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On the Distribution of Pseudo-Random Numbers
Generated by the Linear Congruential Method. 111

By Harald Niederreiter *

Abstract. The discrepancy of a sequence of pseudo-random numbers generated by

the linear congruential method, both homogeneous and inhomogeneous, is estimated
for parts of the period that are somewhat larger than the square root of the modulus.
The analogous problem for an arbitrary linear congruential generator modulo a prime is
also considered, the result being particularly interesting for maximal period sequences.
It is shown that the discrepancy estimates in this paper are best possible apart from

logarithmic factors.

1. Introduction. Let m > 2 and r be integers, let y be an integer in the least
residue system modulo m, and let X be an integer relatively prime to m. We generate

a sequence y,, ¥, . . . of integers in the least residue system modulo m by the recur-
siony, ., =N, +r (mod m)forn=0,1,.... The sequence Xg» Xy, ..., defined
by x, =y,/mforn=0,1, ..., is then a frequently employed sequence of pseudo-

random numbers in the unit interval [0, 1] and is said to be generated by the linear
congruential method. In the discussion of this method, one usually distinguishes two
cases: the homogeneous case » =0 (mod m) and the inhomogeneous case r % 0
(mod m). In both cases, the sequence y,, y,, . . . is eventually periodic. From the
observation that the predecessor of each Y, is uniquely determined because of the
relative primality of X\ and m, it follows that the sequence Yo» Vis - - - 18, in fact, purely
periodic. We denote the length of the period by 7. Then the sequence Xgo Xy, ... 18
purely periodic with period 7.

In the first paper [7] of this series, the author has studied the distribution in
[0, 1] of the full period Xg» Xy, . .., X,_, in the homogeneous case, under the as-
sumption that A is a primitive root modulo 7 and y,, is relatively prime to m (see [6]
for a slight improvement of the result). It turns out that the empirical distribution of
the points of the full period provides an extremely good approximation to the uniform
distribution in [0, 1]. However, in many practical situations one will only use an initial
segment of the full period, simply because the period 7 is too large in most of the in-
teresting cases. Therefore, in the second part [8] of this series, the distribution of the
points x4, x,, ..., x5_, with 1 <N < 7 in the interval [0, 1] was considered. The
requirement that X be a primitive root modulo m was abandoned, but the discussion
was still confined to the homogeneous case. Satisfactory results were obtained for values
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of N somewhat larger than the square root of the modulus m. One of the objectives
of the present paper is the extension of these results to the inhomogeneous case.

For sufficiently large NV, one will expect the empirical distribution of the points
Xg» Xy, . .., Xpy_; to be close to the uniform distribution in [0, 1], at least for well-
chosen random number generators. The deviation between the two distribution func-
tions is measured by the so-called discrepancy. For real numbers o, and a, with 0 <
o, <a, <1,let A(e,, ay; N) be the number of n, 0<n<N — 1, withx, € [y,

a,). Then we define the discrepancy D, of the points x, x;, . .., Xy _; by
D,.=D (x,...,x = su A, , a,; N)IN = (o, — a)l.
v = Dylxg N-1) o<a1<pa2<1 (@) a3 N), @, )

For the general theory of discrepancy, see the book of L. Kuipers and the author [4,
Chapter 2].

We shall estimate the discrepancy of x,, x,,...,x,_,; for <N <, in both
the homogeneous and the inhomogeneous case. We concentrate on the important class-
es of moduli, namely, primes and prime powers. For results on general moduli in the
homogeneous case, see [8, Section 5]. It should be clear how to use the methods of
the present paper in order to obtain slight improvements of these results as well as
extensions to the inhomogeneous case. The main tools of our investigation are an
inequality of the author and W. Philipp [12] and estimates of character sums involving
linear recurring sequences that were established in [10]. Incidentally, these estimates
are also of importance in the study of the cycle structure of linear recurring sequences
in finite fields (see [11]). The possibility of obtaining the results of the present paper
by means of the estimates in [10] was already announced in [9].

A brief survey of the contents of the paper follows. In Section 2, we take up
the homogeneous case. This has already been dealt with in [8], but we shall show
how to refine the methods of that paper in order to get various improvements. How-
ever, the resulting estimates are again only of interest when N is at least of the order
of magnitude m” "€ for some € > 0. In Section 3, the inhomogeneous case is treated
on the basis of the estimates in [10]. Essentially, the remark concerning the order of
magnitude of M is also valid in this case, although the situation is a bit more compli-
cated because of the appearance of one more parameter. Since they can be treated by
similar methods, we study pseudo-random numbers generated by higher-order linear
recurrences in Section 4. The most interesting pseudo-random numbers of this type
are based on maximal period sequences in finite fields, and their use was suggested by
R. C. Tausworthe [13] and D. E. Knuth [3, p. 27], among others. In the last section,
we show that the estimates of this paper are best possible apart from logarithmic fac-
tors.

It should be pointed out that the subsequent discrepancy estimates imply error
estimates for quasi-Monte Carlo integrations using the points Xog» X1 e oo, Xp_q @S
nodes (compare with [8, Section 6]). We remark also that the methods of this paper
can be used to obtain results concerning the serial test for pseudo-random numbers gen-

erated by the linear congruential method. The author intends to treat this subject on
another occasion.
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2. The Homogeneous Case. We consider the sequence y, »,, . . . of integers
described in the introduction, generated by the recursion y, ., = Ay, (mod m) for
n=0,1,.... Itis customary to assume in the homogeneous case that y, be relatively
prime to m, and we shall do so in the sequel. Then the period 7 of the sequence y,,
Y1, - . . is equal to the exponent to which A belongs modulo m. The corresponding
sequence X, X, . . . of pseudo-random numbers in the unit interval [0, 1] may also
be described explicitly by x, ={N"y,/m} forn =0, 1, ..., where {¢} denotes the
fractional part of the real number ¢. The discrepancy of x,, x;, ..., x)_; with 1 <
N < 7 was already estimated in [8]. We shall present various improvements in this
section.

We first discuss the case that m is a prime. Some auxiliary results on trigono-
metric sums are needed. They ameliorate corresponding lemmas in [8]. Throughout
this paper, we write e(t) = e2™ for real ¢.

LeEMMA 1. Let m be a prime, let b and \ be integers not divisible by m, and
suppose \ belongs to the exponent T modulo m. Then,

T—

Zl e(bN\* Im)e(cen/T)

n=0

< (m - n)'/?

M

for every integer c divisible by 7, and

7—1

> e(b\*/m)e(cn/T)

n=0

< m1/2

@

for every integer c not divisible by T.

