
MATHEMATICS OF COMPUTATION, VOLUME 30, NUMBER 135 
JULY 1976, PAGES 383-399 

An Averaging Method 
for the Stiff Highly Oscillatory Problem 

By W. L. Miranker* and G. Wahba** 

Abstract. We show how to replace the point functionals of numerical analysis with types 
of stable functionals of highly oscillatory solutions of differential equations. This replace- 
ment leads to the development of effective numerical methods for the stiff highly oscilla- 
tory problem. 

1. Introduction. Numerical methods for approximating the solutions of the initial 
value problem 

x = f(x, t), t > 0, 
(1 .1) 

x(O) = xo) 

where x(t) and f are n-vectors, proceed for the most part by generating an approximation 
Yi to x(ih) on the mesh ti = ih, i = 0, 1, .,. . . (Here h is the mesh increment.) A 
well-known class of such methods is the class of linear multistep methods 

P P 
(1.2) E cLiyn i+h E O ni= 

i-O i=0 

In this recurrence relation, In - i stands for f( yn _ -, tn- ) when the relation is used to 
generate the approximation to x. 

If the Jacobian, fx(x, t), (at least for some values of t and for x the solution of 
(1.1) of interest) is such that one of its eigenvalues is large in magnitude, then (1.1) is 
usually referred to as a stiff system. For such systems most of the numerical methods 
of this pointwise type lose their effectiveness. Many studies have recently appeared 
characterizing methods which are still effective for stiff equations. These studies in- 
clude many new methods, not necessarily of the type (1.2), but resembling (1.2) in the 
sense that values yi are obtained as approximations to xi at the points of the mesh 
ti, i = 0, 1, .... (For a review of such methods see [1] and [5].) Most of these 
special methods are effective only if the eigenvalues of the Jacobian fx which are large 
in magnitude are indeed large in magnitude because their real parts are large and nega- 
tive. 

When the stiffness of the system (1.1) is not of this usual type, the solutions of 
(1.1) are highly oscillatory. Recently, some studies have appeared which deal 
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numerically with this oscillatory case (cf. [31, [41 and [61). 
The difficulty in dealing with this case is illustrated by the following example. 

(1.3) 
i n) x + X sin tl 1-l + 

This corresponds to the single second order scalar equation 

(1.4) x +X2X 2sin t 

with the solution 

sin t 
(1.5) x(t) = a sin Xt + I1-_I/2. 

The eigenvalues of fx are ?iX, and when X is large, the solution consists of the 
high frequency carrier wave a * sin Xt, modulated by the slow wave, (sin t)/(1- 1/ X2). 

In fact, for large X, the solution is a curve which practically is space filling. The 
specification of the value at a point (of a mesh) of such a solution is an ill-posed prob- 
lem. We may expect numerical methods which furnish approximations to the value of 
the solution at a point to be ill posed as well (i.e. ill-conditioned or unstable). 

In this paper, we present a preliminary study of numerical methods for approxi- 
mating the solution at discrete times, which are properly posed even for highly oscilla- 
tory problems. We preserve the linear multistep form (1.2) of the numerical methods 
since this form provides desirable computational and analytic properties. 

Our point of departure is to note that (1.2) is a linear combination of linear func- 
tionals of the solution which are its values and the values of its derivative at mesh 
points. This type of functional is unstable for solutions of stiff systems. What we do 
is to replace these functionals by stable ones so that the corresponding numerical method 
is well conditioned. 

There is a wide choice of functionals which might be used, but they seem to con- 
sist of those stable functionals which together supply the following two features. First, 
the functionals are to give information about the solution of the differential equation 
which is acceptable as a description of the solution. (This is the purpose of the point 
evaluations, Yn, in (1.2).) Second, the functionals convey constraints imposed on the 
solution. (This is the purpose of the functional Yn in (1.2) and its replacement by 

f(yn, tn).) The choice of appropriate functionals may depend on the problem and the 
solution being calculated. 

We do not deal here with the questions of characterizing these types of stable 
functionals of the solution of a system of differential equations. Rather, we select two 
special functionals which are an averaging functional and an appropriate evaluation 
functional, which ought to be stable in the,sense discussed. Then, we show how to con- 
struct an effective class of numerical methods of a linear multistep type out of these 
two functionals. 

