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Some New High-Order Multistep Formulae 
for Solving Stiff Equations 

By G. K. Gupta 

Abstract. Several new multistep formulae of orders up to 9 for solving stiff ordinary 

differential equations are presented. Results of numerical testing of these new 

formulae and some formulae presented in earlier papers and the stiff formulae used 

by Gear are included. 

1. Introduction. In recent papers, Gupta and Wallace (1975) and Wallace and 

Gupta (1973), the authors have presented several new linear multistep methods 
(formulae) for the solution of stiff differential equations. In this paper more new 

multistep formulae are presented. Results of numerical testing of these formulae and 
those presented in previous papers, using a subroutine similar to DIFSUB of Gear 
(1971), are included. 

We will be using a polynomial representation of the linear multistep methods. 
Each multistep method of order m can be represented by a corresponding polynomial 
C(x) of degree m. We have called this the 'modifier polynomial' of the method. This 
representation was discussed in detail in Wallace and Gupta (1973), where we also 
show the relation between the coefficients of C(x) and the coefficients {ai} and {0j} 
of the conventional representation of multistep methods. 

For each of the formulae we study, we will present its truncation error coeffi- 
cient Km + 1 and the stability parameters D and a. The local truncation error intro- 
duced in the nth step of numerical integration is given by Km + 1 hm + 1y(m + 1)(xn) + 

O(hm +2) for a method of order m, using a step-size of h (assumed constant). The 
differential equation being solved is 

yI = (x, y), y(O) = y0. 

The stability parameters D and a are defined in the following definition of 

A(a, D)-stability. 
Definition. A(a, D)-Stability. A method is said to be A(a, D)-stable, a E (0, 

7r/2) if all numerical solutions to y' Xy converge to zero as n oo with h fixed 

for all I arg(- \h) I < a, D < Re(hX) < 0, I X I * 0 and for all Re(hX) < D. 

A(a, D)-stability combines the essential features of the A(a)-stability of Widlund 

(1967) and the stiff-stability of Gear (1969). 
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FIGURE 1 

The shaded portion is the A(ct, D)-stability region 

2. Formalism. Assuming the step-size to be fixed, as is done in this paper, we 
define xn = nh and Yn to be the approximate solution at xn- Also fn = f (xn, Y) 

For an m-step method, we suppose that the solution after the step to xn-1 is 

approximated by a polynomial Pn-l (x) of degree m, with Pn-1 (xn-1) = Yn-1 To 

advance the solution from xn,1 to xn, we obtain a new degree m approximating 
polynomial Pn(x) from the previous polynomial Pn-1(x) by the relation 

Pn(X) = Pn?-(X) + 6nC((x -Xn)h), 

where C is a fixed polynomial of degree m characteristic of the particular m-step 
method employed and 6n is chosen on each step to satisfy P,(xn) = f (xn, Pn(xn)). 

The above formalism differs slightly from that of Wallace and Gupta (1973) in 
that the present formalism defines the polynomial C to be independent of D; It was 
shown in Wallace and Gupta (1973) that the method of solution described above . 
exactly equivalent to the classical m-step method. Any. method which can be described 
in the formalism of Henrici (1962), which is consistent and of order m, can be 
described in our formalism by suitable choice of C. 

In modifying Pn-l (x) by the addition of some multiple of C((x - xn)Ih) to 
produce Pn(x), we would normally hope to produce a Pn(x) which retained as much 
information as possible about the behavior of the function y for x 6 xn-. We, 
therefore, expect that the correction 6nC((x - xn)/h) will in some sense be close to 
zero for x < xn-1, at least in the range xnrm < x < xnl . Equivalently, we expect 
the polynomial C(x) to be in some sense small for x 6 - 1, at least in the range 
- m < x < - 1. For instance, in our formalism, the Adams-Moulton formula of order 
m has 

C(-1)=O, C'(-k)=O, k= 1,2,...,m-1; 

and the stiff formula of Gear (1969) has 

C(-k)=O, k=1,2,...,m. 
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Our search for new formulae has been directed towards other ways of choosing 
C to approximate zero for values of x < - 1. In Wallace and Gupta (1973), we 
chose C to have small values in this range in an exponentially-weighted least squares 
sense and also in an absolute magnitude sense. We now present further methods 
choosing C to be small in absolute magnitude and also methods which choose C to 
make C' approximate zero in one or the other sense. 

