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On an Algorithm of Billevich for Finding Units 
in Algebraic Number Fields 

By Ray Steiner and Ronald Rudman 

Abstract. The well-known algorithm of Billevich for finding units in algebraic number 

fields is derived by algebraic methods. Some tables of units in cubic and quartic fields 

are given. 

I. Introduction. Let Q(O) be an algebraic field of degree n over the rationals, 

and let Z(G) be its ring of integers. Suppose the defining polynomial for Q(G) has r 
real roots and s pairs of conjugate complex roots. Then by the famous theorem of 

Dirichlet and Minkowski, the group of units of Z(G) has r + s - 1 free generators, 

known as the fundamental units of Z(O). However, the proofs of Dirichlet's theorem 

[6], [10] give no method of finding a set of fundamental units. In fact, if n > 3 no 

rapid, efficient method of finding them is known. The best of the known methods of 

finding units in algebraic number fields of degree n > 3 are those of Vorono; [6], [11] 

and Billevich [2], [3], [4]. Voronolrs method is based on the finding of periodic se- 

quences of integers of Z(G) called relative minima. Methods of finding the relative 

minima are given in [6], but these methods have not yet been generalized to fields of 

degree higher than 3. 
Billevich's method consists of finding the points in a sequence of integers of Z(O) 

called the sequence {1}(k). (We call them the B(1, k) numbers.) His method always 
leads to a system of fundamental units but is very inefficient if the wanted units have 

large coefficients; e.g., the finding of a unit with seven-digit coefficients may require a 

full day's computer time for certain fields of the fourth degree. Further, Billevich de- 

rives his method in a complicated, geometric manner and gives no algorithm whatever 
for r = 0. 

The purpose of the present paper is to show how the essential inequalities of 
Billevich's algorithm can be derived algebraically and to present an algorithm for totally 

complex algebraic number fields. In addition, we present tables of fundamental units 

of totally real cubic fields and semireal quartic fields related to Mordell's equation [7], 

[8], [9]. 

II. Billevich's Algorithm, 
A. Theory of the Algorithm. Let us study the problem of finding units from 

the viewpoint of n-dimensional multiplicative lattices [6, Section 1]. We consider an 

n-dimensional multiplicative lattice Q2 in the complex space Kn with basis l, W2, 

* o * Xn, i.e. the collection of all points of the form 
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.lX1 + 02X2 + + w X 

where x1, x2, . . , xn range over all possible systems of n rational integers. We assume: 
(1) The lattice is irreducible, i.e., no point of Q2 except the origin has a zero co- 

ordinate. Then [6, Section 4, p. 28] Q2 has the same unit structure as that of a ring of 
algebraic integers. 

(2) The first r coordinates wk 1'k2 . . . . Iokr of each basis point 'k are real, 
while the remaining n - r = 2t coordinates are pairwise conjugate complex numbers: 

Wk,r+1 Pkl +iaklX 

Wk,r+2 Pkl - iUklX 

=k,n-1 Pkt + iakt, 

Wk,n Pkt - iakt, 

In the n-dimensional signature space Rn t corresponding to Kn [6, Section 1], we 
can find a lattice [X] which is also multiplicative, has all its coordinates real, and corre- 
sponds to Q2. To each basis point ck, there corresponds the point 'k 1 'k2 ~ . . .X 

wkr' Pkl, Xgkl1 , - - , Pktz akt- Every point M of [X] has coordinates equal to the 
values of the forms 

ti = OliXl + 02iX2 + + Wnixn (i 1,2,. . ..,) 

(1) 77i = PliX1 + P2iX2 + + PnixnX 

=i =liXI + 2iX2 + + aniXn (i = 1, 2, ... , t). 

Now let us recall some definitions [6, Sections 1 and 4]. 
Definition 1. The parameters of a point M of [Xo] are 

1t1' 121X* *, lrlX 72 + t12 . 2 + t2. 

Definition 2. The normed body of M is the collection of all points of Rn,t 
whose parameters do not exceed the parameters of M. 