In Section 2 we start with the scalar case. Sections 2.2-2.8 deal with the purely 
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linear problem. In Section 2.2 we specify the choice of functionals. Then in Section 
2.3 we introduce appropriate reproducing kernel Hilbert spaces to obtain representers 
of these functionals. Using these representers in Section 2.4, we derive generalized mo- 
ment conditions and give a local error analysis. Then, in Section 2.5, we study the sta- 

bility of these methods by a root condition approach; and we subsequently develop a 

global error analysis. This is followed in Section 2.6 by a set of examples of our meth- 
ods. Next, in Section 2.7 we give the results of computations based on the sample 
problem (1.4) for the various sets of the example methods. Then, in Section 2.8 we 

describe a class of so-called optimal methods of the type being considered. Finally, in 
Section 2.9 we develop an error analysis for the nonlinear problem. 

In Section 3 we describe to what extent our ideas may be carried over to systems 
of differential equations. 

2. The Scalar Case. 
2.1. The Problem Treated. In this section we develop our method in the context 

of the problem, 
X+ ?2X ==f(x, t), tE [O, T], 

(2.1) x(O) = xo 

where x and f are scalars. 
The solution of this problem will be required to exist on the larger interval I= 

[-r, T], where the quantity r > 0 will be specified in (2.7). Thus, we assume that 

f (x, t) is continuous in t, t E I and Lipschitz continuous in x for all such t, with Lip- 
schitz constant K. In particular, f (x, t) is uniformly bounded for t E I and x restricted 

to any compact real set including in particular the set of values taken on by the solu- 

tions x(t) for t E I. 
In Sections 2.2-2.8, we restrict our attention to the linear problem in which 

f (x, t) = f (t). Then in Section 2.9, we discuss the full nonlinear case. 

2.2. Choice of Functionals. Let N > 0 be an integer, let h = T/N and let ti = 

ih, i = 0, +1, be the points of a mesh. We seek the functional y(t) of x at point 
of this mesh. Let z(t) be a functional of x which can be calculated at each mesh point. 

Then, we seek to determine yn = y(tn), n > 0, in terms of Yn- i = 1, .. . , r, and 

Zn-i = z(tnd), i = 0, 1, . . ., s, by means of the linear multistep formula 

r s 

(2.2) a + E bizn-i = 0, n = 0, 1,. . N. 
i=o i=o 

The initial values yi and zi, i =-1, . . . , - r, are assumed to be furnished by some 

independent means. 
In the case (2.1) of interest and X large we choose y(t) to be 

(2.3) y(t) =f k(t - s)x(s)ds, 

where 

01, O<Z <A, 
(2.4) k(z)=A ln otherwise. 
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Thus, y(t) represents the average of x(t) over the interval [t - A, t]. 
The functional z(t) is chosen to be [d2/dt2 + X2] x(t), i.e., f(t), which can be 

calculated at each mesh point. Thus, with a change in normalization (2.2) may be 
written as 

r s 

(2.5) Yn= yn-ih -i 
i= 1 i= 0 

2.3. Representers. We introduce the reproducing kernel space, H Urn which is 
the Sobolev space W2 [- 0, oo] with the inner product 

(2.6) m (m) 
j=0 

where 

(f, g) =7J f(t)g*(t)dt. 

An asterisk is used to denote the complex conjugate throughout. Since we are inter- 
ested in solutions of (2.1) on the interval 

(2.7) I= [-hA,T], 

we may identify both a solution of (2.1) and f(t) appearing in (2.1) with the unique 
functions of minimal norm in H with which they agree on I, respectively. Of course, 
on I it is sufficient for f to have m - 1 absolutely continuous derivatives and an mth 
derivative a.e. which is square integrable. 

We use a caret to denote the Fourier transform, viz. 

(2.8) f(t) =- eItf(&)d&, f(c)= _ f e-iw f(t)dt 

Then, the inner product in H may be written as 

(2.9) (f, = 1 f()g*()P(X)2 d&, 

where 

(2.10) Pm() = (1 -i@)m. 

The reproducing kernel in H is 
R) Lf00 ei(s-t)C 

(2.11) '2 7r Pm(W)2 

A second Hilbert space, H is introduced as follows: 

(2.12) f rnC = {f=lPm E L2}. 