Proof. For integers @ and c, write
T—1

o(a, ¢) = Y e(a\"[m)e(cn/r).

n=0
The general term of this sum, considered as a function of n, is periodic with period 7.
Therefore, for any integer y, we have

7—1
o(@, ¢)= 3 e@@\"*? [m)e(c(n + y)/r);
n=0
and so,
7—1
3) lo(a, )l = | 3" e(@'\*/m)e(en/t)| = lo@N’, c)I.
n=0
Since the integers b\, bAZ, . . ., bA” are pairwise incongruent modulo m and not di-

visible by m, it follows from (3) that

T m—1 m—1
tlo(, o)? = 3" 16@¥, o))* < 3 lo@, ¢)> = 3 lo(a, o) — 10(0, )
y=1 a=1 a=0
T7—1

=S et ID S ela — N)im) — 100, o)1
a=0

h,j=0

=mr — |0(0, ¢)|?.
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The inequalities (1) and (2) are immediate consequences.
LEMMA 2. For any positive integers A and B, we have

A—-1|B-1

) 2|3 eey/a)| < 2A log 4 + 2A.
c=1 | y=0 m 5
Proof. The lemma is trivial for 4 = 1. For 4 = 2, we have
B-1 _ le(cB/4) — 1| _sin mlicB/Al
e(cy/A = forl1<c<4-1,
};0 @D =@ — 11~ i ale/al

where ll7l denotes the absolute distance from the real number ¢ to the nearest integer.
If S stands for the expression on the left-hand side of (4), then
A-1 leB/Al
S= 3 Mﬁ—/——— < Z (sin mlc/Al)~1

&, sinwlle/Al
A4/2]

2[ > (sin(mc/A))~ 1

o=

Now, by the usual method of comparing sums with integrals, we obtain
[4/2] 1 [4/2]
3 Gin(me/A))™! = Gin(n/A))~' + 3 (sin(nc/4))~?
c=1 c=2

. _ [4/2]1 dx
< (sin(n/4))~! + f 1 )
A 72 dt

< (sin(m/4))~! +-
m/A sin ¢

= (sin(n/A))~! + = 4 — log cot a < Gin(w/4))~! += log %

Now, for 4 > 6 we have (n/4)~!sin(n/4) > (n/6)~ 'sin(n/6), hence sin(n/A) > 3/A.
This implies

1 1 m
_ 1. 7 > 6:
Z (s1n(1fc/A)) logA + (3 - log 2)A for 4 = 6;
and so,
[4/2] A 1
) 3 Gin(nc/4))~' < ~logd+-4 ford>6.
=1

The inequality (5) is easily checked for A = 3, 4, and 5, so that (4) holds for 4 > 3.
For A = 2, the inequality (4) is shown by inspection.
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LeMMA 3. Suppose the conditions of Lemma 1 are satisfied. Then,

N 2 2\, N
3 e(b\"/m)| <m!/? Slog T+ +;(m—7)1/2 for I<SN<r.
n=0

Proof. We note that

N-1 1Z N-1 7—1
> e\ my==%" e(—cy[D)| 3 e(dX\*[m)e(cn/T)
n=0 Tc=1 y=0 n=0
for 1 < N< 7. Thus, by Lemmas 1 and 2,
N-1 1J N-1 T—1
> e\"/m)| < m S| X e(—cy/n) > e(b\* [m)e(cn/T)
n=0 c=1] y=0 n=0
<Lt > N_le(—c In| + ]—V( — )2

2 2 N
1/2( 2 < Nom — 12
<m (ﬂlog1+5>+7(m T)*.

THEOREM 1. Let m be a prime. Then, for 1 < N < 1, the discrepancy Dy of

the points x4, Xy, . . . , X5 _ Satisfies the inequality
6) D, <X log(1 + 4/X) + X,
where

1/2 _ Aal/2
X=4m <210g7+2)+ﬂ21_‘fL_
aN \m 5 T

Proof. For 7 =1 or 2, one sees easily that X > 1, so that (6) is trivial in this
case. Thus 7 = 3 from now on. This implies, in particular, that m = 5. We use an
inequality of the author and W. Philipp [12, Corollary of Theorem 1']: for any points

to» - - - » ty_y in [0, 1) with discrepancy Dy (t,, . . . , t5_,) we have
) DN(to,...,tN_l)<%+%él(%_%> }Vlrge(btn)
for all positive integers L. For the given points x, x;, ..., x5 _,, we choose L =
[4/X] + 1. We note that
m1/2<% log7+%> + (m — DH/? >\/§<% log 3 + %) +1 >7T>7,Tn_7’

so that

INIY

N T

1/2 (m — 21/2
=2 (%10g1'+%>+m !

1/2 _ 12
>" (zlog1+%>+£m—L>L

T o\Tw T m’
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This is equivalent to L < m. From (7) we get

Dy <2+ Z(b i)

For 1 <b <L — 1, we have g.c.d.(by,, m) =1, so that we may use Lemma 3. For
b =L, the coefficient of the trigonometric sum is zero, so that formally we may also

lN 1
N Z e(by \'Im)|.
n:

use the upper bound in Lemma 3. We obtain

4 4 1/2(2 g) N 2 &1 1
DN L+ N(m 1710gT+5 +;(m—r) )bzl<z—z

4 4
<= —
L+XlogL<X+Xlog<1 +X),

and the proof of the theorem is complete.

In the case of m being a prime, there is an alternative way of estimating D, that
may sometimes yield an even better estimate than (6). This approach is based on the
following general lemma that may be thought of as a crude version of the inequality

™.

LEMMA 4. Let m > 2 be an integer, and let z, z,, . . ., z),_, be integers in
the least residue system modulo m. Suppose that IEN 1e(hz mMI<Yforh=1,2,
,m — 1. Then the discrepancy of the points ZO/m z,/m, ..., zy_,Im satisfies
®) (Z_o ZN—l) <2 Y<2 2)
DNm,...,———-m m+N logm+5

Proof. For0<a1<a2<1,letA(a1,a2;N)be the number of n, 0 < n <
N —1,with z,/m € [a;, ay). Forj=0,1,...,m — 1, let A(j; N) be the number
ofn, 0<n<N -1, withz, =j. Then,if u, v are integers with 0 <u <v <m,
we can write
v—1N-—-1

A(rtr‘zm ) ZA(IN) ZZc(z,

j=u n=

where ¢;is the characteristic function of the singleton {j}. Now

ci(z) = %:gole(h(z -)fm) forz=0,1,...,m -1,
so that
v—1 N-—1 m-—1
A l' E 1 ez — i
(i ) = 3T & lhte, i)
1 m—1{v—-1 N-1
= 2 e(=hm))| X e(hz, [m)
hr=0 \ j=u n=0

and
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( ) —1fv-1 N—
A(% % > _Nvm . _;% Zl<z e(—hf/m)> < Zle(hzn/m)>.

h=1 \ j=u n=0

Using Lemma 2, we get

Ng _ ) lm—l v—1 . N-—1
‘A<% m’ ) vm . <EhZ=:l ng e(—h]/m) nz e(hz /m)l
J m_1 —1|v—u—1
© <£ 2 Z e(—hl/m)‘ ;Y Z‘, 3 e(hj/m)‘
h=1 ]—u h=1 j:o

2 2
< Y(; log m + §>
Now let J = [a,, a,) be an arbitrary subinterval of [0, 1). Then there exist subinter-
vals J, = [B{), B§1) and J, = [B4?), B?) of [0, 1) such that J, CJ C J,, the end-
points of J; and J, are rationals with denominator m, and p(J;) — v(J)| <2/m for
i =1, 2, where v denotes Lebesgue measure. Then,

