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The T,, Transformation

By Roland F. Streit

Abstract. This paper discusses a nonlinear sequence-to-sequence transformation, known
as the T+m transform, which is used to accelerate the convergence of an infinite series.
A brief history of the transform is given; a number of theorems are established which
enable one to make effective use of the transform, and several examples are presented
to illustrate this effectiveness.

This paper discusses a nonlinear sequence-to-sequence transformation, known as
the T, ,, transformation, which is used to accelerate the convergence of an infinite
series. A brief historical sketch of the transformation is given and a number of theorems
are established which enable one to make effective use of the T, transform. In
particular, special attention is given to the case in which the transformed series con-
verges more rapidly or uniformly better than the original series. Finally, several
examples are given to illustrate the effectiveness of the transformation.

The T, , transformation was found independently by many authors. Generally,
it was applied to some slowly convergent sequences for the purpose of accelerating
their convergence. These sequences arose as a consequence of either (a) some iterative
process or (b) as the partial sums of an infinite series.

Aitken [1] in 1926, Shanks and Walton [2] in 1948, Hartree [3] in 1949, and
Isakson [4] in 1949 used the T, , transformation in connection with iterative proces-
ses. On the other hand, Delaunay [5] in 1860, Samuelson [6] in 1945, Shanks [7],
[8] in 1949 and 1955, and Lubkin [9] in 1952 applied the transformation to the
sequence of partial sums of infinite series. With the exception of Aitken [1], Lubkin
[9] and Shanks [7], [8], the transformation was simply applied in a particular prob-
lem(s) with little theoretical explanation being given of why it worked.

In 1969 Gray and Clark [10] defined and studied a generalization of the T, ;
transformation which they called T, ,,. They established some conditions under which
the series generated by the T, transform would converge more rapidly than the
original series.

Let {a(i)};=, be an infinite sequence. Then the series associated with this
sequence is denoted by § = ;7 ,a(i) and is the limit of the sequence {S(n)}, =, of
partial sums S(n) = Z_,a(i).

Definition 1. The T, transformation is defined as

S(n + m) — R(n; m)S(n)
1= R(n; m) ’

) Ty S+ m)] =
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where m > 0 is a positive integer and

)] R(n; m) = a(n + m)fa(n) + 1.
Another form of (1) which will be used extensively is
S(n + m) — S(n)
1 —=R(n; m)
Suppose that {4(n)},;;_; and {B(n)},_, are sequences of real numbers such that
lim,_, ,A(n) = A and lim,_, . B(n) = B.

Definition 2. If
A - A(n)
lim |——| =
nlf’l[B - B(n)] 0.

then A(n) converges to A more rapidly than B(n) converges to B.
Definition 3. If

3) T, [S(n+ m)] =Sn)+

A—Am)

<1 for all n,
BB or all n

then A(rn) converges to A uniformly better than B(n) converges to B.

These concepts are of great use in comparing rates of convergence of sequences.
However, with respect to the T, transformation, their usefulness has been extremely
limited because there exist few theorems which provide criteria that determine when
the sequence {T,,,[S(n + m)]}~_, converges to S more rapidly or uniformly better
than the sequence {S(n + m)},_,.

We begin our investigation with the following question: When does
lim T, [S+m)] =25?

THEOREM 1. If S is a convergent infinite series and lim, _, ., |R(n; m)| =
|R(m)| # 1, then T, [S(n + m)] — S as n — oo

Proof. From (3),

S(n + m) — S(n)
1 —-R(n; m)

lim |T,,, [S( +m)] —S(r)| = lim
n—>o n—>

1
<———— lim |S(n +m)-S(r)|=0.
TZTRGD| lim 1S + m) = S|

Thus T, [S(n + m)] — S as n —> oo,
THEOREM 2. Suppose that S is a convergent infinite series and there exists a
constant C > 0 such that | 1 — R(m; n) | > C for n sufficiently large. Then
T, [Sn+m)] —Sasn— oo
Proof. 1t follows from (3) and the hypothesis that | T, [S(n + m)] — S(n)| <
CHIS(n + m) - S(n)|} — 0 as n — oo. Thus T,, [S(n+m)] —Sasn— oo
Lubkin [9] proved the following theorem for the case m = 1. While this theorem
is more general, its proof does not differ substantially from his and thus will be omitted.
THEOREM 3. If the sequences {S(n)},—, and {T,, [S(n + m)]} _, converge,
then they have the same sum.
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THEOREM 4. Suppose that S is an absolutely convergent infinite series whose
terms, in absolute value, form a monotone decreasing sequence. If {nla(n)|},_, isa
monotone nonincreasing sequence, then T, [S(n + m)] — S as n —> o