The inner product in H is 
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(2.13) (ffi = 
- 

f 
/g*IpmI2 dco. 

/2r -0 

(2.9) defines an isometric isomorphism between H and H. The symbol . will de- 

note this isomorphism. Then from (2.11) we see that the isomorphism between Rt and 

its image in H is expressed by 

(2.14) Rt eit/Ipm(co)I2 

For the representer, 7rt of d2/dt2 + X2, we have 

(2.15) 7t -R't + X2Rt 
W (-c2 + X2) e -iw t/ Ipm (Co)l2. 

For the representer kt of y(t) given by (2.3) and (2.4), we have 

kt k'(s) = RuS "(s) du- r ^ pm (2) 1 2 adu 

(2.16) 
__[1-_ tFl-e ] e-iwt 

2e J2 Vp2(cko)I 

where k(co) is the Fourier transform of k(z) given in (2.4). 
With these representers, the formula (2.5) leads us to introduce the following lin- 

ear functional gn. 

(2.17) gn-gn[x] -(it - c c1kt. - h 2 , di?t1, x). 

gn will be zero if x is the numerical solution. In general, gn is not zero and is the ana- 

logue of the local truncation error for classical linear multistep schemes. 
2.4. Local Error and Generalized Moment Conditions. gn is characterized in the 

following definition. 
Definition 2.1. Using (2.17) as a definition, we call the linear functional, gn 

appearing there, the local truncation error of the method (2.5). 
To estimate the local truncation error we write 

(2.18) Ign [xI <I kt - 
AL 

c1k_ - h2 d117n J, 
j=1 j= 0 

where, as usual, 

(2.19) 11 x12 = (x, x) and llxl2I = (x, x) 

We will drop the subscript, ̂ , since no confusion should result. 
Now using (2.13), (2.15) and (2.16), we find for the right member of (2.18) that 

(2.20) I-- E= rd2c 
(2.20) k - c,k - h2 djqt - 

__ It)2 d 
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where 

(2.21) t(w) = V/2-r k(co) E s.ei(Jh - h2(X2 - ,2) ddwh 
j=0 j=0 

Here 

(2.22) so = l and s=- c1, j1,..., r. 

Expanding t(c), formally in a Taylor series with remainder, gives 

p-l 
(2.23) t(c) = E (ihco)ym +Rp 

1=0 

where from (2.21) and (2.22) we obtain 

1 
L~+ k1 1j~ l+l-k 

(2.24) 
(I + l) k=1 k ) =? 

h2x2 E 
S 

2d 
1! j (I1-2)! ,j=0j'd 

and 

R = sf(Phco) [L } 1 X (iP+1elih(wi ,1 (j+L)P+le iih(l +L)ji,2) p p L(p + 1)j= 0 
(2.25) 

S S 

-h2;2 E, jPd.e'1wj3 _ p(p-1) E IP22de')j4I 
j=0 j=0 

In (2.24) and (2.25) we have used 

(2.26) L = A/h. 

That is in terms of the functional k of (2.3) and (2.4), the interval, A, over which the 

average is taken is a multiple, L, of the mesh increment h. In (2.25) the quantities 

wi 1 and ,, 2,f i = O, ..., r, and 1, 3 and C,14,4 j = O, ..., s, are values of X which 
arise from the calculation of the remainder in Taylor's theorem. 

The quantities ml are characterized in the following definition. 
Definition 2.2. We call the mi, 1 = 0, 1, . . , the (generalized) moments (of the 

coefficients). Analogously, ml = 0, 1 = 0, 1, . . . , will be called the (generalized) 

moment conditions. 
Consider the following remark. 
Remark 2.1. View the equations ml = 0,1 = 0, . .. , r - 1, as r equations for 

the r unknowns s;, j = 1, . . . , r. The lth row of the resulting coefficient matrix which 

has 

(2.27) (1 + 1) k- L +1k 

for its jth term is a linear combination of the first 1 rows of the Vandermonde matrix. 

Thus, the system of r equations has a solution in this case. Indeed, by choosing the 
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d, j 0,... ,s, to be proportional to x- 2, we obtain a solution for the Sj, j = 1,. 
r, which is 0(1) + O(X-2). 

