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The Convergence of the Ben-Israel Iteration 
for Nonlinear Least Squares Problems 

By Paul T. Boggs 

Abstract. Ben-Israel [ 1 ] proposed a method for the solution of the nonlinear least 

squares problem minxED IIF(x)112 where F: D C Rn Rm. This procedure takes the 

form Xk+ =- Xk-F'(xk)+F(xk) where F'(xk)+ denotes the Moore-Penrose generalized 
inverse of the Fre'chet derivative of F. We give a general convergence theorem for the 

method based on Lyapunov stability theory for ordinary difference equations. In the 
case where there is a connected set of solution points, it is often of interest to determine 
the minimum norm least squares solution. We show that the Ben-Israel iteration has no 

predisposition toward the minimum norm solution, but that any limit point of the 

sequence generated by the Ben-Israel iteration is a least squares solution. 

I. Introduction. The use of least squares solutions to systems of equations is an 

important and practical tool in many applications. Given a function F: D C Rn 

Rm where D is an open convex set, the nonlinear least squares problem is expressed as 

minxED I IF(x)l , where II II here and henceforth denotes the 12 norm. Equivalently, if 

fi(x) is the ith component of F, then the problem can be stated as minXED 1(x), where 

(F = ?2 m 1T(x). If, as we shall assume, F is continuously Frechet differentiable, then 

the minimum occurs where 

(1.1) V F(x) = F'(x) TF (x) = 0. 

In our discussion we shall always assume that there is at least one point in D satisfying 

(1.1). 

With this assumption, any minimization procedure could be applied in an attempt 
to solve the problem. Several special purpose procedures, however, have been proposed 

which perform quite well. For example, if F'(x) has full rank in an open neighborhood 

of an isolated solution point, say x*, then the Gauss-Newton iteration 

(1.2) Xk+ 1 = Xk -tk(F (Xk)TF (Xk)) 1F (Xk)TF(Xk) 

can be used. (Here tk denotes the steplength.) If F'(x) is not of full rank, then the 

Levenberg-Marquardt [11] and [13] procedure is quite useful. This algorithm takes 

the form 

(1.3) Xk+ 1 = Xk -tk(W + FP(Xk)TFP(Xk))lFP(xk)TF(xk), 
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where ,u is a positive constant. These algorithms have been studied extensively. For 
example, Brown and Dennis [4] have.studied (1.2) and (1.3) in conjunction with finite- 
difference approximations to the derivative and have proposed further modifications of 
(1.3) to improve the performance. Also, Boggs and Dennis [3] obtain bounds on the 
final errors obtained if more general approximations are used. Golub and Pereyra [8] 
have proposed algorithms for nonlinear least squares problems whose variables separate. 

The Ben-Israel iteration [1], with which we are primarily concerned, is designed 
for the case when F'(x) does not have full rank. We consider the following simple 
derivation of the iteration which will be useful later. 

Let x0 be a given point. Then approximate F by a Taylor series through two 
terms to get 

(1.4) F(x) ; F(xo) + F'(xo) (x - xo) 

and obtain the minimum norm solution vector (x - x0) to the linear problem 

min I IF(xo) + F'(xo) (x - xo)1 12, 

which is given by x - x= - F'(xo)+F(xo) where F'(xo)+ is the Moore-Penrose 

generalized inverse. (See Rao and Mitra [16] for a discussion of generalized inverses 
and linear least squares problems.) Thus the algorithm is given as 

(1.5) Xk+1 = Xk F (Xk) F(Xk)' 

