414 -6872 1.797468808649 1.90216053 

1011 224376048 -7183 1.797904310955 1.90216054 

While these tables required a great amount of machine time, the author expresses 
confidence in their accuracy since the counts df rT(n) obtained here for n = 

1010(1010)101 1 agree with earlier values computed by Lehmer's method. In the ex- 
tension here, from n = 8 x 1010 to n = 101 1, of r1(n) = (L(n)) - rr(n), nothing extra- 
ordinary occurs, it being a melancholy feature of these computations that computation 
time goes as 0(n) while points of interest occur as 0(log n). 

The downward trend of s3(q) in Fig. 3 of [2] that began at log1o(q) ; 10.6 con- 
tinues throughout this extension with one consequence that the estimate for Brun's 
constant is now up to 1.9021605. But the earlier value 1.9021604 may really be more 
accurate according to the discussion in the previous review [1] . Of course, it still is 
"unknown" that there are infinitely many twin primes; there are only 224376048 pairs 
here. Perhaps in all mathematics there is no conjecture for which there is more support- 
ing data. Further, this data makes it almost certain that the Hardy-Littlewood conjec- 
ture is true. On the other hand, the second-order fluctuations, observed in Fig. 3, are a 
complete mystery; to my knowledge they have no rational interpretation whatsoever. 
It is a highly repetitive feature in the history of physics that the investigation of very 
small second-order effects (the perihelion of Mercury, the fine-structure of the hydrogen 
spectrum, etc.) have repeatedly led to a radically new understanding of the main phe- 
nomenon. If that is relevant here, let the reader draw the proper inference. 

D. S. 
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22 [91].-WILLIAM J. LEVEQUE , Editor, Reviews in Number Theory, Amer. Math. Soc., 
Providence, R. I., 6 vols., 2931 pp. Price $76.00 for individual AMS members. 

This collection contains all reviews of papers of an arithmetical nature which have 
appeared in Volumes 1-44 (1940-1972) of Mathematical Reviews. As such, its value 
to anyone interested in recent research in number theory is hard to overestimate. 

The reviews are classified by a modification of the 1970 MOS classification 