ABYD, B8 N) — ol ) + NoU ) — vd)) < Aley s a3 N) — Nold)
<AEP, B35 N) — Nold)) + NU,) — w));

hence,

(e, a,; N) — N(o, — o)l < max |4, BY; N) — No(J))|
i=1,2
2 2\, 2V
— < £ = e
+Nir=nla’)§lv(1i) 78] Y(T{ log m + 5) +=

by (9). Now (8) follows immediately.
THEOREM 2. Let m be a prime. Then, for 1 <N < 7, the discrepancy D, of

the points xg, X, . . . , X _, satisfies the inequality
D <ml/i(2.lo m+2>(210 T+Z>+@__TL/2<ZI +g>+£
N\Nng 5~1rg 5 T TI’Ong m’
Proof. Forh=1,2,...,m — 1, we have
N-1 N-1
> ey, /my= 3 e(hy o\ m).
n=0 n=0

Since g.c.d.(hy,, m) =1, Lemma 3 can be applied. The result follows then from
Lemma 4 with

2 2 > N
= a1/2(% z Zom — nl/2
Y=m (ﬂlog1’+5 +T(m )=,
We consider now the case that m is a prime power, say m = p® with o = 2 and

p a prime. If A belongs to the exponent 7 modulo m and to the exponent y modulo
p*~!, then d = 7/y is an integer.
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LEMMA 5. Let m = p®, p prime, a = 2. Let b and \ be integers relatively prime
to m. Suppose N belongs to the exponent T modulo m and to the exponent y modulo

p*~ !, and setd = 1/y. Then,
T—1 —d 1/2
Y
p—1

> e(dX\"* /m)e(cn/T)

n=0

(10

for every integer c divisible by d, and

(11) Tz_:l e(bX* Im)e(cn/T)
n=0

for every integer c¢ not divisible by d.
Proof. For integers a and c, write

0@, )= Til e(@\"* /m)e(cn/1).

n=0
By the same arguments as in the proof of Lemma 1, we obtain

T m-—1
(12) 7lo(d, ¢)I? = > lo(dN\?, ¢)I? < > *lo(a, o)l?,
y=1 a=0

where the asterisk signalizes that we only sum over those a with g.c.d.(@, m) = 1. Fur-
thermore,

m—1 7—1 3
(13) 3 *lo@, o)) = Y ele(h - Ir) z *e(a()\" N)/m).
a=0 h,]-

Now, for an integer ¢, the sum E;";"o"le(at/m) is a Ramanujan sum which, according
to [2, p. 238], has the value

* ugm/tm )
Z et = KO,

where ¢' = g.c.d.(t, m) and u is the Moebius function. It follows that in (13) we only
get a contribution from those ordered pairs (, j) for which A* =N (mod p*~1), or,
equivalently, 7 =j (mod 7). In detail, we have

mz_l*lo(a, o = g(m)r + H%’)(‘;—;%@ Z ~eleh - i)

a=0 h ]-—
h#j,h=j (mod 7)

Now,
T—1 7—1
> ecth —pinn=" 3  elcth-PIn)—7
h,j=0 h,j=0
h#j,h=j (mod v) h=j (mod 7)

2
y—-1

5 Z e(e(h - i) Ee(s(h “D) =7 _% )3

h ,J=0 §=0

- T.

Elekc + sd )

j=0
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If dlc, then there is a unique s, 0 < s <7y — 1, such that ¢ + sd =0 (mod 7); if dfc,
we always have ¢ + sd #0 (mod 7). Therefore,

T—1 :

. d - yr ifdc,
elcth — DIt = {
héo (et - M=y i dle.
h#j,h=j (mod v)
It follows that

_ d-1 -
"5 *lota, oy = 3 = p g e i dle,
a=0 mrt if dfc.

By combining this with (12), we arrive at the inequalities (10) and (11).

Since \Y =1 (mod p*~!) implies \?” =1 (mod p®), the value of d in Lem-
ma 5 can only be 1 or p. If d =1, then we have (10) for all integers ¢, and the sum
occurring in (14) below can be estimated as in Lemma 3. If d = p, one obtains the
following result.

LEMMA 6. Suppose the conditions of Lemma S hold with d = p. Then,
2p-1)

<m1/2<T log'r+§> for ISN<T.

N-1

(14) > e(b\N*/m)

n=0

Proof. As in the proof of Lemma 3, we have

N-—1

17 N-1 7—1
> e®X'm)| < - 2| el 3 e®N/m)e(en/T)| .
n=0 c=11| y=0 n=0
It follows from Lemma 5 that
N-1 ml/2 =1 |N=1
(15 > e(d\'/m)| < > eley/n)]|.
n=0 T c=1;pJc | y=0
If 7 =p, then
T—1 N-1 p—1|N-1 2 2
2 | Leen| =T | elwlp)| <: plogp +3
c=1;pfcl y=0 c=11y=0 m

by Lemma 2. Together with (15), the inequality (14) follows easily. Thus, 7> 2p
from now on. As in the proof of Lemma 2, we get

=l [Nl <l sin wleN/rl =l
e(ey/n)| = ————< (sin wle/rl)~!
c:%:p fe yg c=lZ;p fe S wlie/7ll c=lz;:p fe
[7/2]
<2 Gsin(me/m))™1;
c=1;pfc
and so,
T—1 N-1 [7/2] [7/2]
A6 3 | Tem| <2 ¥ Gintre/r)t =2 3 (sin(re/r))~1.
c=1;plc| y=0 c=1 c=1;ple
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Now,

[7/2] [/2p]
t (sin(me/r))~! = z2:p (sin(mpe/r))~' = (sin(mp[r/2p] /7))~ !

c=1;plc c=1
[r/2p] -1 [7/2p] dx
+ sin(ape/r))"1 > 1 + IR
a7 c; (sin(npc;r)) f 1 sin(mpx/1)
=1+-—L relrizelir dt 1 + -~ log tan mplr/2p]
mwJarpr sin ¢ p g 27

T P
+ - log cot >
Since f(x) = x~! — cot x is increasing for 0 < x < n/4, we have

x~! —-cotx<f(1r/4)=;—l for 0 < x < n/4;

and consequently,

2r ) 2 (4 ( 2r 4)“
.._. _ > = _(X_ < _a
(18) log cot > log(ﬂp +1 T log - <1r l) - +1 .

by the mean-value theorem. Furthermore, [r/2p] = 7/2p — 1/2, and so, by the mean-
value theorem again,

p|-r/2p > ( | EE)> .2
. log tan log tan{ 7 — 3 4t sin(n/2 — ap/2r)
-1 -1 .
_ TTPCSZ'B >_ T2 (s T =-
27 27 4 T\/-z-

By combining (17), (18), and (19), we obtain
[7/2] 1

1 T[4 2r 4\~!
sin(me/T > lo——+1— —-————1)(—+1-——>
c_};mc( (relr) st - m(E-)(Z -2
and it is easily checked that this implies

[7/2]
(20) > (in(me/r))~! > —log—;
c=1;ple

By an inequality in the proof of Lemma 2, we have

(/2] T 1 1 T
Y (sin(me/r))~* < Slog 7+ <§ ——log 5)1 for 7 > 6.

c=1
Then, using (16) and (20),
ol [Nt 27 2 2 1r> 2r 21
c::;;:p/c yz=:0 e(cy/n)| < -;log T+ <3 - log ) log o

_2p-1) 2_2 2
—— 1'log1'+3 ﬂlog2+ log2
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for 7> 6. Since g(x) = x~! log x is decreasing for x > e, we have

2 log < log m T,
p 2 T
and so,
T7—1 N-1 2 — 1 3
(©2))] > Y eley/n| < 2p—1) Tlog7+ =T,
< = p 4
c=1;pfc| y=0

at least for 7= 6. In the only exceptional case, namely 7 = 4 and p = 2, one checks
(21) directly on the basis of (16). The desired inequality (14) follows now from (15)
and (21).

