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The T+m Transformation 

By Roland F. Streit 

Abstract. This paper discusses a nonlinear sequence-to-sequence transformation, known 

as the T+m transform, which is used to accelerate the convergence of an infilnite series. 

A brief history of the transform is given; a number of theorems are established which 

enable one to make effective use of the transform, and several examples are presented 

to illustrate this effectiveness. 

This paper discusses a nonlinear sequence-to-sequence transformation, known as 

the T+m transformation, which is used to accelerate the convergence of an infinite 

series. A brief historical sketch of the transformation is given and a number of theorems 

are established which enable one to make effective use of the T+m transform. In 

particular, special attention is given to the case in which the transformed series con- 

verges more rapidly or uniformly better than the original series. Finally, several 

examples are given to illustrate the effectiveness of the transformation. 

The T+ 1 transformation was found independently by many authors. Generally, 

it was applied to some slowly convergent sequences for the purpose of accelerating 

their convergence. These sequences arose as a consequence of either (a) some iterative 

process or (b) as the partial sums of an infinite series. 

Aitken [1] in 1926, Shanks and Walton [2] in 1948, Hartree [3] in 1949, and 

Isakson [4] in 1949 used the T+ 1 transformation in connection with iterative proces- 

ses. On the other hand, Delaunay [5] in 1860, Samuelson [6] in 1945, Shanks [7], 

[8] in 1949 and 1955, and Lubkin [9] in 1952 applied the transformation to the 

sequence of partial sums of infinite series. With the exception of Aitken [1], Lubkin 

[9] and Shanks [7], [8], the transformation was simply applied in a particular prob- 

lem(s) with little theoretical explanation being given of why it worked. 

In 1969 Gray and Clark [10] defined and studied a generalization of the T+1 
transformation which they called T+m. They established some conditions under which 

the series generated by the T+m transform would converge more rapidly than the 

original series. 
Let {a(i)}7 1 be an infinite sequence. Then the series associated with this 

sequence is denoted by S = I' a(i) and is the limit of the sequence {S(n)}' 1 of 

partial sums S(n) = 1U la(i). 

Definition 1. The T+m transformation is defined as 

(1) T+m [S(n + m)] = S(n + m) - R(n; m)S(n) 
1- R(n; m) 
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where m > 0 is a positive integer and 

(2) R(n; m) = a(n + m)/a(n) $ 1. 

Another form of (1) which will be used extensively is 

(3) T+m [S(n + m)] = S(n) + S(n + m) - S(n) 
1 - R(n; m) 

Suppose that {A(n)}' 1 and {B(n)}n_1 are sequences of real numbers such that 

limn_+wA(n) = A and limn-*-B(n) = B. 

Definition 2. If 

limr [A-A(n) = 

then A(n) converges to A more rapidly than B(n) converges to B. 

Definition 3. If 

A -A(n) < 1 for al n, 

then A(n) converges to A uniformly better than B(n) converges to B. 

These concepts are of great use in comparing rates of convergence of sequences. 

However, with respect to the T+m transformation, their usefulness has been extremely 

limited because there exist few theorems which provide criteria that determine when 

the sequence {T+ m [S(n + m)] }n=1 converges to S more rapidly or uniformly better 
than the sequence {S(n + m)}_ 

We begin our investigation with the following question: When does 

limn-* m T+m [S(n + m)] = S? 
THEOREM 1. If S is a convergent infinite series and limn-*oo IR(n; m) I = 

IR(m) I 1, then T+m [S(n + m)] S as n oo. 
Proof From (3), 

lim IT+m[S(n +m)] -S(n) = lim S(n m)- S(n) 

~ I R(mjIlim I S(n + m) - S(n) 0. 1 - I R(m)I -o 

Thus T+m [S(n + m)] S as n .c* 

THEOREM 2. Suppose that S is a convergent infinite series and there exists a 
constant C > 0 such that I 1 - R(m; n) I > C for n sufficiently large. Then 

T+m [S(n + m)] - S as n oo. 