From the form of t(co) given in (2.21) we may make the following remark, the 
assertion of which follows from a familiar argument which proceeds by breaking up the 
range of integration in (2.20), appropriately. 

Remark 2.2. If p is chosen less than m and the coefficients Sj, j = 1, . .. , r, 
and d1, j = 0, . . . , s, are chosen as solutions of the generalized moment equations 

ml = 0, 1 =0, 1, ..., p, we may obtain an estimate of the local truncation error of 
the form 

IIg,II - max Ign I < 0(hP+ ), p < m, 

(2.28) 

ffxll < 1. 

We collect these remarks into the following theorem. 
THEOREM 2.1. There exists a choice of coefficients Sj, j = 1, . . ., r, and d, 

j = 0, . . . , s, such that the local truncation error has a bound of the form (2.28). 
Moreover, this bound is uniform in X for I XI > X0 > 0. 

2.5. Stability and Global Error Analysis. yn, n = 0, 1,... , denotes the values 
obtained by the multistep formula, (2.5), from the initial values, Yn, n = - r, . . .,-] 
Let Yn - n r, - r + 1, . . ., denote the exact values of these functionals. Let 

(2.29) en = Yn - Yn X n = - r, - r + 1, . . .. 

denote the cumulative error. For convenience, assume that the initial functionals en = 

0,n=-r,-r+ 1,...,-1. 
Subtracting the following identity, 

r s r s 

(2.30)Y=E + h 2E d ?n_j + Yn - E -h2 d fn_ 
j=1 ~~~j___ j=l1 j 0 

from (2.5), we get 

(2.31) en = E c1enn- + gn 
j= 1 

Here, 
r s 

(2.32) = - n+ cjY . + h2 d fn 
j=l j=0 

is the value of the linear functional, gn, of (2.17) applied to x, the exact solution of 
the initial value problem, (2.1). To solve (2.31) for en, we use the polynomial S(z): 

r 

(2.33) S(z) = E zr-j 
j=O 

Since so = 1, [zrS(z1)] - 1 is an analytic function of z in a neighborhood of z = 0. 
Then, let its power series be given by 

00 

(2.34) [zrs(z- )- I E aj zj. 
j=O 
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Now multiply (2.31) by 0N-n and sum the result over n from 0/to N. The re- 
sult is the solution of (2.31): 

N 

(2.35) eN = E rN-gn. 
n=O 

We use the following definition. 
Definition 2.3 (Stability). If the sequence { j, j = 0, 1, . . . } is bounded, then 

the method is said to be stable. 
We recall the following definition. 
Definition 2.4. S(z) is said to obey the root condition if all of its roots lie in the 

closed unit disc while those of its roots which lie on the boundary of that disc are 
simple. 

With this definition we may state the following lemma which characterizes the 
stability of the method. 

LEMMA 2.1. If the polynomial S(z) obeys the root condition then the sequence 
{ au, j = 0, 1, .. .} is bounded, i.e. the method is stable. 

(For a proof of this lemma see [2, p. 720].) 
If this lemma is applicable, (2.35) gives 

(2.36) ieNi const N max ignjj jxJj, 
r6n6N 

where x is the exact solution of (2.1). 
Combining this with (2.28) gives the following theorem. 
THEOREM 2.2. If the choice of coefficients characterized in Theorem 2.1 give 

rise to a stable method, then for the method (2.5) with those coefficients, 

(2.37) 11 eN II < O(hP), p < m, 

uniformly in X for I XI > X0 > 0. 
2.6. Examples. We now consider some examples of methods of the type (2.5) 

in which the coefficients are determined by the generalized moment conditions. 
From (2.24) we have for 1 = 0, 1, and 2, respectively, 

r 
0. mOE s- h2X2 E di, 

j-0 j=O 

(2.38) 1. ml __ jsj + - - h2X2 E jd,, 

2. m2--2 , i2s + 2 ? js, - h , id_hX2 d- 
i=O j=O0 j0O 

2. ~ ~ 
r L L h 2X2 S s 

i=? 0j=O 6 j=O 2 j=0 j=o 
Consider the case: 

A. mo = ml = 0. 

For r = s = 1, we get 

2 2 2 ( +2 \ 
(2.39) c =1 _-+ - -h2X2d0, d -2i +1I1d0 

L L 1 h2X2L \L/ 
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In the special case do = 0, (2.39) becomes 

2 
{cl = 1_2 

(2.40) I 2 
= h2X2L 

These coefficients (i.e. cl) obey the root condition if and only if 

(2.41) L > I1. 