We recall the definition of the number § introduced in [8, Section 4]. Let X be
relatively prime to m with [A\| > 1, and let 7(p) be the exponent to which X belongs
modulo p. Then, if p is odd, § is the largest integer such that pf|(A"®) — 1). Ifp=2
set 6 =1if A=1 (mod 4)and § =2 if A\ =3 (mod 4). Then § is the largest integer
such that 2f|(\% — 1). The significance of § stems from the fact that 7(p"*1) =
p1(p") as soon as & > B, where 7(p") is the exponent to which \ belongs modulo p”.

THEOREM 3. Let m = p®, p prime, « = 2. Let \ be relatively prime to m with
I\ > 1 and o > B, where 3 is defined above. Then, if 1| <N < 7 and

3/2 _ ,1/2 3/2
p p'* m 2 -1 3
(22) P g N < p et
the discrepancy Dy, of the points xg, x,, . . . , Xy _ Satisfies the inequality
32 1/2 3/2 3/2
Dy <El-p Xlog<l+4(p 1)_%>+< p +logp>X’
p3? _ p¥2 _ pl/2 p¥? _ 1 P
where
4m'’2(2(p — 1) 3
X="_(=£ ") 2
py - log 7 + 2/
Proof. Because of (7), we have
<4 4&E 1 1\ 1At n
(23) DN < Z + ; Z 1_7 - Z ]V z e(by07\ /m)
b=1 n=0

for all positive integers L. We choose now

4p3? — 1
L= :?/]2 1/3.11( +1
p" —-p

It follows then from (22) that L < p®~#.
For1<b<L — 1, we have g.c.d.(by,, m)=g.cd.(b,m)=p* with 0 <s<a-—f
— 1. If s> 0, then

T— T— b/p)y \* r@*"%- by N*
(24) Zle(byo)\"/m)= Zle<( L) >— L (pz) le<f_/p_)f_9_._>.

n=0 n=0 pe=s T@*"%)  n=o0 p*—s
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Since s < a — B — 1, we have 7(p®~%) = pr(p*~*~!) by the remark preceding The-
orem 3. Therefore, the last sum in (24) is equal to zero by (10), and so

7—1

Z e(byok"/m) =0.

n=0
It follows then by the same argument as in [8, Lemma 3] and by Lemma 6 that

Nt _sya (2 =1 sy 3
3 e(by N'/m)| < ple=)2 (—f%rl log 7(p* s)+Z)

n=0

< (m/p*)!/? (Zf%l) log 7 + %) for ISN<T7

The above inequality is also satisfied in the case s = 0, for then the requirements of
Lemma 6 are met because of 7 = pr(p*~'). For b = L, the coefficient of the corre-
sponding trigonometric sum in (23) is zero. Let R be the largest integer with pR < L.
Then,
4  4m'? (29_)— 1) 3\ & L 1 1
<= e 2 —s8/2 - _ -
DN\L+ N - log‘r+4§0pv bgl <b L)
g.c.d.(b,m)=p°
4 R L 1 1
=—+ XY p? (——— .
A A
g.c.d(b,m)=pS

(25)

To estimate the double sum in (25), we distinguish several cases depending on the value
of R. If R=0, then L <p, and so by [8, Eq. (9)] with s =0,

R L 1 1) 4 logp
—s/2 log L < — log
s--zop bgl <b L %8 p p
g.c.d.(b,m)=p*
3/2 _ ,1/2 1
<P P gL+ 0gp
p3/2 1

If R=1, then p <L < p?, and so from [8, Eq. (9)] with s =0, 1, we get

i s2 i <1 1)

p_ P

5=0 b=1 b L
g.c.d.(b,m)=ps

<log L — P log([p] + 1) + Z[p] + p3/2 log[E] + Lp1/2 {E}

1 LML) L 1L
<togl - lgp L([]+{p}) +p3/21°gp

-1 +
=<P l>1 L+1 logp logp

—— + —— .
p p3? p p3/?
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Since log p > % log L, the last expression is less than

It is straightforward to check that

3/2 1/2

p—1 1 p’"-p
D +2p3/2< p3/2 1

b

and so we obtain

R L 3/2 1/2
_ 1 1 p'“ —-p 1 +logp
z:p’/z > (———)<————lo L+ ———.
s=0 b=1 b L p3? —1 & p

g.cd(b,m)=pS
Finally, let R = 2. Then, from [8, Eq. (9)] we get
L
1 1 1 L 1 L 1YL
2 (z—z)<l,—s log &+ — o1 g 5 +zg—sf

b=1
gcd.(b,m)=p°

and

It follows that

b=1
(26) g.cd.(b,m)=pS

+p 3R/2108p + <z p—s/2

A < 1 1\ K2 s oz L _ L 10s L
ZOP 2 y-L)S 2P R '
5= §

N
b-l

Now

R-1 R
—s/2 L L —R/23£; - —A‘/zgi
sz=:op (H +[p‘“]>+p pR sglp P’

R—-1
@7)= Z P“‘“’”glf §+ > p‘s’z[ L+1] <X p~s/2<3 sL+l$ +[ SLH])
§=0 §=0 14 14

1/2

— —3s/2 <P
§ <P

'Ull“

Furthermore,
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R! 1 L
P (10g——;, Ings+1> +p 3R/ logp
s:
R—-1 —-1
=y p_3s/2<p » logL —slogp + s;— 1 logp> +p3R12 Jog p
5=0
D — 1 1 _p—3R/2 R-1 —35/2 (8 +1 —3R/2
= . —~ log L + p~ 32— _s)logp +p log p
p 1—p 32 fj—a p
3/2 _ ,1/2 1 3/2 _ p1/2
p_-—pP 08P _ _3rp(P_ P " _
< ] log L + » D < 7 1 log L logp>.

However, since log L = 2 log p, the last expression in parentheses is easily shown to
be positive. By combining this with (26) and (27), we obtain

R L 3/2 1/2 1/2

_ 1 1\_p'"-p logp . p

p~5? > (———>< log L + + .