Note that if F' has full rank, (1.5) reduces to the Gauss-Newton iteration (1.2). 
Ben-Israel [1] gives numerical examples and a convergence result for this procedure 

but the conditions for the theorem are somewhat restrictive and unnatural. In Boggs 
and Dennis [3], an analysis, based on classical stability theory from ordinary differential 
equations, is given; but here too the conditions given are somewhat restrictive. In the 
present work, we present very reasonable conditions on the function F which ensure 

convergence. 
The Ben-Israel iteration and other generalized inverse methods have been used in 

practice to find least squares solutions. Some of these, along with computationally 
efficient modifications are discussed in Fletcher [6]. These methods are also sometimes 
used as portions of other algorithms. For example, Deuflhard [5] uses the Ben-Israel 
method in conjunction with an algorithm for solving multiple shooting equations. To 

fully understand these methods it is important to know first the fundamental 
characteristics of the underlying Ben-Israel iteration. The purpose of this paper is to 

supply such an analysis. 
An important variation on the least squares problem arises when there is a 

connected set of points which solve the least squares problem, i.e., which satisfy (1.1). 
In this case, it is often of interest to find the minimum norm least squares solution. (If 
the set of points satisfying (1.1) is not connected, then the best we can hope for is a 

local minimum norm solution. Other procedures must then be used to find global 
solutions; we do not consider this problem here.) We investigate the application of the 

Ben-Israel iteration in this case and show that any limit point generated by it is a least 
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squares solution but not in general the minimum norm solution. 
Our approach to this problem is to exploit the powerful Lyapunov stability theory 

for ordinary difference equations. In Boggs and Dennis [3], classical stability theory is 
used to obtain results on the application of nonlinear iterations where approximations 

are used. This theory rests on being able to solve the linearized problem at an isolated 
solution point x*. The analysis breaks down if the linearized problem there is singular. 
The Lyapunov theory is powerful enough to handle the problem of an isolated singular- 
ity at an isolated solution point x* and is extended (in Section 2) to the case of a 

connected set of solution points. (Related definitions and results are also given in 
Section 2.) 

In Section 3 we apply the results of Section 2 to analyze the behavior of the Ben- 

Israel iteration. 

II. Lyapunov Stability. The second method of Lyapunov [12] has been widely 
used for the study of the stability properties of systems of ordinary differential equa- 
tions. (See,e.g. Sainchez [17] for an introduction or Yoshizawa [18] for a more 
complete account.) This theory has been extended to systems of ordinary difference 
equations and we refer to the paper of Ortega [14] for an account of the major 
results and related bibliography. (See also Hurt [10] and Hahn [9].) Ortega also 
nicely relates the concepts of stability and asymptotic stability to those of local con- 
vergence and attractiveness. The applications to date of this theory however, seem to 
be rather limited, applying, for example, to the stability of certain methods (such 
as Newton's method) under the influence of rounding errors. We propose to make more 

extensive use of the theory here and, as Ortega has done, to recommend the further 
exploitation of this powerful technique in the analysis of iterative methods. 

For completeness, we give the definitions and state the relevant results. First, we 

give the material for the differential equation, 

(2.1) x' =-G(x), x(O) = x0 

and then for the difference equation 

(2.2) Xk+1 = Xk - tkG(xk), x0 given, 

where G: D C Rn Rn. (Assume throughout the remainder of the paper that G is 

a continuous function and that D is open and convex.) Clearly, (2.2) is just Euler's 

method applied to (2.1). We consider these forms since all iterative methods can be 

expressed in the form (2.2) and, therefore, (2.1) can be viewed as the related differen- 

tial equation. This is useful since it is often easier to work first with the differential 

equation to obtain qualitative information on its behavior and then to use this informa- 

tion to analyze the iterative method. (Equation (2.1) is often referred to as the con- 
tinuous analogue of (2.2). See Gavurin [7] and Boggs and Dennis [3] for further 
discussion of this connection.) 

We begin by establishing the terminology. 
Definition 2.1. A point x* is 
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(a) stable for (2.1) if for any e > 0 there is a 5 > 0 such that if llxo - x*II < 5, 
then lix(s) - x*II < e for s > 0, where x(s) is any solution to (2.1), 

(b) stable for (2.2) if for any e > 0 there is a S > 0 such that if Ilxo -x*II < 5, ther 

IIxk - x*II < e for k > 0, where {Xk} is any solution to (2.2), 
(c) asymptotically stable for (2.1) if it is stable for (2.1) and lime>0 x(s) = x 

and 
(d) asymptotically stable for (2.2) if it is stable for (2.2) and limk -ooxk = x*. 