3. New Formulae. We present five sets of formulae, two of them based on 
exponentially-weighted least squares approximation and the other three based on 
Chebyshev approximation. Our aims in investigating new formulae are that we seek 
formulae with stability as close to A-stability as possible, with small truncation error 
coefficients and as high an order as possible. 

3.1. Exponentially-Weighted Least Squares Formulae. The two sets of formulae 
we present are such that their corresponding modifier polynomials C(x) have a zero at 
x = - 1 and C'(x) minimizes 

{C '(O) - 1} 2 + , lvk {C(- k)} 2 
k=1 

where the weight-factor v is fixed (0 < v < 1). Using formulae based on such modi- 
fier polynomials, the polynomial approximation to the solution of the differential 
equation will minimize (as n approaches infinity) 

00 

E {Pn (xn-k) fn-k} 
k=O 

Two sets of formulae are presented in Tables 4 and 5 corresponding to v = 0.5 
and v = 0.6. We label them FMPD50 and FMPD60 because these polynomials (or 
rather their derivates) are called 'Fading Memory Polynomials' by Morrison (1969), 
who also discusses how to derive them. The details of the stability and truncation 
error of these formulae are presented in Table 1. 

3.2. Chebyshev Approximation Formulae. In Wallace and Gupta (1973), we 
presented a set of formulae based on a Chebyshev approximation to y = 0 on the 
range (- B, 0), where B is some suitably chosen positive real x-value. These formulae 
are almost A-stable up to order 6 (label them CHEBI) but the truncation error coef- 
ficients of these formulae are quite large. It was therefore thought to be worthwhile 
to investigate Chebyshev polynomials approximating y = 0 on ranges (- B, - 1) and 

(-B, -0.5). 
Three sets of formulae are presented. The first set provides a Chebyshev 

approximation to y = 0 on the range (-B, - 1). These formulae do not have very 
good stability and are included only because their truncation errors are quite small. 
We label these formulae as CHEB2. The next set provides an approximation on the 
range (- B, - 0.5) and is labelled CHEB3. The third set is such that the corresponding 
modifier polynomial has a zero at x = - 1 and its derivative provides a Chebyshev 
approximation on the range (- B, - 0.5). We label this last set as CHEB4. Various 
other formulae have been studied, and the ones which we are presenting here were 
thought to be more useful. 
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m l FMPD50 FMPD60 

order K a m+l a D 

1 0.695 A-stable 0.50 A-stable 
l I 2 1.05 A-stable 1.56 A-stable 

3 1.73 89.0 -0.007 3.79 89.5 -0.004 

4 2.70 86.0 -0.052 8.15 87.0 -0.026 

5 3.93 82.5 -0.156 16.62 84.2 -0.074 

6 5.61 78.3 -0.383 33.00 81.3 -0.156 

7 unstable 64.70 78.5 -0.284 

8 unstable 126.58 75.2 -0.510 

9 unstable 248.77 71.4 -1.240 

TABLE 1 

Truncation error coefficients and stability parameters 
for formulae FMPDSO and FMPD60 