In the special case do = d1, (2.39) becomes 

c 
~~2 

l= 1 -_L + 

(2.42) II 
d 1d 

01 =h2X2 L+lI 

Under the restriction L > 0, the root condition is equivalent to L > 0, for the 

coeffilcients (2.42). For r = s = 2, 

C= 1 - (1 + 2c2 + 2X2h2 (do - dl), 

(2.43) dl=2222l+ -( 2L)o (IL)2 

In the special case do = 0, cl = c2, di = d2, (2.43) becomes 

L L-3 

(2.44) III cl= 2 2L 

1 2 2X2h 2L 

In this case 

S(Z)=Z2 _ L-3 L-3 
2L 2L 

and this polynomial, S(z), obeys the root condition for a set of values of L which in- 
cludes L > 0. 

In the special case c = c2, di = d2 = 0, (2.43) becomes 

1 L 

(2.45) 
2 3 

= L 

IV =72a 3+ 0 Xh 2 3 + LC 

Here 

S(Z) = z2 _ I L 1 L 
23 +L 

z 2 3 +L~ 
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This polynomial obeys the root condition for a set of values of L which includes L > 0. 
In the special case c = c2, do = d = d2, (2.43) becomes 

1 L-l 

(2.46) V 1 2 2 L +1' 

d = = 
2 1 

d= = d2 - 3X2h2 1 + L 

In this case the root condition is obeyed for L > 0. Now we consider a case correspon- 
ding to three moment conditions: 

B. m0 = m1-= m2 = 0. 

For r = s = 1, we get 

2L L2\ 
c1=1-L k3+2h -2x2) | 1 / \ 3 2 h2XJ 

(2.47) VI do = 2h2 [1 - L 2 -L2 + L - h2X2)]' 

d= x2h2 [-1 + L + (2L -L L2 + L - h2X2)I[ 

Notice that the root condition is obeyed for L large and positive but is violated 
for h X small compared to L. 

Remark 2.3. In all of these examples and in the general case, we see that the 
coefficients obtained as solutions of the moment equations depend on X2. At first 
sight this seems to be more restrictive than the case of the classical linear multistep 
formulas where the coefficients of the formula do not depend on the coefficients of the 
differential equation. In the classical case the coefficients of the differential equations 
enter into the method when it is used to approximate the differential equation, e.g., 
when in (1.2) in_i is replaced by f ( y,_ tn_i ). It is essential after all that the nu- 
merical method at some point be dependent on the equation to be solved. In our case 
this dependence occurs at the outset in the determination of coefficients and in the 
error analysis. In the classical case it enters in the error analysis and in the use of the 
method. The difference seems formal and in fact it may be that a treatment of the 
present problem may yet be found which resembles this classical feature but retains the 
more general functional aspects discussed here. 

2.7. Illustrative Computations. We now apply the six sets of methods, labeled 
I, II, . . ., VI in Section 2.6 respectively, to the sample problem 

X+ ;k2X = 2sin t. 
(2.48) + x i 

x(O) = 0, x'(O) -=2 + 
2 l1_ /X2 

Runs are made over the interval [0, TI =[0, 7r]. In the following Table 2.1, we 
display the h/2 - 12-norm of the cumulative error, 

F [rh 2 12 
(2.49) 11eell2 h E enJ 
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for a set of various combinations of h = .1, .01, X = 10, 103, 105 and L = 1, 2, 3 and 

for each of the six methods cited. 