The normed body of M is clearly a convex body with center at the origin. If, 
for example, n = 3, r = 3, t = 0, it is a rectangular parallepiped with one of its vertices 
at M and its faces parallel to the coordinate planes. If n = 3, r = 1, t = 1, it is a 

right circular cylinder with center at the origin and with M lying on the circumference 
of one of the bases [6, p. 28]. 

Definition 3. The norm of M is defined by 

N(M) = t1 t2 t3 * *(72 + 2 ) r (rt +t 

It is well known [6, Section 1] that N(M) is a rational integer. 
Definition 4. M is a relative minimum of a lattice if it is nonzero and if there 

are no points of the lattice except the origin within its normed body. 
We shall assume from now on that [X] contains the point 1. Then [6, p. 28], 

1 is a relative minimum of the lattice, provided [co] is maximal. 
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Definition 5. The region (1)(k) is the region of Rn t in which the parameters of 

each point with the exception of the kth parameter are not greater than unity, while 

the kth can have any value. 
Thus, if n = 3, r = 3, t = O, (1)(k) is an infinite four sided prism with edges 

parallel to tj, while if n = 3, r = 1, t = 1, k = 1, it is an infinite circular cylinder with 
generator parallel to the tj axis [2, p. 124]. 

The point 1 of [X] lies on the edge of (1)(k). We shall begin to increase the kth 

parameter of the point 1, while leaving all the remaining parameters unchanged. Then 

the volume of the normed body will increase, and when it exceeds 2n times the volume 

of the basic parallepiped of the lattice, we find on applying Minkowski's lattice point 

theorem, at least two points of the lattice, symmetric with respect to the origin, and 

having their corresponding parameters equal. As we further increase the size of the 

normed body, we find more and more points of [X] in it. Since [co] is irreducible, 

there will be no points in it with equal kth coordinates. However [6, p. 31], there 

may be points with the same kth parameter. From the set of points with equal kth 

parameters, we choose the point with smallest absolute norm (or any of the points with 
smallest absolute norm if several exist) and arrange the points obtained according to the 

size of their kth parameters. We obtain a sequence of points called the B(1, k) num- 
bers. The points themselves will be called X1, X2, .. We also include 1 in the se- 

quence. Finally we note that all B(1, k) numbers belong to the region (1)(k). 

B. Calculation of the B(1, 1) Numbers for Totally Real Lattices. Suppose r = n, 
t = 0, k = 1. Then the forms (1) are 

i = cOliXl + o2ix2 + ++ niXn (i=1, 2, ..., n). 

The coefficients of all these forms are real numbers. Also, we agree to only include 

points with positive first coordinate in B(1, 1). If by our technique below, we find a 

point with negative tj we replace that point by its negative and include the latter in 

B(1, 1). 
The conditions that a point M be a B(1, 1) number are 

co1x1 + * * * + cnIx1 > 1 

(2) ~~~~-1 < W12X1 + * * * + Wn2X2 < 

............................................................... 

-1 < Wlnxl + * * * + Wnnxn < 1. 

Let us examine only the last n - 1 of these conditions. If we find xl, . . , xn, not 

all zero, satisfying these, the first will automatically hold, since the product of all the 

forms is a rational integer. 
Let us now study the system 

(W12X1 + * + Cn2Xn < 1, 

clnxn + + Cn Xn <1. 
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We assume a value for x1, say p1. Then 

W22X2 + + Wn2Xn < 1 12P1 

W23X2 + + )n3xn < 1- W13P1, 

W2nX2 + + CnnXn <1 "lnPl 

Since all these inequalities are strict we may convert them to equations by adding 
positive slack variables S 1 s, S2 . . . , Sn - 1 to each inequality. Since each of the last 

n - 1 forms of (2) is between -1 and 1, each si is between 0 and 2. Thus, 

W22X2 + * + Cn2Xn = 1 -CO12P1 -Sl, 

(3) ()23X2 + + Wn3Xn = 1 W-)13P1 -S2 

O2nX2 + + )nnXn = 1- 'lnPl - Sn- 

Since (w1, .. . W cn) form a basis for [X], any subset of them is linearly independent; 
and thus, the determinant of (3) is nonzero. So we can solve (3) for x2 by Cramer's 

rule: 