28) sgo = b L P32 _ 1 p p¥? — 1
g.cd.(b,m)=p°

By comparing this with the results in the earlier cases R = 0 and R = 1, we see that

(28) holds in all cases. Thus, together with (25),

4 p3? — p/2 log p pl/?
DN<L+———————-p3/2 3 XlogL + ) +p3/2——1 X

Using the special form of L, we obtain

p32 _ pll2 p32

D, < X+
N2 P32 1

logp  _p'?
+< t=p )%
p 4 1

which proves the theorem.
A condition which implies (22), and which is easier to check, is the following

_ pl/2 3/2 _
p 4(p 1
X log (1 + p3/2 ~ p1/2 X

one:

2p -1 3
29 8 < 024y (22 —1) 3).
(29) p? < (0.24)m ( - log7+4>
That (29) is a sufficient condition for (22) is shown as in [8, Eq. (12)]. In practical
cases, m and 7 are large, so that (29) can be satisfied by choosing a X\ with 8 < a/2.
We note that on the basis of Lemma 2 one can also improve somewhat on the
results in [8, Theorems 3 and 4]. |

3. The Inhomogeneous Case. We consider now the sequence y,, ¥, . . . of in-
tegers described in Section 1, generated by the recursion y,, . ; = Ay, +r (mod m)
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forn=0,1,...,where \is relatively prime to m and r # 0 (mod m); the last con-
dition is, however, never used in the proofs. To rule out the trivial case that y,, y,, ...
is a constant sequence, we assume Ay, +7 %y, (mod m). We shall also require that

A #1 (mod m), in order to discard another uninteresting case. In some of the lemmas,
these restrictions are not necessary. In the inhomogeneous case, the initial value y,,
need not be relatively prime to m. One shows easily by induction that

n pa—
(30) ynE)\"yo+)\)\_llr(modm) forn=0,1,....
Let 7 again be the period of the sequence y,, y,, ... . We shall estimate the dis-
crepancy Dy, of the pseudo-random numbers x, =yo/m, x; =y /m, ... 6 xy_; =

Yy_1/mfor 1<N<r.
In the case that m is prime, the period 7 can be described in the same way as in
the homogeneous case. Because of (30), we have y, =y, (mod m) if and only if
)\;: — 11 ((A-1)y, +r=0 (modm),
which, by virtue of A#1 (mod m) and (\ — 1)y, + 7 #0 (mod m), is equivalent to
N* =1 (mod m). Therefore, 7 is equal to the exponent to which X belongs modulo m.
LEMMA 7. Let m, > 2 and r be integers, let b and \ be relatively prime to m ,

let \ belong to the exponent u, modulo m,, and let Zgs Z4s - - - be a sequence of in-
tegers with z,, , , = Az, +r (n=0,1,...) having period 7, modulo m,. Then,
N-1 m. T \1/2
11 2 2, N
n;o e(bzn/ml)l < < ) > <7r log 7, + 3 + T—1> for ISN<7,.
Proof. Since M is relatively prime to m, the sequence Zgs Zy5 - - - is purely peri-

odic modulo m; with period 7,. By [10, Theorem 1] (compare also with [10, The-

orem 4]), we have
- 1/2
r
< |1
My

for all integers c. Then, as in the proof of Lemma 3,

-1
12 e(bzn/ml)e(cn/'rl)

i n=0

(1)

N-1 1 T1IN-1 !
| T elbz,/m,)| < — zl T e—eylr)| | X ez, /m,elenir,)
n=0 1 c=1]| y=0 n=0
m,T, 12 1 11| v=a mr \'? ] T v
<5t S| ZTewrpl=(52) & T | T o)
1 1 c=1]y=0 1 1 c=11y=0

m.r \'? m,T 12
+ =1 LV< 1 2log1' +Z+1—V ,
Ky ™ Ky m s

where we have applied Lemma 2 in the last step.
THEOREM 4. Let m be a prime, and let X\ £ 1 (mod m), g.c.d.(\,m) = 1, and
Ny +r#y, (mod m). Then, for 1 <N < 1, the discrepancy Dy, of the points x,,,
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Xys ..., Xy_, Satisfies the inequality Dy < X log(1 + 4/X) + X, where

_4m'2 (2 2., N
N <ﬂlog1+5+7>.

lNl

¥ T cr,/m)

Proof. By (7), we have

n<i+1 (1)

for all positive integers L. We choose now L = [4/X] + 1. We note that

X_m'? (2 2) m'2 _mll? _ ml? 1

= + > > =,

4= N \r BT S N T 2 T P S — ) m
and so L < m. We apply now Lemma 7 with m; =m and with the sequence z,, z,, ...
determined by zy =y,. We have z, =y, (mod m) forn=0,1,...and 7, =p, =7,
therefore, by using the estimate in Lemma 7 formally in case b = L = m, we get

4 4m1/2<2 2 N>L 1 1>
DN\L+ -y 1110gT+5+1' ; 51

<X+ XlogL <X+ Xlog(1+4/X),

and the proof is complete.
THEOREM 5. Suppose the conditions of Theorem 4 hold. Then, for 1 < N <7,

the discrepancy Dy of the points X, x, . . . , Xy _, satisfies the inequality
1/2
m'/2 (2 2, N (2 2> 2
< el RN | -1 = el
D, < N(ﬂlog7+5+1_>"logm+5 +m.

Proof. This is an immediate consequence of Lemmas 4 and 7, with the latter
lemma applied in the same way as in the proof of Theorem 4.

Now let m be a prime power, say m = p® with p prime and o > 2. There are
various ways of characterizing the period 7 of y,, y,, . . .in this case. See [1], [3,
Chapter 3], and [5]. For our purposes, the following characterization is convenient.

LEMMA 8. Let m = p*, p prime, a > 1, let A # 1 be relatively prime to m and
let r be an integer. Let zy, z,, . . . be a sequence of integers with Zpp1 =N, 7
(n=0,1,...) such that (\ — 1)z, +r # 0. Let p be the largest integer such that
P°I(\ — 1) and w the largest integer such that p* |((\ — )z, +7r). We assume a —
w+p=0. Then z, z,, . . . is purely periodic modulo m, and its period modulo m
is equal to the exponent to which \ belongs modulo p*~“*?. This holds trivially
for a = 0 as well.

Proof. Since \ is relatively prime to m, the sequence zy, z,, . . . is purely periodic
modulo m. In analogy with (30) we have
)\" =
A e (()\ 1z, +r) forn=0,1,... .

But the number on the right-hand side is divisible by m = p®, « > 1, if and only if
A" =1 (mod p*~“*P), and the assertion follows.

The exceptional cases in Lemma 8 are trivial. If o — w + p <0, then w> a,
and the period is 1. If (A — 1)z, + r = 0, then the period is also 1, and if A = 1, then
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the period is m/r', where ' = g.c.d.(r, m). Since the given sequence y,, y,, . . . is
identical modulo m with a sequence z,, z,, . . . from Lemma 8, this result yields the
desired information about the period 7. The conditions of Lemma 8 will be satisfied
if we assume A # 1 (mod m), gc.d.(A, m) =1, and Ny, + r #y, (mod m). The sub-
sequent lemma generalizes (10) in the case d = p.

LEMMA 9. Let m, =p°, p prime, 0> 1,and let z,, z,, . . . be a sequence of
integers with z,, , | = )\zn +r (n=0,1,...)which is purely periodic modulo m,
with period 1, and purely periodic modulo m, = p°~" with period 7, = 7,/p. Then,

7,1

> elbz,/m Je(cn/t ) =0
n=0
for all integers b relatively prime to m, and all integers ¢ divisible by p.
Proof. We have

m, - 2
> 3 elbz, fm)Je(en/r))
b=1 n=0
g.c.d.(b,m1)=1
m, 1'1—1 2 m, ‘rl—l 2
Z 3. elbz,[m)Je(en/t )| — Y elbz,[m de(en|t))
b=1| n=0 b=1;plb | n=0
m, 7,-1 m, rl—l 2
-3 2 b, —z)meleth — ) -3 | 3 elbz,m,)e((clpnir,)
b=1 h,j=0 ! b=11 n=0
7,1 m, m, [T,-1 2
= 3 elelh — Piny) 3 e, — z)im) —p* T | X elbz,Im,e(enlr,)
h,j=0 b=1 b=11 n=0
7,—1
=m,7 - p? Z e(c(h — i) Z e(b(z, - z)/m )
h,j=0

=mT, - p? m,7, =0,

which proves the result.