CHEB1 CHEB3 

Order B K a D B 

3 9.0 0.375 89.5 -0.006 4.0 0.15 86.7 -0.112 

4 15.75 1.83 89.0 -0.012 6.9 0.37 84.4 -0.152 

5 24.6 13.75 88.8 -0.013 10.5 1.09 82.7 -0.183 

6 35.6 136.79 88.6 -0.013 15.0 4.23 81.6 -0.189 

7 Not studied - - 22.5 44.31 80.8 -0.144 

TABLE 2 

Details of Chebyshev approximation formulae CHEBI and CHEB3 

The details of the truncation error and stability of formulae CHEBI, CHEB2, 
CHEB3 and CHEB4 are presented in Tables 2 and 3. The details of CHEBI are 
included to emphasize that A(u)-stable formulae for almost all values of at E [0, i/2) 
do exist for orders up to 6. The coefficients of these formulae are not presented 
since these are easy to obtain. (Formulae of order 2 are not included because these 
turned out to be the trapezoidal rule.) 

3.3. For the sake of comparison, in Appendix A we include the details of the 
truncation error and stability of the stiff formulae used by Gear. 
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CHEB2 CHEB4 

Order B K | D B D 
M+1 "M+1 

3 1.9 0.08 77.6 -1.49 4.5 0.187 87.0 -0.095 

4 2.9 0.07 56.0 -6.19 9.0 0.558 85.0 -0.291 

5 4.5 0.114 39.0 -5.11 15.5 2.858 84.6 -0.326 

6 7.5 0.497 30.5 -3.35 24.5 23.466 85.0 -0.185 

TABLE 3 

Details of Chebyshev approximation formulae CHEB2 and CHEB4 

m=1 2 3 4 5 6 

-0.8333333E0 -0.7023810E0 -0.6027778E0 -0.5287186E0 -0.4742835E0 

c2 -0.1666667E0 -0.3214286E0 -0.4611111E0 -0.5846774E0 -0.6927249E0 

c3 -0.2380952E-1 -0.6666667E-1 -0.1232079E0 -0.1884921E0 

C4 -0.2777778E-2 -0.1008065E-1 -0.2265212E-1 

5 -0.2688172E-3 -0.1190476E-2 

C| -0.2204586E-4 

TABLE 4 

Coefficients of formulae FMPD50 

Modifier polynomial C(x) = 2IT 'c xi, cl = - 1.0 

Also, at the suggestion of the referee, we present in Appendix B the coefficients 

of the conventional representation of the formulae CHEB1, CHEB2, CHEB3, CHEB4, 

FMPD50 and FMPD60. 

4. Testing. 

4.1. Recently Enright, Hull and Lindberg (1975) have tested five methods 

for solving stiff differential equations. The methods tested include a slightly modi 

fied version of the subroutine DIFSUB of Gear, two methods based on Runge- 

Kutta formulae, a variable-order method based on the second derivative multistep 

formulae developed by Enright (1974) and a fourth-order method based on the 

trapezoidal rule with extrapolation developed by Lindberg (1971). The main con- 

clusion of this study is that generally the methods based on Runge-Kutta formulae 

are unreliable (except for solving linear problems). Also the modified subroutine 

DIFSUB has been found to be efficient on all problems except when some of the 

eigenvalues of the Jacobian are close to the imaginary axis. This leads us to believe 

that if the stiff multistep formulae used in DIFSUB were replaced by some other 

multistep formulae of higher order and better stability, the resulting subroutine may 

be significantly better than the other available methods. 
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M= 1 2 3 4 5 