1 - 12P1 - Sl ... n2 l22 . n2 

X23P1 - 3 S2 n3 
x2= 

W2n . nn 

1 -olnPl -Sn-1 Xnn 

On setting x2 = P2 we get 

W12 W13 ... Wln W22 W23 ... W2n 

W32 W33 W3n p1 + W32 W33 . 3n P2 

Wn2 Wn3 . nn Wn2 %n3 Wnn 

(4) 1 O32 .. n2 Sj 1 32 Wn2 

= | 33 .. n3 IS2 5 33 '' Wn 3 

1 3n * 'XXnn Sn-1 W3n 
. 

nn 

(1 s1)A11 + (1 S2)A12 + * + (1-Sn,lM)Aln-1 

where A 1' . , A1 n- 1 are the minors of the first row of either determinant of the 

left-hand side of (4). 
Finally, applying the triangle inequality, and using the fact that s1, . . s , 
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are all positive and less than 2, we get 

c l12 W13 ... Wln W22 W23 ... W2n 

%32 W33 ... W3n W32 W33 . A3n 
. Pi + . P2 < dl, 

Cn2 %n3 Cnn Cn2 Cn3 Cnn 

where d1 = 1 IA1 il. Similarly, using the other side of the inequalities, we find 

C012 Wln W2 2 .. 2 n 

(5) -di < P + P2 < dl, 

Wn2 
.. 

nn Wn2 .. nn 

which proves Billevich's inequality [2, p. 126]. 
Thus, the second step in the algorithm is to calculate all possible values of P2 sat- 

isfying (5). Next, we pick p1 and a possible value of P2. Then the value of p3 may be 
found from 

W13 ... Win 1 23 
. 

2n .33 13n 
(6) -d2< P1+ : P2+ : P3<d2, 

in 3 
.. 

nn. Wn3 ..Gn n Wn3 
.. 

n n 

where d2 = l 1IA2.I and A21,. , A2 ,n-2 are the minors of the first row of any 
of the determinants in (6). Finally, having found a system of values p1, ... , 

we find Pn from 

(7) < xlnPl + + XnnPn < 

Next, suppose we wish to determine all points in the sequence B(1, 1) with tj < 
h. By applying the above technique to the system 

&JllPl + &21P2 + ' + 'onlPn < h, 

OlnPl ++ + 2n2 + (OnnPni < 1, 

we find 

(8) vl I< 
I 

jI1 Ih + L21 + * + [ n4I 

where A is the determinant of the system (1) and A1, A2. A are the minors of 
its first column. This result will be of the utmost importance in future papers when 

we modify Billevich's method to find relative minima. 
C. Calculation of the Sequence B(1, k) for Partially Real and Totally Complex 

Latices. The extension of the method of the previous section to partially real and 

totally complex lattices presents no essential difficulty. First of all, if the lattice is 

partially real and k < r, we proceed as follows: 
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We have the conditions 

1211 < 1, .. *, 1Sk_ll < 1, 1tkl > 1, * 
1 

* lrl < 1, 

(9) in2 + 1, < . n2 + t21< 

We ignore 1kI > 1, and we replace the other constraints by 

121< 1, .. I 1, 4-11 < 1,4t+11 < 1, .. I ,lr < 1 

(10) 17111I < 1, 1?1 I < 1,***, J71tj < 1, JPtj < 1 

In virtue of the result on p. 98 of [5] we may then use the method of subsection 

B to find a point satisfying (10) and for each such point computed we check whether 

the quadratic constraints of (9) hold. If they do, we include this point in the sequence 

B(1, k). Thus, in this case the method of procedure is essentially the same as that of 

part B. The most difficult cases occur when [cl] is partially real and k > r or when the 

lattice is totally complex. In this case we still replace all quadratic forms by linear 

forms and ignore all constraints with a greater than sign. But in all the above cases we 

had n - 1 inequalities and n variables. Here we may have n + 2 variables, so we must 

choose two of them and proceed as above. Let us illustrate this by stating the algorithm 

explicitly for some fields of small degree. 