Method >\ 1 2 3 1 2 3 

I 10 .273 .108 .112 .133 .126 .126 

103 .113 .00217 .0611 .0283 .00683 .0083 

105 .112 .00209 .0611 .0111 .000106 .00627 

II 10 .122 .133 .155 .126 .127 .128 

103 .00125 .0622 .177 .0241 .00926 .0136 

105 .00104 .0621 .177 .000118 .00627 .0125 

III 10 .242 .111 .0872 .136 .126 .126 

103 .0032 .00422 .00317 .0294 .00684 .00546 

105 .0034 .00419 .00313 .00023 .00112 .89E-6 

IV 10 .123 .111 .0938 .126 .126 .126 

103 .00627 .0144 .0244 .0241 .00684 .00546 

105 .00623 .0144 .0244 .000133 .000179 .000264 

V 10 .144 .152 .156 .127 .127 .128 

103 .0657 .094 .119 .0249 .0116 .0136 

105 .0657 .0939 .119 .0063 .00942 .0125 

VI 10 .758E4 .66E11 .124 .195E1 .471E1 .11E2 

103 .0447 .0639 .244 .0246 .00901 .0253 

i05 .0447 .0639 .244 .00421 .00629 .0251 

h .1 .01 

11 ell,2 

TABLE 2.1 

To illustrate both the favorable and unfavorable effects in our methods Table 2.1 

contains cases for which the methods are designed to operate well, along with cases to 

which correspond poor or nonsensical results. For example, although the cases corre- 

sponding to X = 10 give fair results, these cases are not stiff; and we should not expect 

good results. When h is decreased improvement should occur but only for the stiff 

cases. The cases X = 103 and h = .01 are not stiff and improvement with decreasing h 

does not always occur in these cases. Method VI is used in some unstable cases. Ex- 

amining (2.25), we see that Rp is proportional to LP. Thus, in some cases as L in- 

creases, we see an improvement due to improving the averaging (i.e. increasing A), but 

ultimately a degradation due to the L dependence of RP. The stiff cases for moderate 

L give extremely good results,as we expect. 
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2.8. Optimal Methods. The choice of coefficients characterized by the moment 
conditions and the root condition gives rise to a stable method with the error estimate 
(2.37). We now turn to the question of characterizing those coefficients which give the 
best possible (local) error estimates, and we call the corresponding methods optimal 
methods. 

These methods are obtained by determining the best approximation to kt in 
the span of 

(2.50) {kt ,h2rt Ii= 1,.. .,r;j= 0,... ,s}. 
n-i n-i 

This, in turn, corresponds to minimizing the norm of the local truncation error, gn. 

r s2 
(IgnjI2 = IIkt - c1k . h E2 d1r j|J 

= 1 f I t(W)12 IPd(X)12& 

V2 Ipr(o)I 
(See (2.18), (2.20) and (2.21).) 

The solution of this minimization problem may be described as follows: 
Let 

0 = (ov) = (C1, ,Cr,dO s), 

(2.52) 
K-= (Kv) =(k n-1 . 

***nktni _ nt n 77tin S) 

be r + s + 1 vectors of scalars and functionals, respectively. Let 

(2.53) = (ij) = ((K1, Kj)) 

be the (r + s + 1) x (r + s + 1) Grammian matrix of the functionals composing K. 
The optimization problem is 

r+s+ 1 2 
(2.54) m n J - K 

Let 0 = 0 be the solution of this problem. Then 

(2.55) 0= -1v 

where v is the r + s + 1 vector whose vth component is 

(2.56) VP = (ktn,t IrV), v = 1, . . . , r + s + 1 

The question of whether or not the optimal method is stable is open. However, 
since the local error for the optimal method is by definition the minimal local error, 
then the estimate (2.28) is valid for the optimal method as well. 

As an example of an optimal method, consider the explicit optimal method, 
(do = 0) in the case r = s = 1. In this case the optimal coefficients cl and di are so- 
lutions of the following linear system: 
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[f(- IPmk()p) I | p0 2 ______d 
IPM&W)I-0 Ipm (CO)12 IIC1 

I0A x ____ 0oo X242 2I-I 
(2.57) k ( X 2 dw Ip0 (W)12 

dco J hdJ 

(2.57) 

eihIk(\12 dco 1 
-J 'Pm&C.) 2 

f e k(co) I pm 12 

=1 

X2 
_____ 

Li 00 k(&w) IpM(CO)I2 
' 

Notice that by expanding e-iwh in Taylor's series with remainder, we get 

lk(c4 2 c~F c2h2 -ij c)2 
(2.58) J- e-i,~,h la ) 2d&,=j L1 C 2 e j ()2 dco, 

since IkI and I Pm()l2 are even functions. Similarly, 

(259/wh 
x 
-Pm() 

2 I- h2 (L_ )2eWiw3h(L-1 

and 

0 eike k*(&) Ip2(QO)12 dc - -- 2 (L - 1)2e 

(2.60) 
sin coA/2 X2_2 _ C)2 

coA/2 I Pm (CO)12 

Thus, ifm >2, 

(2.61) = 1 ? 0(h2). 

