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Groups of Square-Free Order, An Algorithm

By J. Alonso

Abstract. An abstract definition of the groups of square-free order is given that
leads naturally to a programmable computation of their number. O. Hélder’s
alternative description of the groups of square-free order is incidentally derived.

Throughout this paper G will be a group of order & = L, p,;, where p, > p, >
+ + « > p, are given prime numbers. O. Holder proved in 1895 that the number of
groups of order & is

r (Ps(j))cs(j) -1
M % ,=Hn sy —1 /)
where the sum extends to all the subsets S = {S(1), S(2), . . ., S(r)} of the set {2, 3,
...,n};and Cs(j) I8 the number of differences p; — 1, i € S, which are divisible by
p;. The number of terms in (1) is very large even for small values of n; and therefore,
it seems desirable to have a computer program that for each set of primes {p,, p,,
., P,} skips the zero terms in (1).
The present paper makes no use of formula (1); it is an alternative approach to

the description of the groups of order # and the determination of their number.

1. If n = 2, by the Sylow theorems G has a normal subgroup {a) of order ¢ = p,
and a subgroup (b) of order p = p, ; therefore, bab~' = a*; and since @ = bPab™P =
a*P | k is a solution of the congruence equation

?) , xP =1 (mod q).

If pl(g — 1), (2) has exactly p distinct solutions mod ¢, say 1, K, K2, ...,
KP~1! forming a cyclic group under multiplication mod g; and G is one of the two
metacyclic groups [4, p. 462]

3) (@, b;a%, b, bab~! = a),

4 (a,b;a9,b?, bab~' = aX).

(3) is a cyclic group generated by ab. Observe that the metacyclic group (a, b; a?, bP,
bab~! = aK") with 1 < r < p has also presentation (4) if we use the generators a, b”
instead of @, b. If pt(q — 1), then we only have the cyclic group (3).

2. In the general case, n = 2, we will use the following theorems whose proofs
can be found in [3,2.6.7, p. 39, 6.2.11, p. 138, 9.3.11, p. 229 and 9.3.10, p. 228].

THEOREM 1. If H and A/H are solvable groups, so is A.

THEOREM 2. If A is a finite group, p the smallest prime dividing 0(A), and a
Sylow p-subgroup P of A is cyclic, then P has a normal complement in A.

Received July 8, 1975; revised November 24, 1975.
AMS (MOS) subject classifications (1970). Primary 20—04; Secondary 20D99.
Copyright © 1976, American Mathcmatical Society

632



GROUPS OF SQUARE-FREE ORDER, AN ALGORITHM 633

Definition. A Sylow basis B of a finite group 4 is a set of Sylow subgroups P; of
A, one for each prime divisor of o(4), such that if P;, P,, . .., P, are elements of B
then P, P, « « + P, is a subgroup of A4 of order II;_, o(P,).

THEOREM 3. If A is a finite solvable group, then A has a Sylow basis.

THEOREM 4 (HALL). If A is a finite solvable group of order uv, and (u, v) = 1,
then: (i) A has at least one subgroup of order u, (ii) all the subgroups of A of order u
are conjugate.

By Theorems 1 and 2 and induction on n, one can easily see that G is solvable;
and therefore by Theorem 3, there exist ¢; € G, i = l,'2, ..., n,such that o({ap)) =
p;; and (ag(qy, dg(z) - - - » A g(y) is 2 subgroup of G of order I, pg(,) for every sub-
set SC {1, 2,...,n}. In particular, for i <j, we have, as in Section 1, aja,a;l =
a{‘("j), so that G has a presentation of the form

& (gl <i<nh{gf1<i<n}, {gaa' =afBDN1<i<j<n})
with
6 ki, )T =1 (mod p,).

For each pair i <j such that p;l(p; — 1), we will choose one # 1 solution K(i, f)

of the congruence equation (6); and therefore, k(j, j) is a power of K(i, j) (mod p,).
If i <j<t, then (q;, ai) is normal in (a;, a;, a,); and the relation a-a,a‘l =
a:‘(i’i) is changed by conjugation by a, into al!‘(i")a}‘(i")a’? kG0 = a{‘(i'j)k(i' ?) | whence

ai"("»i)k(j't)"("‘) = gFEDEED; that is: (i, ¥U)~! =1 (mod p;) which implies that:
@) If i <j <t, then either k(i, j) = 1 or k(j, ) = 1.