0 -0.Q8750000EO -0.7687075EO -0.6801471EO -0.6076182EO 

C2 -0.1250000EO -0.2448980EO -0.3578431EO -0.4626417EO 

c3 -0.1360544E-1 -0.3921569E-1 -0.7479374E-1 

4 -0Q.1225490E-2 -0.4626417E-2 

c ~~~~~~~~~~~~~~~~-0.9252 834E-4 

7F?: 6 7 8 9 

c0 -0.5490005EO -0.5020428EO -0.4645855EO -0.4346992EO 

C2 -0.5587451EO -0.6461482EO -0.7252434EO -0.7966720EO 

C3 -0.1181525EO -0.1671921EO -0.2200572EO -0.2752128EO 

4 -0Q.1083065E-1 -0.2015679E-1 -0.3266631E-1 -0.4823232E-1 

5 -0.4296455E-3 -0.1188104E-2 -0.2540317E-3 -0.4634746E-2 

a6 -0.5967299E-5 -0.3277528E-4 -0.1043036E-3 -0.2515721E-3 

c7 -0.3344416E-6 -0.2116049E-5 -0.7605484E-5 

C8 -0.1653164E-7 -0.1182200E-6 

C9 -0. 7297528E-9 

TABLE 5 

Coefficients of formulae FMPD60 

Modifier polynomial C(x) of degree m = IT 2 c x, cl = - 1.0 

Our aim in testing was to compare the several new multistep formulae we have 
developed with the stiff formulae used by Gear in DIFSUB (1971). Our testing is not 

very extensive; in fact, we have tested the formulae on only one test problem while 

Enright et al. (1975) have used several test problems. We can, therefore, expect only 
limited information from the testing. 

The formulae tested are discussed in Section 4.2 and the algorithm used is 
discussed in 4.3. In Section 4.4, we present the test problem and the test results. 

4.2. Formulae. The following sets of multistep formulae were tested. For 
each set we give the maximum order and the stability parameter oz. A value of at for 
a set is the maximum value of a such that all the formulae in that set are stable 
within the wedge ? at in the hX-plane. Details of the individual formulae are given 
in the corresponding references. 

(a) FLS-formulae based on finite least squares as presented in Gupta and 
Wallace (1975). Maximum order = 8. Stability parameter a = 63.5 deg. 

(b) BDF-stiff formulae used by Gear in DIFSUB (1971). Maximum order 
= 6. Stability parameter at = 17 deg. 
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Formulae EPS - 10i3 EPS - 10 5 EPS - 10 

(a) FLS NS/NF/NJ 87/203/16 170/407/19 288/599/25 

HE/6E 0.40/7 0.227/8 0/129/7 

(b) BDF NS/NF/NJ 95/206/14 191/497/17 309/684/24 

HE/OE 0.425/6 0.213/6 0.106/6 

(c) FMP25 NS/NF/NJ 152/340/21 218/455/20 317/765/24 

HE/OE 0.453/8 0.251/8 0.142/8 

(d) FMPD50 NS/NF/NJ 221/500/22 328/765/18 528/1207/17 

HE/OE 0.295/6 0.134/6 0.0669/6 

(e) FMPD60 NSINF/NJ 363/910/29 449/1139/27 592/1407/26 

HE/OE 0.368/9 0.195/9 0.113/9 

(f) CHEB1 NS/NF/NJ 113/251/9 347/737/17 618/1298/24 

HE/OE 0.237/4 0.08/4 0.049/6 

(g) CHEB2 NS/NF/NJ 89/197/14 182/408/19 354/956/21 

HE/OE 0.394/5 0.181/5 0.0882/6 

(h) CHEB3 NS/NF/NJ 103/268/14 225/480/21 415/922/25 

HE/OE 0.283/5 0.151/6 0.075/7 

(i) CHEB4 NS/NFINJ 133/284/14 246/522/22 513/1087/24 

HE/OE 0.223/3 0.126/6 0.0576/6 

TABLE 6 

(Eigenvalues - 500 ? Oi) 

(c) FMP25-fading memory formulae with the weight-factor v = 0.25 as 
presented in Wallace and Gupta (1973). Maximum order = 8. Stability parameter 
a = 16 deg. 

(d) FMPD50, FMPD60, CHEB1, CHEB2, CHEB3 and CHEB4 presented in this 
paper. 

4.3. Algorithm. The algorithm being used is a modified version of DIFSUB of 
Gear. The following changes were incorporated. We assume that the reader is 
familiar with DIFSUB of Gear (1971). 