The idea of Lyapunov is to find a function which has certain properties on a solu- 
tion curve of (2.1) which then forces x* to be stable or asymptotically stable. We 
remark here that we will also need to include an assumption on G to ensure that a 

solution exists. 
Definition 2.2. Let x(s) be any solution of (2.1). Let x* E D be such that 

G(x*) = 0. Then a Lyapunov function for (2.1) at x* is a continuously differentiable 
map V: D C R' - R1 such that 

(2.3) V(x) > 0, x =#x*; V(x*) 0 

and 

(2.4) d V(x(s)) < 0, 0 < s < oo. 
ds 

Note that dV(x(s))/ds = V'(x(s))Tx'(s) = - V'(x(s)) TG(x). 
The major stability result is contained in the following theorem. 
THEOREM 2.3. Let V be a Lyapunov function for (2.1) at x*. Then x* is stable. 

If, in addition, 

(2.5) d V(x(s)) < 0, 0 < s < oo, x(s) # x*, 
ds 

then x* is asymptotically stable. 
The corresponding results for difference equations differ only in the condition 

(2.4). We express the defmition in terms of (2.2) in order to take into account the 

steplength. This formulation is somewhat different than the usual formulation, but 

will be useful in analyzing variable steplength algorithms. 
Definition 2.4. Let {Xk} be a solution of (2.2). Let x* E D be such that 

G(x*) = 0. Let t and t be constants such that 0 < t < t < oo. Then a Lyapunov 
function for (2.2) at x* for steplengths tk E [ t, t ] is a continuously differentiable map 
V: D C Rn -+ R1 such that (2.3) holds and 

(2.6) V(x - tG(x)) < V(x) for x E D and t E [ t, t]. 

We remark that t must of course always be chosen to ensure that x - tG(x) E D. 
THEOREM 2.5. Let V be a Lyapunov function for (2.2) at x*. Then x* is stable. 

If, in addition 

V(x - tG(x)) < V(x) for x E D, x 0 x* and t E [ t, t, 

then x* is asymptotically stable. 



516 PAUL T. BOGGS 

We remark here that it is sometimes difficult to find an appropriate Lyapunov 
function; but, as mentioned earlier, it is often easier to find a Lyapunov function for 
the continuous analogue (2.1) and then use the same function for (2.2). See Theorem 
2.6. 

As an example, consider steepest descent for minimizing a function f: D C Rn 
R. The iteration has the form 

(2.7) Xk+= Xk - tkVf(Xk), 

and the continuous analogue is 

(2.8) x= -Vf(x). 

Assume that f is continuously differentiable and that x* E D is the unique point such 
that Vf (x*) = 0. Furthermore, suppose that f (x) > f (x*) for all x E D and x # x*. 
Then V(x) = f (x) - f (x*) is a Lyapunov function for (2.8): V(x) clearly satisfies 
(2.3) and 

d V(x(s)) = Vf (x)T(- Vf (x)) = - lVff(x) 12 <0 

with equality only when x = x*. 
Rather than show that V(x) = f (x) - f (x*) is also a Lyapunov function for 

(2.7) we prove a general theorem which will be of use in Section 3. 
THEOREM 2.6. Let V be a Lyapunov function for (2.1) at x*. Assume V' is 

Lipschitz continuous with constant K on D. Suppose there is a constant c independent 
of x such that V?(x)TG(x) > cIIG(x)112. Then there are constants t and t such that 
V is a Lyapunov function for (2.2) at x * for steplengths t E [t, t]. Furthermore, 
t < 2c/K. 

Proof. We need only show that (2.6) is satisfied. We have 

V(xk+l) - V(Xk) = V(Xk - tkG(Xk)) - V(Xk) 

{V(xk - tkG(Xk)) - V(xk) + tk V?(xk)TG(xk)} 

+ [V(xk) - tkV (xk)T G(xk)] - V(xk). 

By the Lipschitz condition and by Ortega and Rheinboldt [15, Theorem 3, 2.12] the 

term in braces is bounded by YzKt21IG(xk)12. Therefore, 

V(xk+l) - V(xk) ? - tkV'(xk)TG(xk) + ?Kt2 IIG(xk)112 

S [-tkc + 12Kt2] IIG(Xk)112, 

which is < 0 if tkC > A,k't2. Choose t < 2c/K and t such that 0 < t < t < 2c/K; 
and therefore, for t E [t, ]Ithe result follows. 