Proof. It follows from (3) and the hypothesis that I T+m [S(n + m)] - S(n) < 

C-1{IS(n + m) -S(n)I} - O as n - oo. Thus T+m[S(n + m)] S as n - oo. 
Lubkin [9] proved the following theorem for the case m = 1. While this theorem 

is more general, its proof does not differ substantially from his and thus will be omitted. 
THEOREM 3. If the sequences {S(n)}= '1 and {T+ m [S(n + m)] }- l converge, 

then they have the same sum. 
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THEOREM 4. Suppose that S is an absolutely convergent infinite series whose 

terms, in absolute value, form a monotone decreasing sequence. If {n I a(n) I }n 1 is a 
monotone nonincreasing sequence, then T+m [S(n + m)] S as n oo. 

Proof. Since {n I a(n) I }n= 1 is a monotone nonincreasing sequence, then 

(n + 1)Ia(n + 1) I Sn la(n) I and 

(4) 1/(1 - IR(n; 1)I ) S n + 1. 

But { I a(n) I }n= is a monotone decreasing sequence. Therefore, 

S(n + m) -S(n) mla(n)I 
1 - R(n; m) 1 - I R(n; 1)I 

and by (4), it follows that 

S(n + m) - S(n) |m(n 1) Ia(n)I, 
1 - R(n; m) 

which converges to 0 as n >o- . 

Thus, applying (3), we have that T+m [S(n + m)] S as n oo. 

THEOREM 5. Suppose that S is an absolutely convergent infinite series whose 

terms, in absolute value, form a monotone decreasing sequence. If { I R(n; m) I}= 1 is 

a monotone nondecreasing sequence, then T+m [S(n + m)] S as n > . 

Proof From (3) we have 

I T+ m [S(n + m) -S(n)I I S(n + m) - S(n) I 
1 - IR(n; m) I 

and thus, 

- )I<m la(n + 1)!1 
(5) I T+ m [S(n + m)] - S(n) 1 R(n; 1) I 

Since {I a(n) I} -= l is a monotone decreasing sequence, then IR(n; 1) 1 < 1, and 

so 

lR(n; 1) = E I a(n + 1) 1{I R(n; 1) I1} 

But this series is dominated, term-by-term, by the series Yi7- n+ 1 1 a(i) I which, 
since S is absolutely convergent, converges to 0 as n oo* Therefore, 

lim Ia(n ? 1) =0 
n-* 01 - I R(n; 1)1I 

and thus, by (5), T+m [S(n + m)] > S as n > o. 

We now consider the following question: When does the sequence generated by 
the T+m transformation converge to S either more rapidly or uniformly better than the 

original sequence of partial sums? 
THEOREM 6. If S is a convergent infinite series with positive terms and 

limnooR(n; m) = 0, then T+m [S(n + m)] converges to S more rapidly than S(n + m). 

Proof T+m [S(n + m)] S by Theorem 1. By (3) and Defmition 2, we have 

that 
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S()+S(n +m) -S(n)_ 
T+m[S(n+m)]-S S(n)? 1-R(m; n) 

S(n + m)-S S(n +m)-S 

(6) 
S(n) -S 1 [S(n + m) -S(n) 

S(n + m) - S I - R(n; m) S-S(n+m) J 
By our hypothesis, S(n) - S O 0and S(n + m) - S O 0monotonely. Thus, 

by a theorem from Bromwich [11], we have 

li S(n) -S s . = i S(n) - S - S(n - 1) + S 

(7) n-- S(n + m) - SJ n-*- S(n +m) -S -S(n +m- 1) +S 

n--an +C E <, n -*-[R(n; m)] 
Similarly, 

(8) lim [S(n + m) - S(n) lim I -1 
n-*-oo S-S(n?+m) J n-*0o [R(n; m) J 

Thus, substituting (7) and (8) into (6), it follows that 

li FT+m[S(n+m)] S 

n-* L S(n?m)- J 

n - oo0 R(n, m) [1 - R(n; m) ] R(n; m) J 

which completes the proof of the theorem. 
THEOREM 7. If S is a convergent series with positive monotone decreasing terms 

and {R(n; m)}7=1 is a monotone nondecreasing sequence, then T+m [S(n + m)] 
converges to S uniformly better than S(n + m) for all n. 

Proof We first show that {T+m [S(n + m)] }= 1 is a monotone nondecreasing 
sequence in n; i.e., that T+m [S(n + m + 1)] > T+m [S(n + m)] for all n. 