Using a convenient power of a;,] > 1, as generator instead of a;, We may assume
as in Section 1 that

® k(1, j) equals either 1 or K(i, j).
More generally, we may assume without loss of generality that:
© Ifl1=kQ,7)=kQ2,j)="+"++=k(i-1,j), then k(i j) is either 1 or K(i, f).

PROPOSITION 1. There exists a group G with any given presentation of type (5)
with exponents satisfying conditions (6)—(9).
Proof. For eachj, (a,,a,, ..., a;a;,,) is the relative holomorph

Hol({a, ,a,, . . ., ap, (N

with (@) = a¥@I* D 1 <i<j[3,922,p. 214].

PROPOSITION 2. Two presentations of type (5) with exponents satisfying condi-
tions (6)—(9) that differ in one of the exponents k(i, i) present morphically different
groups. We postpone the proof of this proposition.

3. In the case of three factors we will call » = p;, ¢ = p, and p = p;. By the
previous section, G has one of the following presentations:
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(10)  (a,b,c;a”,b9,cP,bab™! =a,cac™' =a,cbc™! =b),
(11)  (a,b,c;a”,b?,cP, bab™! = a,cac™! =a, cbc~! = pK(2:3))
(12)  (a,b,c;a",b%,cP bab~"! =a, cac™! = aX(1:3) che=1 = p),
(13) (@, b,c;a”, b9, cP,bab~! =a,cac™! = aK(.3) cpe-1 = bk(2’3)) with
k2,3)=K(2,3)", r=1,2,...,p—-1,
(14) (@, b,c;a", b9, cP, bab~' =aK(12) cge=1 =g, cbe™ ! = b),
(15) (@@, b,c;a", b9, cP, bab~ ! = aK(12) cge1 = gK(1.3) cpe=1 = p).
In order to show that they present morphically different groups observe:
(i) The groups with presentations (10)—(15) have the following characteristics:

Abelian (@) central (b, ¢) Abelian (b) central {c¢) central
(10) Yes
11 No Yes
(12) No No Yes Yes
(13) No No No
(14) No No Yes No Yes
(15) No No Yes No No

(if) If G has two presentations of type (13), say, one with k(2, 3) = K(2, 3)°
and the other with k(2, 3) = K(2, 3)’, then G has elements a, b, c satisfying the rela-
tions of the first presentation, and elements a’, b’, ¢’ satisfying the relations of the
second presentation; since (@) and (b) are normal in G, we have (Theorem 4) ¢’ = a*,
b' = b7 and ¢’ = a“b¥c"™. The relation ¢'b’c'~! = ¢"K(1:3) implies axK(1,3)" =
a*K(1.3) yhence w = 1; and the relation ¢'b’c’~! = p’K(2,3)? implies p¥X(2:3)% =
bYK(2:3) whence t = s (mod p); and therefore, the two presentations coincide.

The preceding discussion permits us to determine the number of groups of order
rgp as shown in the following table:

TABLE 1
Number of Groups of Order rqp, r >q >p

qi(r - 1) plr—1) pll@ -1 Number of groups

No No No 1
No No Yes 2
No Yes No 2
No Yes Yes p+2
Yes No No 2
Yes No Yes : 3
Yes Yes No 4