While this does not imply stability in the strict sense, it does lead to the global 
error estimate, 

(2.62) II eNII?< const N max 1IIgnIs ceh T, 
l?n?N 

by a well-known argument, as an alternate to the estimate (2.36). Inspection of (2.57) 
shows that dm ( 25 2) Thus, the estimate (2.62) is uniform in X for 1X1 > \ > 0. 
Thus, we find that the optimal method is convergent in the case in question, uniformly 
in X for 1 X1 > \21 >0 . 

2.9. The Nonlinear Case. Here we return to the nonlinear problem (2.1). We 
describ e the method discussed above is modified to handle this case and then we 
obtain an error estimate. 

Since in the nonlinear case t(x, t) cannote computed as we proceed along the 
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mesh,we replace (2.5) by 
r s 

(2.63) Y= ? 
Cyn-i + h2 E djfn-i(Yn-d) 

i=1 i=O 

Here we use fn -i(yn J to denote f (yn -i tn -d) We replace (2.30) as well by the 
following expression 

r s 

Yn= E c1 Yn_j + h2 j difn-(xn-) 
j=1 j=0 

(2.64) 
r s 

+ Yn - E ci Yn-_ h2 E n_ (Xn_ 
j=1 j=0 

Substracting (2.64) from (2.63), we find the following equation for the global error, en. 
r s 

(2.65) en = cen- +gn +?h2 E dj[fn-j(Yn-d-f(Xn-d)] 
j=1 j=0 

Now the linear functional x(t) - Yt has a representer in H which we denote by 

vt. Then 

(2.66) _e-i_tk 
t Pm (w)1 (1 -2 2T () 

Then 

(2.67) II11II2 =f 1 I 
? el 

A 
2 dw 

t 00 ~~i&WA iPm(CO)j2 

Using Taylor's theorem with remainder, eiwA = 1 i- - _2/A2e-i/A/2, (2.67) 

becomes 

(2.68) 11vtll = vmLh, 

where 

(2.69) vm = L 0 Pm ( ))dw 
2 

when m > 1. 
Using the mean value theorem, 

fn i (Yn_d j) f (Xnd j)=fn i(Yn-dj) fn-j(Yn-j) + fn j( Yn-j) fn j(xn j) 
(2.70) 

=xn en- + f;z:X (vt x). x3~n-j n-I Xn 
t 

Here f;- is used to denote fx('k,' t) withfzt analogously defined. Inserting (2.70) 
XkX 

into (2.65) gives 

s max(r,s) 
- h df f3= e (c, h di.f- e- 

(2.71) i-h2 d,f ) e = ? 

?gn + h 2 
d1ft -j (vt x. 
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Additional coefficients c; or d, needed in (2.71) are presumed to have the value zero. 
From (2.71) we may derive an error estimate characterized in the following theo- 

rem. This theorem makes use of the quantity 

(2.72) c1 =max lh2d.KI. 

THEOREM 2.3. Let the roots of the polynomial S(z), (cf. (2.33)) lie in the open 
disc, I zl < 1. If e1 is sufficiently small, then the method (2.63) is stable. If more- 
over the coefficients (cj, d1), j = 0, 1, . . ., max(r, s), are chosen so that (2.28) holds, 
then 

(2.73) 11 eNII < const [hP + L e1 V]m 

Proof. The proof of the theorem follows exactly as the proof of Theorem 2.2. 
If e1 is sufficiently small, (2.71) is a stable method and may be solved for eN as in 
(2.35); however, with gn in (2.35) replaced by the sum of the last two terms in (2.71). 
The term const hP in (2.73) then bounds IIgnjI, while the term const Lelvm is a bound 
for the last term in the right member of (2.71), the latter bound obtained by using 
(2.65). 

