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Triples of Sixth Powers With Equal Sums 

By Simcha Brudno 

Abstract. The diophantine equation x6+ y6 + z6 = u6 + v6 + w6 is shown 
to have a two-parameter solution which is homogeneous of degree four. The solution 

also satisfies x2+ y2+ z2 = u2 + v2+ w2; and in addition, 3x + y + z = 3u + 
v + W. 

The diophantine equation 

(1) x6 + y6 + z6 = u6 + v6 + w6 

is a particular instance of the much-studied problem of finding equal sums of like 
powers of integers, surveyed by Lander, Parkin and Selfridge in 1967 [4]. The small- 
est nontrivial solution was published by Subba Rao in 1934 [5], namely, 36 + 196 + 
226 = 106 + 156 + 236. Early editions of Hardy and Wright [3] referred to this re- 
sult as "an isolated curiosity". However, Lander, Parkin and Selfridge [4] discovered 
that (1) has ten primitive solutions in the range up to 2.5 x 1014, and that all but 
one of these also satisfy 

(2) x2 + y2 + z2 = u2 + v2 + w2. 

In [1] it was shown that there are infinitely many primitive solutions to (1), 
each also satisfying (2) and 

(3) v=y-z, w=y +z. 

Subsequently, in [2] the complete solution to (1), (2) and (3) was obtained in terms 
of an infinite cyclic group of rational points on a cubic curve. (Regrettably, the 
solution 5P appeared in [2] with transcription errors in the values of x and w; it 
should read x = 165809277507, y = 151561337462, z = 23038103009, u = 

63175337782, v = 128523234453 and w = 174599440471.) 
The principal aim of this paper is to exhibit the following explicit solution to 

(1) in terms of parameters m, n: 

x = 2m4 + 4m3n - 5m2n2 - 12mn3 - 9n4 

y = 3m4 + 9m3n + 18m2n2 + 21mn3 + 9n4, 
z = -mi4 - lOm3n - 17m2n2 - 12mn3, 

(4) u = m4 - 3m3n - 14m2n2 - 15mn3 - 9n4, 

v = 3m4 + 8m3n + 9m2n2, 
w = 2m4 + 12m3n + 19m2n2 + 18mn3 + 9n4. 

This solution also satisfies (2); and in addition, 

5) 3x + y + z = 3u + v + w, 
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TABLE 1 

m n m' n' x y z u v w d d' 

0 1 1 -1 -1 1 0 -1 0 1 9 4 

1 0 3 -1 2 3 -1 1 3 2 1 36 

1 1 3 -2 -1 3 -2 -2 1 3 20 45 

2 -1 3 1 -1 3 4 1 4 -3 5 180 

1 -2 3 -5 -74 33 47 -73 23 54 1 36 

1 2 9 -7 -50 81 -37 -65 11 78 5 180 

2 1 9 -5 11 243 -188 -103 148 249 1 36 

1 -3 3 -4 -23 15 10 -22 3 19 20 45 

1 3 6 -5 -271 372 -127 -317 27 356 4 9 

2 -3 3 -7 -65 15 52 -67 36 37 5 180 

4 -1 9 -1 43 81 32 55 80 -3 5 180 

1 -4 9 -11 -326 243 107 -311 23 282 5 180 

3 2 5 -3 -26 225 -169 -121 111 230 9 4 

5 -1 6 -1 169 276 65 179 275 36 4 9 

5 1 9 -4 389 891 -590 -46 775 831 4 9 

4 -3 3 5 -409 93 512 -293 528 -271 1 36 
5 -2 9 1 86 729 655 431 775 -426 1 36 

6 1 7 -3 71 147 -92 1 132 133 45 20 

7 -1 9 -2 163 243 14 142 245 75 20 45 

Of the ten smallest primitive solutions to (1), listed in [4], all but the sixth sat- 

isfy (2). Only the second satisfies (3), while (4) gives rise to all except the seventh 

(and, of course, the sixth). 
It should be noted that a particular choice of m and n does not necessarily yield 

a primitive solution in (4), even if m and n are coprime. Indeed, suppose (m, n) = 1 

and d = (x, y, z, u, v, w). It is not difficult to prove that (i) 21d just if m = n 

(mod 2), and then 22 ild; (ii) 3 Id just if m 0 (mod 3), and then 32 lId; and (iii) Sd 

just if m n or 2m n_ n (mod 5), and then 51 lld. Moreover, suppose pld for some 

prime p > 5. Clearly, p X mn, so v-0 (mod p) yields 3m2 ?8mn + 9n2 0 (mod p). 

With y - v 0 (mod p) this leads to 10(m + 3n) 0 (mod p), and finally with z 

0 (mod p) this yelds 72n40 = (mod P), which is impossible. Hence, d has no prime 
factor greater than 5. 

Consider the transformation to (4) which results from replacing m, n by m', n' 

satisfying 

(6) m': n' =-3(m + n):(m + 3n). 

If x, y, z, u, v, w is the solution corresponding to m, n and x', y', z', u', v', w' is the 

solution corresponding to m', n', then 

(7) x':y': z': u': v: w = u: v: w: x:y: z. 
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It follows that any particular primitive solution to (1), (2) and (5) obtained from (4) 
actually arises from two distinct ratios m: n. 

Next, we remark that any solution to (1), (2) and (5) has an interesting geomet- 
rical interpretation. The points (x, y, z) and (u, v, w) in E3 are lattice points which 
simultaneously lie on a sphere X2 + y2 + Z2 = a, a concentric closed surface X6 + 
y6 + z6 = b, and a double cone with vertex at the origin and axis in the direction 

3: 1: 1. It is intriguing to speculate that the solutions might turn out to have some 
physical interpretation. 

Finally, in Table 1 are listed all primitive solutions obtained from (4) with the 
property that max {IXlI, Iyl, jZj} < 103. As remarked earlier, these include all but two 
of the numerical examples given in Table IX of (4]. 
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