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Groups of Square-Free Order, An Algorithm 

By J. Alonso 

Abstract. An abstract definition of the groups of square-free order is given that 

leads naturally to a programmable computation of their number. 0. H6lder's 

alternative description of the groups of square-free order is incidentally derived. 

Throughout this paper G will be a group of order h = TI 1 pi, where p1 >, 
2> 

> Pn are given prime numbers. 0. Holder proved in 1895 that the number of 
groups of order h is 

( r (ps(jpcs(X) - 1), 

(1) \i 1 P()-1 J 

where the sum extends to all the subsets S = {S(1), S(2), . . . , S(r)} of the set {2, 3, 

.. . , n}; and cS( ) is the number of differences Pi - 1, i q S, which are divisible by 

pi. The number of terms in (1) is very large even for small values of n; and therefore, 
it seems desirable to have a computer program that for each set of primes {P1, P2 , 

* . . , Pn} skips the zero terms in (1). 
The present paper makes no use of formula (1); it is an alternative approach to 

the description of the groups of order h and the determination of their number. 

1. If n = 2, by the Sylow theorems G has a normal subgroup (a) of order q = p 

and a subgroup (b) of order p = P2; therefore, bab-' = a k; and since a = bPab-P = 

a kP k is a solution of the congruence equation 

(2) xP = 1 (mod q). 

If pl(q - 1), (2) has exactly p distinct solutions mod q, say 1, K, K2, .... 
KP- 1 forming a cyclic group under multiplication mod q; and G is one of the two 

metacyclic groups [4, p. 462] 

(3) (a, b; aq, bP, bab-1 a), 

(4) (a, b;aq bP, bab-1 =aK). 

(3) is a cyclic group generated by ab. Observe that the metacyclic group (a, b; aq , bP, 
bab- 1 = aKr) with 1 < r < p has also presentation (4) if we use the generators a, br 
instead of a, b. If pt(q - 1), then we only have the cyclic group (3). 

2. In the general case, n > 2, we will use the following theorems whose proofs 
can be found in [3, 2.6.7, p. 39, 6.2.11, p. 138, 9.3.11, p. 229 and 9.3.10, p. 228]. 

THEOREM 1. If H and A/H are solvable groups, so is A. 
THEOREM 2. If A is a finite group, p the smallest prime dividing o(A), and a 

Sylow p-subgroup P of A is cyclic, then P has a normal complement in A. 
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Definition. A Sylow basis B of a flnite group A is a set of Sylow subgroups Pi of 
A, one for each prime divisor of o(A), such that if Pl, P2, . . Pr are elements of B 
then P1P2 . . Pr is a subgroup of A of order Hlr o(Pi). 

THEOREM 3. If A is a finite solvable group, then A has a Sylow basis. 
THEOREM 4 (HALL). If A is a finite solvable group of order uv, and (u, v) = 1, 

then: (i) A has at least one subgroup of order u, (ii) all the subgroups of A of order u 
are conjugate. 

By Theorems 1 and 2 and induction on n, one can easily see that G is solvable; 
and therefore by Theorem 3, there exist ai E G, i = 1, 2, . .. , n, such that o((ai)) = 

pi; and (a(1) as(2)*, a )) is a subgroup of G of order ll=I PS(g) for every sub- 
set S C {1, 2, . . . , n}. In particular, for i < j, we have, as in Section 1, ajaiaT1 - 

ak(is) so that G has a presentation of the form 

(5) ({ ai I I < i <-. n}; { afi I 1 < i <. n}, { aja,aj- akis") I1 < i < j < n}) 

with 

(6) (k(i, /))PI = 1 (mod pi). 

For each pair i < i such that pIl(pi - 1), we will choose one * 1 solution K(i, j) 
of the congruence equation (6); and therefore, k(i, j) is a power of K(i, n) (mod pi). 

If i < 1 < t, then (a1, a1) is normal in (ai, a1, at); and the relation a-a.a 1 = 

a"(Ui) is changed by conjugation by at into a1kQ,t)ajl(i t)a7kUt) =ak(i,I)k(it), whence 

aYiJ) kUPt)k(i,t) = a k(iij)k(i9t); that is: k(i, 1)k(J,t)- 1 = 1 (mod Pd) which implies that: 

(7) If i <i t, then either k(i, j) = 1 or k(i, t) = 1. 

Using a convenient power of a,, j > 1, as generator instead of a,, we may assume 
as in Section 1 that 

(8) k(1, j) equals either 1 or K(i, j). 