Yes Yes Yes pt+4
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4. Proof of Proposition 2. Assume inductively that the proposition is true for
n — 1, and let G and G' be groups with presentations of the type (5) satisfying conditions
(6)—(9) and with k(i, j) # k'(i, j) for some pair i <j. If j < n, then by assumption
(ay,a,,...,a,_,)%#{dy,a,,...,4a,_,)and by Theorem 4 G % G'; therefore, we
may assume that k(i, /) = k'(G, j) for all 1 <i<j<n Ifk(1,n) #k'(l, n), then by
(8) one of the two is 1 and the other is K(1, n), whence (a, , a,,) % (a;, a,) and G ¥+ G";
therefore, we may assume that (1, n) = k'(1, n). Letj be the smallest subindex such
that k(j, n) # k'(j, n); we may assume that k'(j, n) # 1 and by (7) k(i, /) = k', ) = 1
for all i <j. If k(i, n) = k'(i, n) = 1 for all i <j, then by (9) k(j, n) = 1 and k'(j, n)
= K(j, n); and therefore, (a,, a;, a,,) is of type (10), whereas (a,, a;, a, ) is of type (11)
and by Theorem 4 G % G'. Else, let i be the least subindex such that k(i, n) = k'(i, n)
# 1; by (9) kGG, n) = k'(, n) = K(i, n); and therefore, (a;, aj, a,) is of type (13), where-
as {a;, a;, a,,) is either of type (13) with different exponent or of type (12); again by
Theorem 4 G % G'.

5. O. Holder’s Approach. It is easy to see that {a;) is normal in G if and only if
k(i, j) =1 forall i <j, and H = {{a;Ka;} normal in G} is Abelian and therefore cyclic.
Furthermore, condition (7) shows that G! C H, and therefore, G/H is also cyclic, which
implies [4, p. 462] that G is metacyclic with presentation of the form

(16) (a,b;a%, b, bab~! = a¥), st = h.

k(1, 2) k(1, 3) k(2,3) k(1, 4) k2, 4) k(3,4

1 1 1 1 1 1
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k
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Definition. i is linked to j if there exist S(1) =i, S(2), . . ., S(r) =j such that
as(r) does not commute with Agie41) L= 1,2,...,r — 1. The proof of the follow-
ing proposition is trivial:

ProrosITION 3. For each i, {a;, {aili is linked to j}) is the minimal direct sum-
mand of G containing a;.

6. The number of groups of order & can be determined by means of the tree
diagram of the exponents in (5), as we illustrate here for the case of 4 factors. In
Diagram 1 above we write K or k for K(j, j) or k(i, j) when it is not equal to 1;
the branches with some K or k exist if and only if the corresponding p; divides p; — 1;
a small k indicates that the offshoot originating at fork (i, j) has multiplicity p; — L.

7. In the case of 4 factors we call s = Py,r=p,,q =p3and p =p,. The
number of groups of order srgp is easily determined by determining first the groups of
order srq, and pursuing in the tree diagram the number of extensions of each to groups
of order srgp. We obtain:

TABLE 2

Number of Groups of Order srqp, s >r>q > p

pt(s—1) ptG-1) ptGs-1) ptG6-1D plGc-1D plcs-1) plGc-1) plc-1)
pr(r—1) ptC-1) piC-1) plC-1) ptC-1) ptCc-1) plC-1) plC-1
pt@-1 pl@-1) pt@-1) pl@-1) pt@-1) pi@-1) pt@-1D pl@-1
rt@s—-1)
a4 -1) 1 2 2 p+2 2 pt+2 p+2 P +p+2
qtC -1 -
r4(s-1)
qt(s—1) 2 3 4 pt+4 4 p+4 2p+4 (p +2)?
ql(r-1)
rt@s-1)
qlGs-1) 2 3 4 p+4 4 p+4 2p+4 (p+2)P
qrir-1)
rt@s-1)
gl(s-1) q+2 q+3 2q +4 2q+p+4 2q +4 2q+p+4 (g+2)(p+2) (q+i)’(f;+2)
qlr-1)
ri(¢s-1)
qtGs-1) 2 4 3 p+4a 4 2p+4 p+4 (p+2)?
qt(r-1 :
ri¢s-1)
qtG-1) 3 B 5 p+6 6 2 +6 2p+6 p*+3p+6
ql(r-1)
riGs-1
ql(s-1) 4 6 6 p+1 8 2p +8 p+8 p*+3p+8
qtC-1
rlGs-1)
al-1) q+4 q+6 2q+6 2q+p+7 2q+8  20p+q+a) (q+2)(p+2)(f:223-(5:3)
ql(r-1)

8. A computer program to determine the number of groups of order & can be
written using the tree diagram of Section 6:

(a) Set to 0 the number, NUM, of groups of order A.