LEMMA 10. Suppose the conditions of Lemma 9 are satisfied, and that \ is
relatively prime to m, and belongs to the exponent y, modulo m, . Then, for all
integers b relatively prime to m, we have

N-1 m. 7 \1/2
171 2(p — 1) 3
Z e(bzn/ml)’ << p ) < log T +Z> forISN<7 .

n=0 1 P

Proof. As in the proof of Lemma 3, we have

N-1 1| v- !
3 etz im)| <E 3| T eerir)| | T etbz,im,etenin,)|
n=0 1c=11y=0 n=0

Because of Lemma 9, this reduces to
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N-1 1 Tt N 71
> elbz,[m)) <;— > > eleyit)| | X elbz,/m de(en/t))|.
n=0 1 c=1;pfc | y=0 n=0

By applying (31), we get

N—1 mr\U2 ;1 T17!|N=a
2 elbz, m)| < m T > | X el
n=0 1 1 c=1;pfcl y=0

The sum on the right-hand side was estimated in the proof of Lemma 6, and this implies
already the desired inequality.

For X relatively prime to m and [A| > 1, we define the positive integer 8 in the
same way as in the paragraph preceding Theorem 3, and we denote by u the exponent
to which A belongs modulo m. We define the number p as in Lemma 8, and we let
w be the largest integer such that p [((\ —1)y, + r). We note that 0 < p < « and
0 < w < a under the conditions of the subsequent theorem.

THEOREM 6. Let m =p*, p prime, a = 2, let \ be relatively prime to m with
A>1, N#F1 (mod m),and Ny, +r#y, (mod m),and let a — w + p > f. Then,
if1<N<r7and

3/2 _ pl/2 3/2,112(2(p — 1) 3)
32 f+w-p P p_—_  mTT ( 3
ey 7 ST e\ w87

the discrepancy Dy of the points x, x,, . . . , Xy _ satisfies the inequality
3/2 _ ,1/2 3/2 3/2
p¥? —p 42 - 1) 1 > < p log p>
D <————Xlog (1l + 55— < |+ + X,
N p3/2 1 < p3/2 _ p1/2 X p3/2 —1 P

where

_4mn)'? (2(p — 1) 3
nNul/2 - g'r+4 .

Proof. Lletzy, z,, .. .be the sequence of integers determined by zy =y, and
Zpy1 =Nz, +rforn=0,1,... . Thenz, =y, (modm)forn=0,1,...,and
from (7) we get
1 N-1

(33) DN<%+; 5 <Z‘Z) N X et /m)‘

for all positive integers L. We choose now

(P3/2 ) 1
L= [3/2 X + 1.

It follows from (32) that L < p*#~w+p,
The sequence z,, z,, . . . is purely periodic modulo m and, by Lemma 8, its
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period 7 modulo m is equal to the exponent to which A belongs modulo p*~«*#,
Since o — w + p > B, it follows from Lemma 8 and the remark preceding Theorem 3
that the conditions of Lemma 10 are satisfied for m, = m. Therefore, for 1 SN <7,

(34) Nz_le(bzn/m) ‘ < <@ )l/z (3(—’3—_—1) log 7 + 5) if g.c.d.(b, m)=1.

u m 4

n=0
If b with 1 < b <L — 1 is not relatively prime to m, then g.c.d.(b, m) = p* with 0 <
sSa-f-w+p— 1. Since we always have § > p, this implies s <o — 1. For 1 <
N < 1, we write

N-1 N-1
(35) 2 elbz, fm)y="3" e(d’z m"),
n=0 n=0

where b' = b/p®, m' = p*~S, and g.c.d.(b', m') = 1. According to Lemma 8, the period
7' modulo m' of the sequence Zgs Zy5 - - . is equal to the exponent to which A belongs
modulo p* 5~ “*P_ Since o — s — w + p > B, it follows from Lemma 8 and the re-

mark preceding Theorem 3 that the conditions of Lemma 9 are satisfied for m, = m'.

Therefore,
T'—1
> e(b'zn/m') =0.

n=0
Using the division algorithm, we write N = g7’ + N' with 0 < N' < 7'. Then,

N'—1

Ele(b'zn/m')= 2 elb'z, /m').
n=0 n=0

Since the conditions of Lemma 10 are also satisfied for m 1 = m', we can apply this
lemma to the last sum. Together with (35), we obtain

N-1 1 1\1/2
mr\"?(2p -1 é)
nz=:0 e(bz, /m)| < <I-l' ) < p log 7' + 1)

where ' is the exponent to which A belongs modulo m'. From the above descriptions
of 7 and 7' as exponents to which A belongs, from a — s — w + p > B, and from the
remark preceding Theorem 3, we infer 7 = p7’. Furthermore, since for 4 = 1 the ex-
ponent to which X belongs modulo p” ! is either equal to or p times the exponent to
which X belongs modulo p”, we have u < pSu'. Therefore, 7'/u’ < 7/ We can com-
bine these results with (34) to obtain

N—1 12 foe 4
nz=:0 e(bzn/m)l < <;;?—;) <—_(pﬂp )10g1+%>

(36)
for 1I<SH<L-1and 1 <N<r,

where p* = g.c.d.(b, m). On the basis of (33) and (36), we proceed now in complete
analogy with the part of the proof of Theorem 3 starting from (25), and we arrive at
the desired inequality.
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If the condition (32) is not satisfied, one can employ the method of [8, The-
orem 3], in combination with the improvements in the present paper, to obtain a dis-
crepancy estimate for this case as well, which will, however, be weaker than the esti-
mate in Theorem 6. This suggests that the parameters of a good congruential random
number generator should satisfy (32) with N = 7. In a special case that is considered
frequently (see [1]), namely, when m = 2% with & > 3, A =5 (mod 8), and r odd,
we have B=p =2,w=0,7=m, and u = 2%"2, and so it is easily checked that (32)
is valid. In general, for a given prime power m one should choose X, 7, and y,, in such
a way that § and w are small. Then (32) will be satisfied and, due to p < and Lem-
ma 8, the factor (7/u)!/? in the discrepancy estimate will be close to 1.

4. Maximal Period Sequences. We discuss now the equidistribution test for a
class of random number generators suggested by various authors (see [1, Section 7],
[3,p.27], [13]).

Let k > 1 be an integer and let p be a prime. We note that the finite field F ok
of p* elements is an extension field of F = Z/pZ and that the multiplicative group
Fpk of Fpk is cyclic. A polynomial f(x) kg xkl o ay € Z[x] is
called a primitive polynomial modulo p if the polynomial f (x) € Fp [x] canonically
associated with f(x) is the minimal polynomial over Fp of a generator of F*,. With
such a primitive polynomial modulo p, we can associate the kth order homogeneous
linear congruential recurrence

(37 =a +-:-+ayp, (modp) forn=0,1,....

yn+k k—lyn+k—1

Any sequence y,, ¥, . . . of integers in the least residue system modulo p satisfying
37 with (g, . . ., ¥, _1) (0, ..., 0) is called a maximal period sequence modulo
p. The reason behind this terminology is the fact that the length of the period of a
maximal period sequence modulo p is equal to p*¥ — 1, the largest possible period
length of any kth order homogeneous linear recurring sequence in Z/pZ. A maximal
period sequence modulo p is easily seen to be purely periodic. If k =1 and 4, is a
primitive root modulo p, we get a case that was already discussed in Section 2.