More generally, we may assume without loss of generality that: 

(9) If 1 = k(l, j) = k(2, j) = = k(i - 1,1), then k(i, j) is either 1 or K(i, j). 

PROPOSITION 1. There exists a group G with any given presentation of type (5) 
with exponents satisfying conditions (6)4(9). 

Proof. For each j, (a,, a2, ... , a1, a,+ 1) is the relative holomorph 

Hol((al,a2, . . ,a1), (f)) 

with f(ai) =al(i,+l), 1 < i < j [3, 9.2.2, p. 214] . 
PROPOSITION 2. Two presentations of type (5) with exponents satisfying condi- 

tions (6)-(9) that differ in one of the exponents k(i, 1) present morphically different 
groups. We postpone the proof of this proposition. 

3. In the case of three factors we will call r = p1, q = P2 and p = p3. By the 
previous section, G has one of the following presentations: 
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(10) a b ;ar q c a-=a, cac-' =a, cbc-=b 

(12) (q,b,c;ar,b ,cP,bab-l =a,cac1 aK(lc-),=bc )), 

(12) (a. b.c; ar, bq, cPbab-1 = a,cac-1 =aK(1,3) cbc- 1 =b), 

(1 , b, c; ar, bq, cP, bab- = a, cac-1 = aK(1,3), cbc-1 bk(2,3)) with 

k(2, 3) = K(2, 3)r, r= 1, 2, ..., p-1, 
(14) (a, b, c; ar, bq cP, bab-1l = aK(l,2), cac-1 = a, cbc -Ib), 

(15) (,b,c;ar,bq,cPbab-=aK(l,2) cac-1 = aK(l,3) cbc-l =b). 
In order to show that they present morphically different groups observe: 
(i) The groups with presentations (10)-(15) have the following characteristics: 

Abelian (a) central (b, c) Abelian (b) central (c) central 

(10) Yes 

(11) No Yes 

(12) No No Yes Yes 

(13) No No No 

(14) No No Yes No Yes 

(15) No No Yes No No 

(ii) If G has two presentations of type (13), say, one with k(2, 3) = K(2, 3)5 
and the other with k(2, 3) = K(2, 3)t, then G has elements a, b, c satisfying the rela- 
tions of the first presentation, and elements a', b', c' satisfying the relations of the 
second presentation; since (a) and (b) are normal in G, we have (Theorem 4) a' = ax, 
b = bY and c' = aUbVcW. The relation c'b'c'-' = a'K(l,3) implies axK(1 3) = 

axK(1,3), whence w = 1; and the relation c'b'c'-l = b?K(2,3)t implies bYK(2,3)s 

bYK(2,3)t, whence t = s (mod p); and therefore, the two presentations coincide. 
The preceding discussion permits us to determine the number of groups of order 

rqp as shown in the following table: 

TABLE 1 

Number of Groups of Order rqp, r > q > p 

ql(r - 1) pl(r - 1) pl(q - 1) Number of groups 

No No No 1 

No No Yes 2 

No Yes No 2 

No Yes Yes p + 2 

Yes No No 2 

Yes No Yes 3 

Yes Yes No 4 

Yes Yes Yes p + 4 
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4. Proof of Proposition 2. Assume inductively that the proposition is true for 
n - 1, and let G and G' be groups with presentations of the type (5) satisfying conditions 
(6)-(9) and with k(i, j) * k'(i, j) for some pair i < j. If < n, then by assumption 
(a, . a2,.. - a-, 1)#(a'a, . a >,a ) and by Theorem 4 G } G'; therefore, we 
may assume that k(i, ) = k'(i, j) for all 1 < i < 1 < n. If k(1, n) # k'(1, n), then by 
(8) one of the two is 1 and the other is K(1, n), whence (al, an) # (a', a') and G # G'; 
therefore, we may assume that k(l, n) = k'(1, n). Let i be the smallest subindex such 
that k(j, n) # k'(j, n); we may assume that k'(j, n) $ 1 and by (7) k(i, 1) = k'(i, j) = 1 
for all i <j. If k(i, n) = k'(i, n) = 1 for all i <j, then by (9) k(j, n) = 1 and k'V, n) 
= K(j, n); and therefore, (a1, a a is of type (1O), whereas (a', a') is of type (1 1) 
and by Theorem 4 G t G'. Else, let i be the least subindex such that k(i, n) = k'(i, n) 
# 1; by (9) k(i, n) = k'(i, n) = K(i, n); and therefore, (a;, a', a') is of type (13), where- 
as (a, a1, an) is either of type (13) with different exponent or of type (12); again by 
Theorem 4 G } G'. 