T+m [S(n + m + 1)] - T+m [S(n + m)] 

S(n+m+1)-R(n+1;m)S(n+1) S(n+m)-R(n;m)S(n) 
1 -R(n + 1; m) 1 -R(n; m) 

a(n + 1) + S(n + m + 1) -S(n + 1) S(n + m) - S(n) 
1-R(n+1;m) 1-R(n;m) 

a(n + 1)[1 -R(n + 1; m)] + S(n + m + 1) -S(n + 1) S(n + m) - S(n) 
1 -R(n + 1; m) 1 -R(n; m) 

= [S(n + m) - S(n)] [1- +1;m) 1-R(n;m)] 

> O since R(n + 1; m) > R(n; m). 
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Therefore, T+m [S(n + m + 1)] > T+m [S(n + m)] and so {T+m [S(n + m)] }= 1 

is a monotone nondecreasing sequence in n. 
We now note that T+m [S(n + m)] > S(n + m) > 0 and by Theorem 5, 

T+m [S(n + mi)] -, S as n -, oo. But a positive nondecreasing sequence, if it converges, 
converges to its least upper bound. Therefore, for all n and any m > 0, 

S - T+m [S(n + m)] S - T+m [S(n + m)] 

S-S(n+m) S-S(n+m) 
and so T+m [S(n + m)] converges to S uniformly better than S(n + m). 

To illustrate the above theory and the effectiveness of the T+m transformation, 
we present the following examples. In the tables E(n + m) = S - S(n + m) and 
En(m) = S - T+ m [S(n + m)]. 

Example 1. Consider 
00 1 

S = E .3 t1.20205690. 

Choosing m = 2 we see, by Theorem 5, that T+2 [S(n + 2)] converges to S. Moreover, 
T+2 [S(n + 2)] converges to S uniformly better than S(n + 2) for all n by Theorem 7. 
The comparison of T+2 [S(n + 2)] with S(n + 2) is illustrated in Table 1. 

Example 2. Consider 

S= E (2i ;- t.78539816. 
h= 2i -1 4 

In this example, we choose m = 1. 
It takes approximately 50,000 terms of this series to obtain four digit accuracy. 

However, from Table 2, we see that T+ 1 [S(n + 1)] achieves this same degree of 
accuracy from the first nine terms of the series. 

Example 3. Consider 
( 1) 

+ 

S 
( ) 

.+ -ln2 .69314718. 
i=l 

It can be shown that it takes 10,000 terms of this series to obtain seven digit 
accuracy. However, choosing m = 1 and examining Table 3, we find that this same 
degree of accuracy can be obtained from the first fourteen terms of the series by means 
of T+ [S(n + 1)]. 

S(n? + 2) E(n + 2) T+ 2[S(n + 2)] En(2) 

10 1.1988618 .0031951 1.2010725 .0009844 

20 1.2010690 .0009879 1.2017394 .0003175 

30 1.2015825 .0004744 1.2019013 .0001556 

40 1.2017786 .0002783 1.2019642 .0000927 

50 1.2019735 .0001834 1.2019966 .0000603 

TABLE 1. Application of T,2 [S(n + 2)] to S = I' 
I 
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n S(n + 1) E(n + 1) T+ 1 [S(n + 1)] En(l) 

1 .8666666 -.0812684 .7916666 -.0062684 

2 .7238095 .0615887 .7833333 .0020649 

3 .8349206 -.0495224 .7863095 -.0009113 

4 .7440115 .0413867 .7849206 .0004776 

5 .8209346 -.0355364 .7856782 -.0002800 

6 .7542679 .0311303 .7852203 .0001779 

7 .8130915 -.0276933 .7855179 -.0001197 

8 .7604599 .0249383 .7853139 .0000843 

TABLE 2. Application of T+ 1 [S(n + 1)] to S = o ( 1)+ = 
2i-1I 

n IS(n + 1)I E(n + 1) |T+ 1 [S(n + 1)] | En() 

3 .77777776 -.08463058 .65333333 .03981385 

5 .77089945 -.07775227 .68342151 .00972567 

7 .75506524 -.06191806 .68951776 .00362942 

9 .74454215 -.05139497 .69233120 .00081598 

11 .73627423 -.04312705 .69300004 .00014714 

13 .73006693 -.03691975 .69314716 .00000002 

TABLE 3. Application of T+1 [S(n + 1)] to S = ,._ ( 
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