(a) PRI, PR2, and PR3 are the factors by which the step-size is changed if 
order p - 1, the present order p or order p + 1 is used, respectively. These are 
computed as follows 

PR2 = 1.05 (10 D/E)?/2(P + 1) 

PRI = 1.05(IOD/EDWN)/2P. 

PR3 = l1,05 (10OD/EUP)?I2(P 2) 
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Formulae EPS - 10 
3 

EPS - 10 | EPS - 10 
7 

(a) FLS NS/NF/NJ 91/210/15 178/423/18 316/676/25 

HE/OE 0.402/7 0.227/8 0.139/8 

(b) BDF NS/NF/NJ 92/189/13 183/479/16 363/824/18 

HE/OE 0.442/6 00'215/6 0.107/6 

(c) FMP25 NS/NF/NJ 137/369/21 218/524/21 352/864/25 

HE/OE 0.453/8 0.243/8 0.141/8 

(d) F?PD50 NS/NF/NJ 177/396/14 297/674/14 531/1487/12 

HE/OE 0.291/6 0.135/6 0.0649/6 

(e) FMPD60 NS/NF/NJ 270/672/19 372/881/20 510/1325/17 

HE/OE 0.373/9 0.196/9 0.110/9 

(f) CHEBM NS/NF/NJ 148/310/11 304/666/16 724/1562/31 

HE/OE 0.187/3 0.100/5 0.047/6 

(g) CHEB2 NS/NF/NJ 87/187/13 184/408/13 375/1000/18 

HE/OE 0.397/5 0.175/5 0.0883/6 

(h) CHEB3 NS/NF/NJ 129/265/14 228/486/23 445/1128/21 

HE/OE 0.259/4 0.151/6 0.076/7 

(i) CHEB4 NS/NF/NJ 128/269/14 287/584/17 548/1157/22 

HE/OE 0.241/4 0.103/4 0.0584/6 

TABLE 7 

(Eigenvalues - 50 ? 50i) 

D, D, D are the squares of the error estimates at order p, p - 1 and p + 1, respectively, 
and E, EDWN, EUP are the squares of the error requirements (times some constants) 
at orders p, p - I and p + 1, respectively. 

(b) In DIFSUB if the step increase is less than 10%, then the step is not changed. 
We allow step change if the change is more than 2.5%. 

(c) Necessary changes to allow higher-order formulae. 
These changes may seem arbitrary. The aim was to change the algorithm so 

that it will tend to go to as high an order as possible. 
4.4. Test Problem and Results. The test problem was 

y1=vy1 - uY2 + (- v + u + +)eX, Y uyl - vY2 + (- v - u + I)e 

y1(O)= 2, Y2(0)= 1. 
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-3 -5 7 Formulae EPS = 10 EPS = 10 EPS = 10 

(a) FLS NS/NF/NJ 140/340/21 294/660/34 789/1953/34 

HE/OE 0.375/6 0.227/8 0.043/4 

(b) BDF NS/NF/NJ 147/342/17 660/1580/34 1202/2943/26 

HE/OE 0.455/6 0.213/6 0.031/4 

(c) FMP25 NS/NF/NJ 507/1223/31 322/749/28 646/1576/32 

HE/OE 0.431/8 0.243/8 0.136/8 

(d) FMPD50 NS/NF/NJ 224/570/18 418/1038/16 796/2122/18 

HE/OE 0.292/6 0.132/6 0.0698/6 

(e) FHPD60 NS/NF/NJ 346/771/27 453/1024/28 740/1961/21 

HE/OE 0.357/9 0.194/9 0.113/9 

(f) CHEB1 NS/NF/NJ 204/479/14 515/1203/23 1127/2492/31 

HE/OE 0.177/3 0.085/4 0.0446/6 

(g) CHEB2 NS/NF/NJ 134/315/18 454/1192/58 1018/2553/49 

HE/OE 0.376/5 0.063/3 0.0273/4 

(h) CEEB3 NS/NF/NJ 159/403/23 357/834/24 712/1628/24 

HE/OE 0.282/5 0.148/5 0.081/6 

(i) CHEB4 NS/NF/NJ 172/382/19 417/1058/25 844/2068/29 

HE/OE 0.240/4 0.110/5 0.066/6 

TABLE 8 

(Eigenvalues - 10 + 50i) 

We want the solution on the interval. The exact solution is (0, 20). 