5. 0. Holder's Approach. It is easy to see that (a1) is normal in G if and only if 
k(i, I) = 1 for all i < j, and H = ({a1l(ai) normal in G}) is Abelian and therefore cyclic. 
Furthermore, condition (7) shows that G1 C H, and therefore, G/H is also cyclic, which 
implies [4, p. 462] that G is metacyclic with presentation of the form 

(16) (a, b; aS, bt, bab-l = ak), st = h. 

k(1, 2) k(1, 3) k(2, 3) k(1, 4) k(2, 4) k(3, 4) 

1 1 1 1 1 1 
K 

K 1 
k 

K 1 1 
k 

k 1 
k 

K1 
K1 1 

k 1 
K 1 1 1 1 

K 1 
K 1I 

k1 
k 1 1 1 

K1 
K 1I 

k1 
K 1 1 1 1I 

K 
K1 1 

k 

K1 1 
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Definition. i is linked to j if there exist S(1) = i, S(2), . . ., S(r) = j such that 

aS(t) does not commute with aS(t+ 1)' t = 1, 2, ... , r - 1. The proof of the follow- 
ing proposition is trivial: 

PROPOSITION 3. For each i, (ai, {a ji is linked to j}) is the minimal direct sum- 
mand of G containing ai. 

6. The number of groups of order h can be determined by means of the tree 
diagram of the exponents in (5), as we illustrate here for the case of 4 factors. In 
Diagram 1 above we write K or k for K(i, j) or k(i, j) when it is not equal to 1; 
the branches with some K or k exist if and only if the corresponding p, divides pi - 1; 
a small k indicates that the offshoot originating at fork (i, j) has multiplicity p, - 1. 

7. In the case of 4 factors we call s = p1, r = P2, q = P3 and p =p4. The 
number of groups of order srqp is easily determined by determining first the groups of 
order srq, and pursuing in the tree diagram the number of extensions of each to groups 
of order srqp. We obtain: 

TABLE 2 

Number of Groups of Order srqp, s > r > q > p 

PA-(s - 1) p-r(s - 1) p+(s - 1) pt(s - 1) p I (s - 1) p I (s - 1) p I(s - 1) p I(s - 1) 
p-r(r- 1) p {(r- 1) p I (r- 1) p I(r- 1) p{t(r- 1) p{t(r- 1) p I(r- 1) p I(r-1) 
pt(q - 1) p I (q - 1) p -(q - 1) p I(q - 1) p +(q - 1) p I (q - 1) pt(q - 1) p I(q- 1 

r {t(s - 1) 
q {t(s-1) 1 2 2 p+2 2 .p+2 p+2 p2+p+2 
q-f(r- 1) 

r (s- 1) 
q-f(s--1) 2 3 4 p+4 4 p+4 2p+4 (p+2)2 
q I (r- 1) 

r - I) 
qI(s-l) 2 3 4 p+4 4 p+4 2p+4 (p+2)2 
q {i (r- -) 

r{t(s - 1) ( )p+2 
qI(s-1) q+2 q+3 2q+4 2q+p+4 2q+4 2q+p+4 (q+2)(p+2) (q+2)P2) 
q (r- 1) 

r (s -1) 

q{t(s-I) 2 4 3 p+4 4 2p+4 p+4 (p+2)2 
q{t(r- 1) 

r I (s- -) 
q{(s - 1) 3 5 5 p + 6 6 2p + 6 2p + 6 p2 +3p+6 
q I (r- 1) 

r I (s - 1) 
qI(s-1) 4 6 6 p+7 8 2p+8 2p+8 p2?+3p+8 

q {(r- 1) 

r I(s -q 2Ip) )( +2(p+2 
q I(s - 1) q + 4 q + 6 2q + 6 2q+p +7 2q + 8 2(p+q+4) (q+2)(p+2) (q+2)(p+2) 
qI (r - 1) ? p?? 

8. A computer program to determine the number of groups of order h can be 
written using the tree diagram of Section 6: 

(a) Set to 0 the number, NUM, of groups of order h. 
(b) As we proceed along one branch, each occurrence of k multiplies NU, the 
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number of groups originated by the branch, by p1 - 1. k occurs at the fork (i, j) when 
the following conditions are satisfied simultaneously: (i) p1l(pi - 1), (ii) k(m, i) = 1 
for all m < i, and (iii) k(m, 1) 0 1 for some m < i. 