Returning to the steepest descent example, we see that G(x) = Vf(x) and 

V?(x)TG(x) = IIG(x) I12 so that c = 1. Thus, the steplengths are restricted to be in the 

interval Lt, 2/K]. This is a generalization of a result obtained in Boggs and Dennis 
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[3], but note that here the result depends on the choice of V. 
In the introduction, we outlined the minimum norm least squares problem which 

we now state formally as 

(2.9) min xTx, 

(2.10) subject to F'(x)TF(x) = 0. 

Let Z = {x: F'(x)TF(x) = 0} be a connected set. Z is the feasible region for the non- 
linear program (2.9)-(2.10) and we are interested in the "stability" of the set Z, i.e., 
we desire that if x0 is chosen close enough to Z, then the sequence generated by (2.2) 
should also remain close to Z. We first extend our definitions and then obtain the 
desired result. We shall use the standard definition of the distance from a point to a 
set; namely, if Y is any connected set then 

dist(x, Y) inf{IIx -yII :y E Y}. 

Definition 2.7. A connected set Y is 
(a) stable for (2.2) if for any e > 0 there is a 6 > 0 such that if dist(xo, Y) 

< 6, then dist(xk, Y) < e for all k > 0, where {Xk} is a solution to (2.2), 
(b) asymptotically stable for (2.2) if it is stable for (2.2) and limk odist(xk, Y) 

=0. 

Definition 2.8. Let {Xk} be a solution of (2.2). Let Z be a connected set such 
that G(x) = 0 for all x E Z. Let t and t be constants such that 0 < t < t < oo. 
Then a Lyapunov function for (2.2) on Z for steplengths tk E [ t, t ] is a continuous- 
ly differentiable map V: D C Rn -> R' such that 

(2.11) V(x) > 0 for all x E D -Z, V(x) = 0 for all x E Z, 

and 

(2.12) V(x - tG(x)) < V(x) for all x E D and t E [ t, t]. 

The proof of the next theorem follows closely that given in Ortega [14] for 
the proof of Theorem 2.5. 

THEOREM 2.9. Let Z C D, t and t be as in Definition 2.8. Let V be a 
Lyapunov function for (2.2) on Z. Assume that V satisfies the condition: for every 
e > 0 there is a 6 > 0 such that V(x) > e if dist(x, Z) > 6. Assume that G satisfies 
the condition: for every e > 0 there is a 6 > 0 such that if dist(x, Z) < 6, then 

IIG(x)II < e. Then Z is stable for (2.2). Furthermore, if 

(2.13) V(x - tG(x)) < V(x) for all xCE-D, x qf Z and t EC [ t, t] 

then Z is asymptotically stable for (2.2). 
Proof. Choose r such that {x: dist(x, Z) < r} C D. By the hypothesis on G, 

we can find an r1 < r satisfying dist(xk+ 1' Z) < r when dist(xk, Z) < r1 . Then, 
choose any i1 < r, and y EC (0, tl) in such a way that for any x satisfying dist(x, Z) 
< - it follows that 
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V(x) < 0(77)--inf {V(y): q < dist(y, Z) < r} > 0. 

Now suppose that there is an xo such that dist(xo, Z) < y but for some k, 

dist(xk+ 1' Z) > 71. Assume that this is the first such k. Then dist(xi, Z) S 7r < rl, 
i = 1, . .. , k. Therefore, it follows that dist(xk+ 1, Z) < r and V(xk+ 1) is well 

defined. Furthermore, V(xk+l)> 4i(71). But, by (2.12) 

V(xk+l) S V(Xk) S * * S V(X0) < (7), 

which is a contradiction; and hence, stability is proved. 
Now assume (2.13) holds and let x be any limit point of {Xk}. Let ki be a 

sequence of indices such that Xki x as i oo and suppose that x 0 Z. Then, 
r(x) = V(x - tG(x))/V(x) is well defined and continuous in an open neighborhood of 

x. By (2.13), r(x) < 1. Thus, for a E (r(x), 1) there is a y > 0 such that r(x) S a, 

when IIx - xIll S y. Thus, for ki sufficiently large, 

V(Xk + 1 ) < a V(Xk a2 V(xk r1) < *... aiV(xo). 