For a maximal period sequence y, ¥, . . . modulo p, the associated sequence
Xgs X1, . . . of pseudo-random numbers in [0, 1] is given by x,=y,/pforn=0,1,

. In practice, p will of course be a large prime.

Since (v, Vpa1s -+ » Ypak—1) n=0,1,... , P* — 2, runs through all
k-tuples # (0, . . ., 0) of elements in the least residue system modulo p, it follows
that in a full period of y,, y,, . . . each integer g, 1 <q <p — 1, occurs exactly
p*~! times and 0 occurs exactly p¥~! — 1 times. Therefore, a full period of x,,
X, . ..has an extremely even distribution in [0, 1]. The following result shows that

sufficiently long segments of a full period of x, x,, . . . also perform well under the
equidistribution test.
THEOREM 7. For a prime p and k 2 1, let y, y,, . . . be a maximal period se-

quence modulo p satisfying (37). Then, for 1 <N < p* — 1, the discrepancy Dy of
the associated pseudo-random numbers Xy, x,, . . ., X, _ Satisfies the inequality
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2 2
_ 1<; logp + 5).

Proof. We set 7 =p¥ — 1. For g.c.d.(b, p) = 1 and any integer ¢, we have

2. P2 z)(z z) 1
(38) DN<p+ N ﬂlog(p ~l)+5 ”logp+5 +pk

T—1

Y ey, Ip)e(cn|r)

n=0

< pk/2

by [10, Theorem 1] (compare also with [10, Theorem 4]), since, in the notation of
these theorems, we have 7 = u for a maximal period sequence modulo p. For ¢ =0,
we can obtain a sharper estimate by using the information concerning the number of
occurrences of elements in the full period of y, ¥, ... . This yields immediately
E;;l e(by,/p) = — 1. Using these facts and the method in Lemma 3, we get for 1 <

0
N<randgcd.(d p)=1,

N-1

2 eby,lp)

n=0

-1

N
> e(=cyln)

y=0

T—

1
> ey, p)e(en/r)

n=0

<IT
\;Z

c=1

(39)

—1|N—-1

2 e(=cy/r)

< l pk/2
T foert

N 2 z) N
+T<p (ﬂ_logf-l-5 +T.

T
c=1

The inequality (38) follows now from Lemma 4.

An alternative discrepancy estimate can, of course, be obtained on the basis of
(7) and (39). However, the inequality (38) is, in general, better than what could be
achieved by this method. If N is somewhat larger than p*/2, say N = p**3)/2 then
2/p becomes the main term in (38), and this cannot be improved upon by the alterna-
tive method. Only under special circumstances, e.g., if k is small and N is very close
to p*/2, we get a slightly better result. The proof proceeds in complete analogy with
earlier proofs involving this method.

We establish now a discrepancy estimate for pseudo-random numbers based on
an arbitrary linear congruential generator. Let p be a prime, and let Yo Vys---bea
sequence of integers in the least residue system modulo p satisfying the kth order linear
congruential recurrence

Yotk +-tay, ta (modp) forn=0,1,...,

Y1V n+k-1

where a, a, . . , a, _, are integers with g, not divisible by p. There is no condition
on the initial values y,, . . ., y,_;. The sequence y,, ¥,, . . . is purely periodic

(see [11] for a general result to this effect); let 7 be its period. We also associate with
the sequence a number u defined as follows (compare with [10, Lemma 3]). Let b,
by, ... be the sequence of integers in the least residue system modulo p determined
by by =by=-"-=b,_,=0,b,_; =1 (by=1ifk=1)and

(40) boix =4 b,k ttagh, (modp) forn=0,1,... .

Then y is taken to be the period of by, b, ... . The number u may also be de-
scribed as the maximal period of any sequence in the least residue system modulo p
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satisfying the homogeneous linear congruential recurrence (40) (see [10, Lemma 2]).

If yo, 5 . - . is the sequence introduced above, let x, =y,/p, x; =y,/p, . . .
be the associated sequence of pseudo-random numbers in [0, 1].

THEOREM 8. Let x,, X, . . . be the sequence of pseudo-random numbers asso-
ciated with the kth order linear recurring sequence y,, y,, . . . modulo the prime p.
Let 7 and u be the numbers described above. Then, for 1 < N < 1, the discrepancy
Dy of the points x, x,, . . ., X _, satisfies the inequality

2, P a2 2 12)(2 z)
DN<p+ I (/W) nlOgT+5+1 ﬂlogp+5 .

Proof. For g.c.d.(b, p) =1 and any integer ¢, we have
T—1

2 ey, Ipe(cn/r)

n=0

<p(/w'?

according to [10, Theorem 1] (compare also with [10, Theorem 4]). Then, for 1 <
N < 7 and g.c.d.(b, p) = 1, we get by the method of Lemma 3,

N-1 1 N-1 -1
ey, <o X | T e-evin|| X ey, Ip)elenir)
n=0 c=11!y=0 n=0
1 k/2 1/2 T—1|N-—1
<7 X | X e(—eyin)| +N
c=1 | y=0

2 2 N
<p"’2(.r/u)”2<; log7+ % + ;>.
The desired inequality follows now from Lemma 4.

The remarks following Theorem 7 are, mutatis mutandis, also applicable in the
present situation. Theorem 8 suggests that those sequences y, y,, . . . with a period
considerably larger than p*/2 seem to be useful as random number generators. This
condition is, of course, satisfied for maximal period sequences modulo p.

5. Lower Bounds. In this section, we shall discuss the effectiveness of the dis-
crepancy estimates established in this paper. It will turn out that the estimates are
best possible apart from logarithmic factors. The results of this section are based on the
following lemma.

LEMMA 11. For any points t, . . ., ty_, in [0, 1) with discrepancy Dy, we

have
N-1

2 elt,)

n=0

<4ND,,.

Proof. See [4, Chapter 2, Corollary 5.1].
The following theorem should be compared with the results in Theorem 1 and 4.
THEOREM 9. Let m be a prime, let r be an integer, and let \ with g.c.d.(\, m) = 1
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belong to an exponent yu modulo m with u = (m — 1)/2 (e.g., N\ a primitive root
modulo m). Then there exists a sequence y,, ¥, . . . in the least residue system mod-
ulo m with gcd.(yy, m)=1and y,,, =N, +r (mod m) forn=0,1,...such that
the associated sequence x, X1, . . . of pseudo-random numbers in [0, 1] satisfies

(41) Do, o0 Xy 1) > mt/2 /8N

for some integer N with 1 < N < p.
Proof. The case m = 2 being trivial, we assume that m is an odd prime, and we
set N = (m — 1)/2. Then, with empty sums being interpreted as zero,
m—1| N—

2
S = Z Zle((b)\n + (xn—l + )\n—2 I l)r)/m)
b=1|.n=0

m—-1 N—1 .
=3 3 e\ —N)m)
b=1 h,j=0

-e((?\h_l + M2 4. 41 N N—2_..._ ])r/m)
N-1 . .
= 3 eVl +N 2441 NTH o NTE e 1yrm)
h,j=0
m-—1 .
3 e(d(N" — N)/m).
b=1