(b) As we proceed along one branch, each occurrence of k¥ multiplies NU, the
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number of groups originated by the branch, by p; — 1. k occurs at the fork (i, /) when
the following conditions are satisfied simultaneously: (i) pil(p; — 1), (i) k(m, i) =1
for all m < i, and (iii) k(m, j) # 1 for some m < i.

(c) When the end of one branch is reached, NU is accumulated to NUM.

(d) The next branch is picked up at the last fork (i, /) where p;l(p; — 1) and the
k(i, /) # 1 has not been used.

Note. The FORTRAN program implementing the algorithm appears in the micro-
fiche section.
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A FORTRAN PROGRAM POR THE COMPUTATION OF THE NUMBER OF GROUPS OF
A GIVEN SQUARE - FREE ORDER H,

DIMENSION NP(10),K(10,10),NB(10,10),KV(10,10)

NP ARE THE PRIME FACTORS OF H IN DECREASING ORDER.

AT PORK (I,J):
1) NB IS THE MAX, NUMBER OF OFFSHOOTS (NOT COUNTING MULTIPLICITY),
2) K 1S THE ORDINAL NUMBER OF THE OFFSHOOT,
3) XV IS THE CUMULATIVE MULTIPLICITY OF THE BRANCH,

WRITE(3,5)
FORMAT(*1*,2X, ‘ORDER’S PKIME FACTORS’,13X, NUMBER OF GROUPS',/)

GETTING THE INFORMATION AND INITIALIZING,

READ(2,22)N,(NP(I),Iw!,N)
FORMAT( 1113)
IF(R)30,1000,30

NUMeO

NMieN-?

20 50 Jm2,N

JMiel=1"

Do 50 Ie1,JM)
IP((NP(1)-1)=((NP(I)-1)/(NP(J))*NP(J))35,38,35
NB(I,J)m!

ac TO 40

NB(I,JYe2

K(1,J)e!

KV(I,J)et

Ilel

Jim2

FOLLOWING ONE BRANCH THROUGH.

NUeKV(I1,J1)

DO 500 Jwt1,N
Ir{J-J1)70,80,70

12wt

80 TO 90

12«11

JM et~

DO $00 lel2,IM1
“KV(I1,J)akU
IP(X(I,J)-1)100,500,100
IF(1-1)120,200,120
IMielet

DO 180 let,INt
IF(K(L,J)~11150,180,150
NUeNU*(NP(J)=-1)

GO TO 200

CONTINUE
IF(J-K)250,500,250
JP1wP+1



DO 280 LaJP1,N
'B(J.L)I‘
CONTINUE
NUMNUM+NU

PREPARING FOR THE NEXT BRANCH: 2 ITEMS TO BE CONSIDERED
ITEM t: TO DETERMINE AT WHICH FORKIS THE NEW BRANCH TO BE PICKnD UP,

[« Xe NNy §§

DO 700 JAel,MK1

JeN+1=JA

R) T B

DC 700 IAw1,JM?

laJ-1A

IF(K(1,J)-NB(1,J))600,700,600
600  X(1,J)uK(I,J)+1

Ital

JieJ

ITE¥ 2: TO RESTORE THE INITIAL VALOES FOLLOWING FORK (I1,J1),

Qagon

IF(J-1-1)640,610,640
610 IF(J-N)620,55,55

420  JBeJ+®
GO TO 450
&40 JBedJ
4580 DO 670 MwJB,N
MM ) M
IF(M-J)692,654,652
652 13wt
60 TO 656

554  I3aI+
656 DO 670 LeI3,MM1
Y(L,M)wl
KV(L,M)w?
IP(L-1)658,670,658
658 IP((NP(L)}-1)=((NP(L)=-1)/MP(M))*NP(M))670,659,670
6599 IM1gl-"
DO 665 e, LM
IF(X{L',L)~")660,665,660
£40  NB(L,M)u!
GO TO K70
665  NB(L,M)e2
(70 CONTINUE
GO T0 S5
700  CONTINUE

[
C ouTPUT
C

WRITE(3,720)(NP(I1)},1x1,N)
720 FORMAT(1X,10I3)

WRITE( 3,320)NUM
320  FORMAT(t+',40X,112)
GC TO 20
1000  STOP

END