Therefore, V(xki) O? 0 as i oo; and therefore, x E Z which completes the proof. 
We complete this section by stating the analogous result to Theorem 2.6. The 

proof is the same; and hence, the details are omitted. 
THEOREM 2.10. Let V be a Lyapunov function for (2.1) on the set Y and 

assume that V' is Lipschitz continuous with constant K on D. Let c be a constant 

independent of x such that V'(X)TG(x) > cIIG(x)j12. Then, there exist constants t 

and t so that V is also a Lyapunov function for (2.2) on the set Y when tk E [ t t], 
k > 0. Furthermore, t < 2c/K. 

III. The Ben-Israel Iteration. In developing the analysis for the Ben-Israel 
iteration, we first examine the continuous analogue and then make use of Theorems 

2.6 and 2.10. For convenience, we restate the method and the continuous analogue 

as 

(3.1) Xk+ 1 = Xk- tkF (Xk) F(Xk) 

and 

(3.2) x' = -F'(x)+F(x), 

whereF: DCRn' -+Rm. 
LEMMA 3.1. Let F be continuously Frechet differentiable on the open convex 

set D. Assume F' has constant rank r < min(m, n) on D. Let x* be the unique point 

in D satisfying F'(x*)TF(x*) 0 and assume that IIF(x)II > IIF(x*)II for all x E D, 
x x*. Then, 

(3.3) V(x) = 1IIF(x)112 - ?IIF(x*)112. 

is a Lyapunov function for (3.2) at x*. 
Proof Clearly V(x) > 0 for x $ x* and V(x*) = 0. The condition that F' has 

constant rank ensures that F'(x)+ is continuous on D (see Golub and Pereyra [8] ), 
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which implies that (3.2) has a solution. Now for x(s) any solution to (3.2), 

ds ds V(x(s))-=- [F' (x)TF(x)I TF '(x)+ F(x) = - F(x)TF '(x)F '(x)+ F(x) . 

First note that F'(x)F'(x)+ is the orthogonal projector on the column space of F'(x) 

and, thus, is positive semidefinite. Therefore, dV(x(s))/ds < 0. 

Now since FP(x)TF(x) $ 0 for x $ x*, it follows that F(x) q Null(F'(x)T). But 

Null(F'(x)T) = (Range FP(x)T)l, and so F(x) I F'(x)F'(x)+F(x); and the proof is 

complete. 
We may now prove the major Ben-Israel convergence theorem. 

THEOREM 3.2. Assume the conditions of Lemma 3.1 and that FP(x)TF(x) is 

Lipschitz continuous with constant K on D. Then, there are constants t and t and 

a compact set Do C D such that x* E Do and the sequence generated by (3.1) from 

any xo E Do with tk E [ t, t] converges to x*. 

Proof We need to show that 

V'(X)T F'(x) +F(x) > c I IF'(x) +F(x) 112 

for a constant c independent of x where V is given by (3.3). We have that V'(x) = 

F'(x)TF(x); and hence, 

VP(x)TF'(x)+F(x) = FT(x)F'(x)F'(x)+F(x) 

= [F'(x)+F(x)] TF'(x)TF'(x) [F'(x)+F(x)]. 

From the proof of Lemma 3.1, we know that V'(x)TF'(x)+F(x) > 0 for all x # x*. 

Therefore, F'(x)+F(x) is not in the null space of F'(x)TF'(x) for x # x*; and we 

may conclude that V'(x)TF'(x)+F(x) > X1(x)IIF'(x)+F(x)II2, where X1(x) is the 

smallest nonzero eigenvalue of F'(x)TF'(x). Now for some compact set Do C D, X1 (x) 

will be uniformly bounded away from zero by a number, say X, for all x E Do. There 

fore, by Theorem 2.6, V is also a Lyapunov function for (3.1) for 0 < t < t < 2A/K. 