(1) The case n = 3, r = 1, t = 1, k = 2. This is the simplest case. We have 

i= Wli1x1 + wl12X2 + X3, I21I<1, 

7i= PiXi + P2X2 + X3, 

T1 =PlXl + P2x2, + >i . 

Here we choose values of x1 and x2, i.e., p1 and P2 then find p3 from 

- 1 - co 1 1PI - 12P2 S p3 S 1 - ol lP1 - 12pP2- 

(2) The case n = 4, r = 0, t = 2, k = 1. Now we have 

77 1 +21 >, 1712 1 < 1, 1?21 < 1, 

i.e., since 04 = (10, O, O), 

-1 S p12x1 + P22x2 + P32X3 + X4 < 1, 

-1S P12x1 + P22X2 + P32X3 S 1. 

Here we choose P1 and P2, and we can find p3 from the second inequality, p4 from 

the first. 
In a similar fashion we may state the algorithm for all the other cases. 

D. Calculation of the Fundamental Units of [X]. From now on, the units of 

[co] in the sequence B(1, k) will be called B(1, k) units. The following theorems are 

well known: 
THEOREM 1 [6, p. 30]. If r + t > 1, there exist infinitely many B(1, k) units. 

THEOREM 2 [2, p. 127]. If r + t = 2, there is one fundamental unit and the 

first B(1, k) unit after the point 1 may be taken as the fundamental unit of [co]. 
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If r + t = 3, there are two fundamental units of [co] and they may be found in 
either of two ways: 

THEOREM 3 [2, p. 128] . The first B(1, k) unit, e1, after 1 may be taken as the 
first fundamental unit of [co]. For the second fundamental unit one may take the next 
B(1, k) unit, e2, which has one of its parameters, with the exception of the kth, greater 
than the corresponding parameter of e1. 

THEOREM 4. Let e1, e2, e3 be the first B(1, 1), B(1, 2) and B(1, 3) units after 
the point 1. Any pair of these units forms a fundamental system of units of [co]. 

Theorem 4 was also proved by Berwick [1]. 
If r + t > 3, the rules for finding the fundamental units become quite complicated. 

As an illustration, we state, the following theorem for r + t = 4, [2], which was later 
generalized by Billevich to arbitrary lattices [4]. 

THEOREM 5. If r + t = 4 there are three fundamental units, e1, 62, e3. They 
can be calculated as follows: e1 may be taken as the first B(1, k) unit after the point 
1. 62 may be taken as the next B(1, k) unit such that at least one of its parameters, 
with the exception of the kth, is larger than the corresponding parameter of el- 

Let ,u be the first B(1, k) unit after e1X 62 such that none of the determinants 

logIlA logl/IA I logIgPl 

A = loglellI loglel.l l?glelpI 

logIe211 logle2p logIe2pI 

is 0, where k, 1, m, p = 1, 2, 3, 4, k # 1 # m =/ p, and the subscripts denote conju- 
gates. If Ak > El ke2k and in the sequence B(1, k) there are either no units at all be- 
tween 1 and the first point whose kth parameter exceeds eVl kE2kAk or there are no 
units jAi such that 

log IuA| Il0gllAm I log I,Ap I 

logle21I logle2.1 logle2pI 

has the same sign as A and lIAil < IAl, then e3 may be chosen as ,I. If there are such 
units jAi, then for each jAi we must compute a number di equal to min (1Ail, IA - Ail). 
Let d* be the smallest such di and ,I* the corresponding jAi. If ,I* corresponds to some 

lAil, then we may choose e3 = ,I*. If it corresponds to some IA - Ail, then 63 = 

e1 62j(j*)- 1 . 