The inner sum is m — 1 for h =j; for h #j, we have \* — N # 0 (mod m), and so,
the inner sum is — 1. Therefore,

S=!m— 1!2
2
N-1 . .
- Y e HNTE 4+ 1 NT N2 Dy m).
h,j=0;h#j

The sum occurring here is real and contains N(V — 1) terms. Therefore,

(=12 _(m—1)m-3) _m? 1

>
§27 4 4

Recalling the definition of S, it follows that there exists an integer b,, 1 < by <m —
1, with

42) Zle((box" + AL E N2 4+ DM ’ >

n=0

m+1_m

4 > 4
Now let y,, ¥, . . . be the sequence in the least residue system modulo m determined
by yo =bgand y,,, =N, +r (mod m) forn=0,1,... . Then one shows by
induction that y, = b\ + "' + X2 + -+ -+ 1)r (modm) forn=0,1,.. .,
and so (41) follows from (42) and Lemma 11.
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We note that the number y in Theorem 9 is also the period of x, x,, . . . if
A #1 (mod m) (which holds for m = 5) and (A — 1)y, + r #0 (mod m). The fol-
lowing theorem should be compared with the results in Theorem 3 and 6.

THEOREM 10. Let m =p®, p prime, o = 2; let r be an integer; and let \ with
g.c.d.(\, m) =1 belong to the largest possible exponent u modulo m (i.e., u = o(m) if
pisodd orm=4,and p =22 if m = 2% with a > 3). Then there exists a sequence

Yo» Y1» - - - in the least residue system modulo m with g.c.d.(y,, m) =1 and Vout1 =
N, +r (mod m)forn=0,1,...such that, for some integer N with 1 <N <,
the associated pseudo-random numbers x,, . . . , Xyn_q in [0, 1] satisfy

(p2 _ 1)1/2m1/2 ) .
43) DyCgs v s Xy )= N if p is odd
and

mi2

(44) DyCxg oo Xy )= 8 /3N ifp=2.

Proof. For m = 4 and m = 8, this is shown by choosing N = 1. Thus, we may
assume that p is odd or that m = 2% with a > 4. We set N = qu/p, where q = 1 if
p=2and q=(p — 1)/2if p is odd. We use asterisks to denote summations restricted
to be over integers relatively prime to m. Then, with empty sums being interpreted as
zero,

m—1{N-1 2
S = Z* E e((b?\” + ()\n—l + )\n—z + -4 l)r)/m)

=0 | n=0
m—1 N—1 .,

= 3* Y e — N)/m)
b=0 h,j=0

ce(VF1 4 N2 4+ 1NN D)

N-1 : .

= Y oW HNT2 4+ 1= NT N2 e = 1ym)
h,j=0

mz-:‘ e(b(\* — N)/m)
b=0

N-1

=Npm)+ 2 eV '+ N2+ -+ 1 -N"1_N-2_..._1ym)
h,j=0
h#j

. mz-:’l"e(b()\h — N)/m)
b=0

> Notm) — 35 | S *e@ov — Nym) .
h,;f:;) b=0

The inner sum in the last expression is a Ramanujan sum with A* — N #£0 (mod m).
By the formula for Ramanujan sums mentioned in the proof of Lemma 5, only those
sums with A" =N (mod p*~!) will be nonzero, the value being — m/p in this case.
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Since \ belongs to the exponent u/p modulo p®~!, the congruence N* =¥ (mod p*~1)
is equivalent to & =j (mod(i/p)). It follows that

45) S = Ny(m) — 2mT/p,

where T is the number of ordered pairs (b, /) with 0 < h <j< N - land h =j
(mod(i/p)). Foreachs, 1 <s<q — 1, we have j — h = su/p for the ordered pairs
©, su/p), A, su/p + 1), ..., (N — 1 — su/p, N — 1). Therefore,

! s\ _ p 9! g g@@—1)
T= (N——)=— (q-s5=E .21
s; p) p ;‘31 p 2
Together with (45), we get
n m
S== - = -1)).
(46) P <qgo(m) o a(q ))

Now let p = 2. Then S > ¢(m)u/2, and the definition of § implies that there exists a
by in the least residue system modulo m with g.c.d.(b,y, m) =1 and

N-1 2
47 > e\ + A\ 02 4t D) m) >§ =Lg_ )

n=0
Now let y,, ¥,, . . . be the sequence in the least residue system modulo 7 determined
by yo=boandy,,; =Ny, +r (modm)forn=0,1,... . Then one shows by

induction that y, =poN* + W'~ + N*"2 + -+ -+ 1)r (mod m)forn=0,1,...,
and so (44) follows from (47) and Lemma 11.
If p is odd, we use ¢ = (p — 1)/2 and p = p(n) to deduce from (46) that

@m) (p — 1 m(p — 1)(p — 3)
=% ( 2 M- 4p )

=¢(m)4LZ;(z(p — 12— (p - D - 3)

= p(m)(p* — 1)m/4p?.

By the definition of S, there exists a b, in the least residue system modulo m with
g.c.d.(by, m)=1 and

2

- 2
Nz:le((bo)\n + ()\n—l + N2 44 l)r)/m) > (@ 4p21)m
n=0

The proof is now completed in the same way as in the case p = 2.

If p is odd, then for the number A from Theorem 10 we have p = 0 in Lemma 8,
so that according to this lemma the number u from Theorem 10 is equal to the period
of xg, x,, . . .if and only if (A — 1)y, + r is not divisible by p. If p =2, thenp =1
or 2, and according to Lemma 8 the number N = /2 used in the proof of Theorem 10
for m > 16 is less than or equal to the period of x4, x,, . . .if -and only if w <p + 1,
where w is the largest integer with 2<°|(A — 1)y, + r).
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If one drops the condition g.c.d.(y,, m) =1 in Theorems 9 and 10, one gets anal-
ogous results by going through exactly the same method (which, in fact, becomes
simpler if no restriction on y is imposed). The resulting statements are, however, only
of interest in the inhomogeneous case. Obviously, the method in the proof of The-
orems 9 and 10 yields also results for any prescribed value of N with 1 < N < p.

Finally, we shall discuss the inequality (38) in Theorem 7. Since x,, x;, . . .,
X, _, are rationals with denominator p, we clearly must have Dy, > 1/p (this remark
applies also to Theorem 8), which shows that the main term 2/p in (38) is correct up
to a constant. Furthermore, we have shown in [10, Theorem 5] that for every primi-
tive polynomial modulo p of degree k there exists a corresponding maximal period
sequence Y, ¥;, - . . modulo p and an integer N with 1 <N < p* — 1 such that

N-1 —]_

X e0,/p)| >3

n=0

It follows then from Lemma 11 that for the associated pseudo-random numbers x,, x,,
..., Xy_,; we have

k/2
D, >p*'*[8N.

This shows that for small values of k the second term on the right-hand side of (38)
is needed, at least up to logarithmic factors.

Added in Proof. The techniques in this paper can be extended to obtain results on
the statistical independence of successive terms of sequences of linear congruential pseudo-
random numbers. This is carried out in the author’s paper “Pseudo-random numbers and
optimal coefficients” to appear in Advances in Math.
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