We now apply Theorem 2.5 to complete the proof. 

It has been pointed out by Professor J. J. More that the above proof could also 

be used to show that the Ben-Israel directions are gradient related in the sense of 

Ortega and Rheinboldt [15]. This connection has been further investigated and is 

reported in Boggs [2]. 

THEOREM 3.3. Let F be continuously differentiable and F'(x)TF(x) be Lipschit 

continuous on the open convex set D. Let F' have constant rank r < min(m, n) on 

D. Let D D Z = {x: F?(x)TF(x) = 0} be bounded. Then there are constants t and 

t and a compact set Do C D such that Z C Do and any limit point of the sequence 

generated by (3.1) from any xo E Do using steplengths tk E [ t, tI] is a member of Z. 

Proof. Let 

V(x) = h[IIF(x)112 - IIF(x*)112], 

where x* is the minimum norm solution. Since F?(x)TF(x) = 0 on Z, it follows that 

I IF(x) II is constant on Z. Thus, V satisfies (2.1 1). The satisfaction of (2.12) follows 
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exactly as in the proof of Lemma 3.1; and hence, by Theorem 2.10, V(x) is a Lyapunov 
function for (3.2) on the set Z. The boundedness of Z implies the uniformity con- 
ditions on V and G; and hence, the result follows by an application of Theorem 2.9. 

It is of interest to know when a steplength of one may be used. This question 
has been considered by Brown and Dennis [4] and Boggs and Dennis [3] for the 
Gauss-Newton method, but no results were obtained for the Ben-Israel iteration. From 
Theorems 2.6 and 2.10 we know that t < 2c/K and from the choice of V(x), it 
follows that c = 1 and K may be taken as the largest eigenvalue of (F'(x)TF(x))' 
evaluated at x*. Thus, if this eigenvalue is < 2, the steplengths may eventually be 
taken to be 1. This is exactly the same condition obtained in [3] and [4] for the 
Gauss-Newton method. 

In order to determine the behavior of the Ben-Israel iteration, we consider its 
application to the following linear least squares problem: minx I lAx - b Il, where 

/a 0\ 

A=| ? ? 

(O )0/ 
a # 0, and b is arbitrary. Clearly, the rank of A is one and the minimum norm 
solution is given by A+ b which is 

(1 /a 0 0)( b )(bl/a) 

However, application of the Ben-Israel iteration from the initial guess x0 = (1) yields 

xl = x -A+(Ax - b)= ( ) Q)+ (bla) (bila) 

The next iteration shows that xi is a fixed point and is a solution to the problem in 
the sense that AT(Ax1 - b) = 0. Note that for xo = (u, v)T, the Ben-Israel iteration 
will always produce xi = (b1 la, v)T for any values of u and v. Thus, even in the 
linear case, the Ben-Israel iteration does not produce the minimum norm solution 
unless the initial vector is properly chosen on the correct manifold. In the nonlinear 
case, the manifold is also nonlinear; and it is, therefore, even harder to choose a 
correct xo. 

We propose a modification to the Ben-Israel iteration which, at least in the 
linear case, always converges to the minimum norm solution. Recalling the derivation 
given in Section 1, we see that the Ben-Israel iteration produces the minimum norm 
correction vector, x - xo to the linearized problem. We propose to actually obtain 
the minimum norm solution to the linearized problem. That is, we write the linearized 
problem as 

min I IF'(xO)x + [F'(x0) - F'(xo)xo] 112 
x o 

and obtain the minimum norm solution 
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x = - F'(xo)+ [F(xo) - F'(xo)xo] 

so that in general our algorithm is 

(3.4) Xk+ 1 = F'(Xk)+F'(Xk)Xk - F'(xk)+F(xk). 

In the linear case, we have the problem minx IAx - blI for given A and b. Let 

xo be any initial approximation. Then, from (3.4) we have 

x= A+Ax0 -A+(Ax0 - b) = A+b, 

so that the minimum norm solution is always obtained. The application of (3.4) in 
the nonlinear case is currently being investigated. 
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