(c) When the end of one branch is reached, NU is accumulated to NUM. 
(d) The next branch is picked up at the last fork (i, j) where pj(p1 - 1) and the 

k(i, j) 0 1 has not been used. 
Note. The FORTRAN program implementing the algorithm appears in the micro- 

fiche section. 
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C A FPORTRAN PROGRAM FOR THE COP?TATION OF THE NUMU OF GROXPS OF 
C A GIVYE SQUARE - FREE ORDER H. 
C 

DIMENSIOW NP(10),K(lO,1O),NB(o10,o),KV(IO,1O) 
C 
C NP ARE THE PRIME FACTORS OF H IN DECREASING ORDER. 
C AT FIOR (1,4): 

1) NB IS THE KAX NMBER OF OFFSHOOTS (NOT COUNTING MULTIPLICIT). 
2) K IS THE ORDINAL NUMSU OF THE OnTSMIDQ? 

C 3) KV IS THE CUMULATI MULTIPLICITY OF THE BRNCH. 
C 

WRITE(3,5) 
5 FOMAT('1'2X,,ORDER'S PRIME FACTORS' 13X,'rN`UMBER oF GROUPS',/) 
C 
c cE TIJ6 TRE i1IO1R(AIONI ANt INITILIZ2IN1G. 
C 
20 RXEA2,22)N,(NP(I),Iwlj,N) 
22 TORXAT( 1 t3) 

IF(lE30, 100,30 

Nm 1.M-1 
DO 50 J4.,N 

Do 50 Io. IJ1 
IF (NP( )-i )-( (NP(I )-l )/(NP(J))'NP(J))35,38,35 

35 NB(I,J)n1 
GC TO 40 

38 NB(ItiJ;Wz 
4n K(IsJ)si 
50 KV(I,J).1 

I 1 1 
J102 

C FOILLOWNG ONE BRANCH THROUGH. 
C 
55 ICU.KV(lIJ41) 

DO 500 J1J,N 
IF(J-J 1)?0,80, 70 

70 12.1 
G00TO 90 

80 12.11 
90 Ji.Jm-i 

DO 500 w12,0MI 
,KV(fIIJ)uX 
IF(X(IJ,J)-1) 100,500,1XO 

100 IF(1-i)1,20,?2OO20 
120 IM1.I.1 

DO 180 .1 ,IMI 
lF((Lc,J)-01 50l18O, 5O 

'5o NUvU(NP(J)-l ) 
0G TO 200 

1i0 CONTINUE 
200 Ir(J-9)250,500,250 
250 tPi*P.+i 



Do 280 _Jti IN 
280 NB(J3L).i 
500 CON?! WOE 

1IUKlON+11UD 
C 
C PREPARING FOR TEE N? RACH: 2 ITDIS TO BE CONSIDERED 
C ITEM I i TO DETERMINE AT WHICH FORIS THE NEW BRANCH TO BE PICD UP. 
C 

DO 700 JA.i,NHI 

DO ?00 IA.,JmlN 
IeJ-IA 
IF(K(I,J)-NB(I,J))600,?00,600 

600 K(t,4).(l,J)+i 
I iI 1 

C 
ITEP 2: TO RESTORE THE INITIAL VALUES FOLLOWING FORK (11,J1). 

C 
IF(J-1-1)6406 10,640 

6$0 IF(J-N)620,55,55 
620 J3.4J' 

GO TO 650 
640 4JB4 
450 LXD 6?0 K..3BsN 

IFlX-J )652, 6 54. 652 
652 I%) 

00 To 656 
6 154 I .1+ 
656 DO 670 L.I3,MMi 

K( LI) W1 
KV(.L,NM).i 
IF(L-? )6581,6O,658 

653 I(NP(L)-1 )-((NPCL)-t)/NP(H))1NP(M))670,659,6?0 

DO 665 I.,L J41 
IF(K( Ll L)-l )66O,665q66O 

660 NB(L,M).' 
GO TO 6t0 

665 N&tL,N).? 
670 CONTIN E 

GO TO 55 
700 ONT I NU 
C 
C OUTPVT 

WRITE(3,720)(NP(I),II .1N) 
2O ORKAT( IX, 1 3) 

WRITS( 3, 320)?(ITh1 
z??0 FORKATC'+,4OX,l'?2) 

GC TO 20 
'oo STO F 

ENDr 