As is obvious, the statement of Theorem 5 is quite complicated. A simpler 
theorem would obviously be desirable. Also, the question of the fundamental character 
of the first B(1, k) units for different k remains open, though it can be proved that 
these units are always independent. 

III. Numerical Examples. 1. Find the fundamental units of the field Q(6), 
where 03 = 60 + 2. 
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Solution. By any standard method of finding an integral basis, we find such a 
basis to be (02, 0, 1), and that 

= 5.115749x1 -2.226180X2 +X3, 

= O.115516x, - 0.339877x2 + X3, 

=3 6.768734xi + 2.601679x2 + X3. 

(Here and elsewhere in this section all irrational numbers have been rounded to 6 deci- 
mal places.) 

Let us now find the B(l, 1) numbers. We use a slightly modified form of the 
algorithm presented above. We have 1 11 > 1, It21 < 1,1 231 < 1, and 

(11) -1<0< l 2Xl + (A022X2 + X3 < 1 

-1< Co13X1 + c23X2 + X3 < 1, 

which yields 

-2 < (W12 - c13)X1 + ((O22 - o23)x2 < 2- 

If we now fix the value of xl, we get a bound for x2 in terms of xl. We find that 

C012 - c13 -0. 665322, W22 
- W23 -0.294156. 

Further, given the values of xi and x2, we can find X3 from (11). If we let xi = 0, 
the only B(1, 1) number we find is 1. If we let xi = 1, the first B(1, 1) number we 
find is -I - 20 + 02, which has norm 1 and t1 - 8.639354. Thus, e1 = - 1 - 20 + 02. 

To find the B(1, 2) numbers, we now set It21 > 1, 111 I < 1, 13I < 1 and repeat 
the above process. We obtain the following results: 

Point Norm 
1 1 
-6 +02 4 
-18 - 0 + 302 -2 
-17 - 0 + 302 -7 
-36-20+602 -16 
-35 - 20 + 602 -3 
-47 - 30 + 802 21 
-53-30+902 1 

Thus, e2=53 + 30 - 902. 
2. Find the fundamental units of the field Q(0), where 04 = 602 + 60 + 3. 
Solution. An integral basis of the field is (03, 02, 0, 1), and we find the roots 

of the defining equation to be 

0 - 1.92C785, 0' 2.902320, 

0" - -0.490768 + 0.545243 i, ' = -0.490768 - 0.545243 i. 

Thus, 

tl = -7.086570xl + 3.689414x2 - 1.920785x3 + X4, 
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=2 
= 24.447575x1 + 8.423460x2 + 2.902320x3 + x45 

7=1 = 0.319500xl - 0.056437x2 - 0.490768x3 + X4, 

=l 
= 0.231875x, - 0.535175x2 + 0.545243x3. 

To find the B(1, 1) numbers we set 111 > 1, I121 < 1, 1'l I < 1, 11I < 1 and 
find di _ 4.483573, Al - 12.368891, A2 = -6.43949884, where Ai is the coefficient 
of pi in (*). The first B(1, 1) number we find is -2 - 20 - 202 + 03, which has norm 
1 and t1 < 0. Thus, e1 = 2 + 20 + 202 - 03. 

To find the B(l, 2) numbers, we now set t2I> 1, 1 1 < 1,1 q11 < 1, 1 1 < 1 
and repeat the algorithm. We find that e2 = 2 + 50 + 602 + 203. 

WV. Computational Results. As we indicated in the introduction, Billevich's 
algorithm is very efficient if the fundamental units of the field have small coefficients. 
However, there are fields [11] for which we could never find the fundamental units, 
even after using many centuries of computer time. But we recommend the algorithm 
as the first step in searching for the fundamental units of a given field, as it is quite 
powerful. 