Remark 2.4. The two terms in the estimate (2.73) are not comparable in orders 
of h. The first term corresponding to the local truncation error is small for h small. 
The second term is the error by which a function may be approximated by.its average. 
(2.73) may be viewed as the statement that modulo the error made in replacing a func- 
tion by its average, the numerical method is globally hP. Using the coefficients in Sec- 
tion 2.6, we see that this second term, L Civm, is proportional to L/X2 and is thus 
small with this quantity. 

Remark 2.5. Similarly, e1 may be expected to be small, as required in the hy- 
pothesis of Theorem 2.3, when X is large (if coefficients such as those in Section 2.6 
are used). 

3. Systems. In this section, we will indicate how the results of Section 2 may be 
carried over to the more general case of second order systems. 

We replace the scalar equation (2.1) by the system 

(3.1) x + A2x = f (x, t). 

Here x and f are q-vectors and A is a q x q matrix. There is no explicit requirement 
that A be large in any sense, although for our ideas to be useful we imagine that at 
least one of the eigenvalues of A has a large imaginary component. The functional y(t) 
defined in (2.3) and the linear multistep formula are formally the same except that the 
y's which appear are q-vectors and the kernel k(t - s) in (2.3) and coefficients ci and 

di in (2.5) are q x q matrices. Similarly, the error equation (2.35) is composed of vec- 
tors and matrices as appropriate, viz. 

N 
(3.2) eN = i UYN-ngn 

n=r 
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with 
r s 

(33) gn = E Sjyny + h2 E djfn_;. 
j=0 j=0 

For the local error analysis we replace Ign lI in (2.15) by IIgn III which simply de- 
notes the q-dimensional norm of the q-vector of function space norms of the compo- 
nents of gn. For example, if the components of gn are gn 1, 1 = 1, . . ., q, we could 
take 

q 
(3.4) llignllI = 19gn,2ll1- 

1=1 

Thus 
jjr s \I 

(3.5) Illlgnlll =|( jtn _-hj nE dj7t ql 

where Tq is the q-vector all of whose components are unity. For simplicity we may 
take kt to be the scalar function in (2.16) times the q x q identity matrix, Iq, i.e. 

e-t i t ( 
kt IPm () 2 / 2T k() Iq 

However, for 71t we must take 

R +A 2R , (A2 _ W2Iq)e( 
t /I Pm(m() -2 

The moments ml and the remainder Rpare direct analogues of ml and Rp given 
in (2.24) and (2.25). For example 

MO 
= E 

s, - h2A2 Edi dj) 

/r Lr s 
\i=o 2 j=o = 

Thus, the local error analysis proceeds along lines similar to the scalar case. The Re- 
mark 2.1 is valid also if the matrices sj, j = 0,.. ., r, are scalars times Iq. Otherwise, 
the observations about the Vandermonde matrix made in that remark may not be valid. 

The global error analysis follows analogously if we use the following lemma con- 
cerning the matrix valued polynomial S(z), the analogue of (2.35). 

LEMMA 3.1. Let the determinantjIS (z)I of S(z) obey the root condition. If the 
determinant of so is not zero, then the matrix [zrS(z- 1)] - 1 is analytic in a neighbor- 
hood of z = 0. Furthermore, the matrices, a,, j = 0, 1, . . . , given by (2.34) have 
bounded norms. 

In our case the determinant I soI = 1. For a proof of this lemma and other de- 
tails concerning the global error analyses, cf. [2]. 

Remark 3.1. Referring to Remark 2.3 and the dependence of the coefficients of 
the numerical method on the coefficients of the differential equation, we see from (3.8) 
thp vuiv in wlhiih tho Apnplnelpnrop nnPnre in tPrme nsf tho mnatriv A2 fr-r f1- ,-afi,int- 
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determined by generalized moment conditions. It is important to take note that the 
coefficients depend on the matrix A2 and not explicitly on eigenvalues of A2. Thus, if 
we know that a system is stiff, with highly oscillatory components, we may use the 
methods described here without having to calculate the eigenvalues of A2 which cause 
this stiffness. 

Remark 3.2. In the usual systems case for the numerical treatment of differential 
equations the methods frequently used are the scalar methods with the scalar coeffi- 
cients simply multiplied by Iq. We suspect that the methods of Section 2 would work 
in the same way with the simple additional requirements of replacing X or X- 1 by A or 
A- 1, respectively. At present this remark is only a conjecture, and we defer for a fur- 
ther study its verification. 
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