Proof. Since {nla(n)|},—, is a monotone nonincreasing sequence, then
(n+ Dla(n + 1)| <nla(n)| and

“4) 1/(1 = |R(m; DI)<n + 1.

But {la(n)|},—, is a monotone decreasing sequence. Therefore,

S(n + m) — S(n)
1 - R(n; m)

< mla(n) |
S 1-|R(m; DI

and by (4), it follows that

S(n + m) - S(n)
1 — R(n; m)
which converges to 0 as n —> oo,

Thus, applying (3), we have that T, [S(n + m)] — S as n —> .

THEOREM 5. Suppose that S is an absolutely convergent infinite series whose
terms, in absolute value, form a monotone decreasing sequence. If {|R(n;m)|},_, is
a monotone nondecreasing sequence, then T, [S(n + m)] — S as n —> o,

Proof. From (3) we have

<m(n+ Dlan)l,

|1S(2 + m) = S(n)|

I Ty [S(n + m)] = S(n) | < 1-|R(m;my| °

and thus,
mla(n + 1)|
1-|R(m; 1)~

Since {|a(n) |};,—, is a monotone decreasing sequence, then |R(n; 1)| <1, and

Q) IT,,, [S+m)] -Sh)|<

SO

I—l"l(;’«—:;ll))'T = X la(n + )1 IREs DI
But this series is dominated, term-by-term, by the series Z;2, , ; la(?) | which,
since S is absolutely convergent, converges to 0 as n — . Therefore,
. la(n + 1) |
lim ——— =0;
n—»e 1 —|R(n; 1|
and thus, by (5), T, ,,,[S(n + m)] — S asn —> oo,

We now consider the following question: When does the sequence generated by
the T, ,, transformation converge to S either more rapidly or uniformly better than the
original sequence of partial sums?

THEOREM 6. If S is a convergent infinite series with positive terms and
nowR(; m) # 0, then T, [S(n + m)] converges to S more rapidly than S(n + m).
Proof. T, [S(n + m)] — S by Theorem 1. By (3) and Definition 2, we have

that

lim



508 ROLAND F. STREIT
S(n + m) — S(n)
Ty S +m)] -5 SOt T Ry S
Sn+m-S S(n+m)-S

(6) ___Sm-s 1 [S(n + m) - S(ﬂ)]

S +my-S 1-Rmm)| S-S0n+m)

By our hypothesis, S(r) — S — 0 and S(n + m) — S — 0 monotonely. Thus,
by a theorem from Bromwich [11], we have

i Sn)-S 7. I Sn)-S-Sr—-1)+S
n [S(n+m)—S = Sn+my-S-Sn+m-1)+S
. an) | _ .. 1
nh—r>noe [a(n + m):, - nh—r::o [R(n; m)]'
Similarly,

. S(n+m)=8Sn) | 1 _
®) nh—l;[:o[S—S(n+m) ]_nlﬂ[zz(n;m) l]'

Thus, substituting (7) and (8) into (6), it follows that
T, [S(n + m)] —s]
lim
n—>e S(n+m)—-S

. 1 1 1 _ _
- nh_?L {R(n;m) - [1 - R(n; m) ][R(n;m) l]} 0.

which completes the proof of the theorem.

THEOREM 7. If S is a convergent series with positive monotone decreasing terms
and {R(n; m)};,~, is a monotone nondecreasing sequence, then T, [S(n + m)]
converges to S uniformly better than S(n + m) for all n.

Proof. We first show that {T,, [S(n + m)]},_, is a monotone nondecreasing
sequence in n; ie., that T, [S(r + m + 1)] =T, [S(n + m)] for all n.