Yi = clevx cos(ux + c2) + eX, Y2 = clevx sin(ux + c2) + eX. 

For the given initial conditions cl = 1, c2 = 0. 

The eigenvalues of the Jacobian of the system of equations are v ? iu. We 
choose four sets of values for v and u 

(1) v =- 500, u = O, 

(2) v = - 50, u = 50, 

(3) v = - 10, u = 50, 

(4) v = - 10, u = 100. 

The formulae were tested for accuracy requirements (EPS) of 10-3, 1 -5, 10-7. 
The results of the numerical testing are presented in Tables 6 to 9. We have 

tabulated the number of steps (NS), the number of function evaluations (NF), the 
number of Jacobian evaluations (NJ), the step-,size at exit (HE) and the order of the 
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Formulae EPS -10 o3 liPS - i0o5 EPS - 10 7 

(a) FLS NS/NF/NJ 208/498/33 474/1142/38 1568/3597/26 

HE/OE 0.40/7 0.226/8 0.0195/3 

(b) BDF NS/NF/NJ 2473/5849/134 390/1001/20 2811/6734/131 

HE/OE 0.0085/5 0.222/6 0.0085/6 

(c) FMP25 NS/NF/NJ 2707/6639/32 2814/6531/36 2124/5143/47 

HE/OE 0.0071/4 0.0078/6 0.144/8 

(d) FMPD50 NS/NF/NJ 276/708/19 629/1604/23 1216/2989/21 

HE/OE 0.296/6 0.148/6 0.0711/6 

(e) FMPD60 NS/NF/NJ 3313/9666/25 3340/7382/86 1219/3238/37 

HE/OE 0.0061/6 0.0073/7 0.111/9 

(f) CHEB1 NS/NF/NJ 279/661/23 770/1720/35 1707/3939/39 

HE/OE 0.193/4 0.091/6 0.0515/6 

(g) CHEB2 NS/NF/NJ 1838/4456/248 709/1815/52 2301/5556/92 

HE/OE 0.010/4 0.115/4 0.0125/4 

(h) CHEB3 NS/NF/NJ 235/593/27 549/1298/36 1150/2666/34 

HE/OE 0.281/5 0.148/6 0.081/6 

(i) CHEB4 NS/NF/NJ 256/669/22 623/1354/34 1413/3218/37 

HE/OE 0.211/3 0.109/5 0.056/6 

TABLE 9 

(Eigenvalues - 10 ? 100i) 
method being used at exit (OE). The last two parameters, HE and OE, are generally 
not compared, but in our opinion they provide very useful information. Comparing 
HE, we can get some idea of how various formulae would have performed had the 
integration interval been larger. Comparing OE, we can see how the variable order 
algorithm is working for the various formulae. 

We do not include details about the errors in the numerical solution for all 

test cases. In Table 10 we do, however, give the ratio of the maximum relative error 

in the numerical solution to the required error (EPS) for eigenvalues - 50 ? 50i. 

5. Concluding Remarks. (1) FLS seems to be one of the better formulae. In 
most cases it is better than the rest of the formulae, and for eigenvalues - 10 ? 50i 
and - 10 ? 100i the degradation in its performance is not too bad. 