We have, at present, programmed the method only for cubic fields and semireal 
quartic fields. The programming for these fields is quite straightforward, it being mere- 
ly necessary to find the roots of the defining equation, set up the inequalities (2), set a 
range for p1 and then calculate the determinants of (*) to find bounds on the remaining 
variables. However, it is impractical to use (*) to search for B(1, k) numbers in fields 
of large degree, since this involves the evaluation of many large determinants. This not 
only slows the computer program exponentially, but also leads to a great loss of signif- 
icance. In a future paper, we shall show that Billevich's basic idea, that of bounding 
one variable and using this bound to find bounds of the remaining variables, may be 
developed from a different viewpoint which involves practically no evaluation of deter- 
minants. 

In conclusion, we present the following tables of units of cubic and semireal 
quartic fields associated with the Mordell Diophantine equation y2 + k = x3. Table I 
is a list of the fundamental units of the fields in a table of Hemer [8], while Table II 
is a list of fundamental units for some of the quartic rings Z[1, 0, 02, 03] of Table 10 
of [9]. 

TABLE I. Some units of totally real cubic fields K = Q(0); 03 = qO + n. 

q n Integral basis Fundamental units of 
of Q(0) Q(0) 

6 2 1, 0, 02 -1 -20 + 02; 

53 + 30 -902 

12 14 1, 0, 02 -11 - 50 + 202 
81 + 110 -802 

9 6 1,0,02 -35-390 + 1502 
28RQ + 2A4 - 4A02 
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TABLE I (continued) 

q n Integral basis Fundamental units of 
of Q(6) Q(6) 

9 4 1, 6, (6 + 02)/2 (-2 - 30 + 202)/2 

(62 + 30 - 1402)/2 

15 20 1, 0, 02 -221 - 870 + 3102 
161 + 210 - 1302 

9 2 1,0,02 -59-2450+8502 
161 + 40 - 1802 

12 12 1,6,02/2 (-14-80 + 302)/2 
11 + 0 _02 

12 10 1, 0, 02 _3 - 30 + 02 
11 + 0 -02 

63 192 1, 0,02 -685 -810 + 1702 
13319 + 13410 - 30502 

18 26 1, 0, 02 _9 - 30 + 02 

225 + 260 - 1502 

27 52 1, 0, 02 -9739 - 22420 + 64802 
83 + 100 - 402 

12 6 1,6,02 -53 -890 +2802 
47 + 20 - 402 

12 4 1, 0, 02/2 (-6 - 160 + 502)/2 
107 + 30 - 902 

15 16 1, 0, 02 _5 - 30 + 02 
1880891 + 1622300 
- 13809802 

12 2 1,0,02 -3 - 170 + 502 
431 + 60 - 3602 

24 42 1,0,02 -2353 -6580 + 19202 

115 + 130 - 602 

18 24 1, 0, 02/2 -89 - 390 + 1202 

31 + 30 - 202 

60 178 1, 0, 02 -22181 - 27840 + 58902 
211 + 210 - 502 

21 32 1, 0, (6 + 02)/2 -47 - 170 + 502 

(266 + 270 - 3002)/2 
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TABLE I (continued) 

q n Integral basis Fundamental units of 

of Q(0) Q(0) 

15 12 1, 0,02 -553 - 5280 + 15602 
901 + 530 - 6302 

18 22 1, 0, 02 -1679 - 8790 + 25902 

16417 + 13860 - 101702 

15 10 1, 0, 02 -9579 - 116180 + 333602 
189 + 90 - 1302 

30 60 1, 0, 02/2 -241 - 560 + 1502 
211 + 230 _902 

TABLE II. A list of fundamental units of some semireal quartic rings 
Z(1, 0, 02, 03). 04 = q02 + nO + r. 

q n r Fundamental units 

30 80 75 16368481 + 199329750 + 955924602 
+ 144439303 
5179 + 41380 + 96402 - 25803 

102 544 867 708301 + 3238970 + 2821402 - 480103 
69820849 + 494750870 + 1222909602 
+ 99238503 

6 6 3 2+50 +602 +203 
2 + 20 + 202 - 03 

6 2 3 149 + 1550 + 35602 + 13303 
14 + 40 + 2602 - 1103 

60 240 300 223 + 2020 + 6602 + 703 

15013 + 88800 + 115102 - 24003 
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