M

I

TS+ m+ 1)) = T,, [S(r + m)]

_Sntm+1)-R(n+1;m)S(n+1) S+ m)—Rn; mS(n)
B 1-R(n+ 1;m) 1 = R(n; m)

Sn+m+1)=-Sn+1) _ S(n + m) - S(n)
1-R(n+1;m) 1 =R(n; m)

a(n + 1) +

_ an+ D[I-Rn+1;m)] +Sn+m+ 1)-Sn + 1) _ Sn+m)—S(n)

1-R(n+1;m) 1 = R(n; m)
= [S(n + m) - S(n)] ! - ! |
1-R(n+1;m) 1 —=R(n; m)

=0 since R(n + 1; m) = R(n; m).
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Therefore, T, [S(n + m + 1)] > T, [S( + m)] and so {T,, [S( + m)]};_,
is a monotone nondecreasing sequence in #.

We now note that T, [S(n + m)] > S(n + m) > 0 and by Theorem 5,

T,,,[S(n + m)] — S asn — . But a positive nondecreasing sequence, if it converges,
converges to its least upper bound. Therefore, for all # and any m > 0,
§-T,, [Sn + m)] §-T,,,[Sr+ m)]
S-Sn+my |  S—Sm+m)
and so T, [S(n + m)] converges to S uniformly better than S(n + m).

To illustrate the above theory and the effectiveness of the T, m transformation,
we present the following examples. In the tables E(n + m) =S — S(n + m) and
E(m)=8S-T,,I[5n+m).

Example 1. Consider

>

1
S = - ~ 1.20205690.
i

1™

Choosing m = 2 we see, by Theorem 5, that T, [S(n + 2)] converges to S. Moreover,
T,,[S(n + 2)] converges to S uniformly better than S(n + 2) for all n by Theorem 7.
The comparison of T, , [S(n + 2)] with S(n + 2) is illustrated in Table 1.

Example 2. Consider

= Z =7j— ~ 78539816,

In this example, we choose m = 1.

It takes approximately 50,000 terms of this series to obtain four digit accuracy.
However, from Table 2, we see that T, | [S(n + 1)] achieves this same degree of
accuracy from the first nine terms of the series.

Example 3. Consider

sz(

It can be shown that it takes 10,000 terms of this series to obtain seven digit

)l+l
=1n 2 ~ .69314718.

accuracy. However, choosing m = 1 and examining Table 3, we find that this same
degree of accuracy can be obtained from the first fourteen terms of the series by means
of T, ,[S(n + 1)].

n Sn+2) | Em+2) | T,,[S+2)]| E(2)

10 1.1988618 0031951 1.2010725 .0009844
20 1.2010690 .0009879 1.2017394 .0003175
30 1.2015825 .0004744 1.2019013 0001556
40 1.2017786 .0002783 1.2019642 0000927

50 1.2019735 .0001834 1.2019966 .0000603

1
TABLE 1. Application of T, [S(n +2)] to § =22,
i
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n S(rn+ 1) En+1) T,,[S(n + 1)] E, (1)
1 8666666 —.0812684 7916666 —-.0062684
2 7238095 0615887 7833333 .0020649
3 .8349206 —.0495224 7863095 —-.0009113
4 7440115 .0413867 7849206 .0004776
5 .8209346 —.0355364 7856782 —.0002800
6 7542679 .0311303 7852203 .0001779
7 .8130915 —.0276933 7855179 —-.0001197
8 7604599 .0249383 7853139 .0000843
" . D
TABLE 2. Application of T, [S(n + 1)] to § = Z7, AT
n S(n+ 1) En+1) T, [S(n + 1)] E, (1)
3 7777776 —.08463058 65333333 03981385
5 77089945 —-.07775227 68342151 00972567
7 75506524 —.06191806 68951776 00362942
9 74454215 —-.05139497 69233120 .00081598
11 73627423 —.04312705 69300004 .00014714
13 73006693 —-.03691975 69314716 .00000002

. - D
TABLE 3. Application of T, [S(n + 1)] to § = 22| .
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