(2) The algorithm seems to have suited some formulae more than others, and 
it would be expected that the performance of at least some formulae could be 
substantially improved by 'tuning' the algorithm to the formulae. Also, the algorithm 
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Formulae EPS = 10 EPS = 10 EPS = 10 
7 

FLS 0.54 1.01 1.78 

BDF 0.55 3.05 2.12 

FHP25 1.09 1.51 1.39 

FMPD50 1.50 1.67 3.53 

FMPD60 2.46 2.34 3.56 

CHEB1 2.10 6.82 6.02 

CHEB2 8.73 9.80 6.17 

CHEB3 2.20 3.60 7.40 

CHEB4 1.25 5.70 8.50 

TABLE 1 0 

Ratio of the maximum relative error to EPS for eigenvalues - 50 ? 50i 

definitely needs modification if it is to be used with high-order formulae (order > 8). 
This is very well demonstrated by the performance of FMPD60 at EPS = 10-3 and 
10-5 (X = - 10 + 100i) and of FMP25 at EPS = 10-3 (X = - 10 ? 50i), among 
others. The poor performance of these two formulae at the cases referred to was 
due to corruption of the derivatives of the approximating polynomial when the step- 
size had to be reduced. Also when higher-order formulae are being used, the step- 
change takes place less frequently since at least m + 1 steps (for order m) must be 
taken between two step-size changes. 

(3) Krogh (1973) has remarked that the importance of A-stability in practical 
computation is doubtful. To find whether requirements similar to A-stability are use- 
ful, we thought of comparing CHEBI and FLS. CHEBI are almost A-stable while 
FLS have the stability parameter a = 63.5 for the 8th-order formula. Both the 
formulae were tested for eigenvalues - 10 ? Oi, - 10 ? 25i, - 10 + 50i and - 10 + 

100i (for EPS = 10-7). The numbers of steps required by FLS were 241, 367, 789 
and 1568, respectively. CHEBI needed 563, 783, 1127 and 1707 steps for these 
eigenvalues, respectively. The ratio of the number of steps at - 10 ? lOOi to the 
number of steps at - 10 ? Oi comes out to be 6.5 for FLS and 3.03 for CHEBI. The 
ratio comes out to be more than 10 for stiff formulae used by Gear. This shows the 
usefulness of A-stability or a similar requirement. 

(4) Many of the new formulae presented in this paper have performed much 
better than the stiff methods used in DIFSUB when the eigenvalues of the Jacobian 
are close to the imaginary axis. Further investigation is required, and suitable 
algorithm(s) are being designed for these new formulae. 

6. Acknowledgments. The author is grateful to the referee and Professor 
C. S. Wallace for several useful suggestions. 
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Appendix A 

Order _- 

2 0.333 A -stable 

3 0.250 86.0 -0.1 

4 0.200 73.5 -0.7 

5 0.167 51.8 -2.4 

6 0.143 17.2 -6.1 

TABLE Al 

Details of the truncation error and stability of the stiff formulae used by Gear 

Appendix B 

A k-step multistep formula is usually represented by 

akyn+k + ak-lYnf+k-1 + + =OYn 
= 

{hkfn +k + Ok-lfn+k-1 + + 0fnI 

The coefficients ai and j3i are now presented for various formulae studied in this 
paper. 

3 4 5 6 

0 -0.473245 0.457734 -0.4538100 0.454151 

1 1.814802 -2.204274 2.632823 -3.454151 

-2.341557 4.010774 -6.138831 8.746665 

1.0 -3.264234 7.191439 -13.280660 

4 1.0 -4.231530 11.380330 

5 1.0 -5.217959 

6 ~~~~~~~~~~~~1.0 
60 0.225649 -0.221578 0.218120 -0.215042 

61 -0.412208 0.628302 -0.832033 1.028761 

62 -0.181752 -0.256324 0.859755 -1.636942 

0.500000 -0.618016 0.361547 0.433327 

64 0.492188 -1.096034 1.493303 

65 0.492000 -1.597493 

66 , 0.494444 

TABLE Bi 

Coefficients of the formulae CHEB1 
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