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Abstract. A classical theorem conjectured by Jacobi asserts that for an odd prime p, 

the sum of the quadratic residues in the interval (0, p) is less than the sum of the 

quadratic nonresidues if and only if p 3 (mod 4). We generalize Jacobi's problem 

to kth powers (mod p), k > 2, and we consider in some detail a generalization of 

Jacobi's conjecture to quadratic residues and nonresidues (mod n), n an arbitrary in- 

teger > 2. From the set of least positive residues (mod n), let co denote the sub- 

group of quadratic residues (mod n) and let cl, c2, . . , ct be the cosets which can 

be formed with respect to this subgroup. Computer data supports the following gen- 

eralized Jacobi conjecture: The sum of the elements in co is less than or equal to 

the sum in any of the other cosets for every integer n > 2, a surprising conjecture, 

especially in view of the fact that counterexamples are easily obtained for k = 4, 6, 

8, 10, etc. (The coset sums are identical for odd k and prime modulus.) We resolve 

the generalized Jacobi conjecture in the affirmative when, for example, n is an integer 

admitting a primitive root, or n = 2't, ce>3. (Here we give explicit formulae for the 

four coset sums.) For n = 2p, our proof that the quadratic residues and the qua- 

dratic nonresidues (mod n) have the same sum for odd prime p if and only if p t 3 

(mod 8) is purely. elementary. On the other hand, we need Dirichlet's class number 

formula for quadratic number fields with discriminant -p --5 (mod 8) to show 

that the sum of the quadratic nonresidues strictly exceeds the sum of the quadratic 

residues (mod 2po-) if p 3 (mod 8). Computer data gives rise to a host of 
al ap2 ... a 

interesting problems we are unable to resolve. For example, if n = 2p, P2 Pr 
1 < i < r, we conjecture that a sufficient condition that the coset sums not be identical is 

that we have Pi--3 (mod 8) for every i. It is not hard to show that the coset 

sums are identical if every pi- 1 (mod 4). However, the problem of finding a 

necessary condition is very difficult since, e.g., the coset sums are not identical 

for n < 1146 when n = 2 - 3 * p if p -23 (mod 24), but the sums are identical 

if p 7 (mod 24). 

1. Introduction and Summary. A classical conjecture generally attributed to Jacobi, 

see, e.g. [4] asserts that for an odd prime p the number of quadratic residues (mod p) 

less than p/2 exceeds the number greater than p/2 if and only if p 3 (mod 4). This is 

easily seen to be equivalent to the assertion that for an odd prime p, the sum of the 

quadratic residues in (0, p) is strictly less than the sum of the quadratic nonresidues in 

(0, p) if and only if p 3 (mod 4). As is well known, the classical proof of Dirichlet 

and all subsequent proofs have been nonelementary [4]. 

In this paper we consider generalizations of Jacobi's problem in two directions. 

In Section 2 we generalize the problem to kth power residues and nonresidues, k > 
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2, and in Section 3 we consider in detail the generalization to composite modulus. I 
hope the reader will find these generalizations interesting as they raise a host of new 
problems, provide some surprises, and, hopefully, shed some additional light on Jacobi's 
original conjecture. I am deeply grateful to James M. Greene for assistance with 
computer data related to work done in this paper. 

Let p be -1 (mod k), p a prime, and k an integer > 2. Then, among the set 
of least positive residues (mod p), the kth power residues form a proper multiplicative 
cyclic subgroup (mod p) of order (p - 1)/k, call it ck(p). We will frequently call 

ck(P), coset 0 or simply co as it is the identity of the cyclic group (mod k) consisting 
of ck(P) together with the k - 1 distinct cosets which can be formed with respect to 

Ck(P) from the least positive residues (mod p) and with binary operation e defined as 
follows. Let ae, ,B, and y be nonnegative integers 6 k - 1. For each fixed k, c ED cp 

=cly if and only if Va E c% and b E cp, ab E cr; clearly, we must have -a+ + 

(mod k), and this cyclic group (mod k) is generated (additively) by any ci with (, k) 
= 1. 

Throughout the sum of the positive integers < n in a given coset will be called 
the coset sum. Jacobi's conjecture for odd prime p can now be restated as: the sum 
in co and the sum in cl (there are only two cosets) are equal for k = 2 if and only if 

p 1 (mod 4); otherwise, the sum in cl strictly exceeds the sum in co. In Section 
2 we generalize as follows. If p 1 (mod k) the sums in each of the k cosets are 
identical if and only if p 1 (mod 2k), in which case the sum in each coset is pre- 
cisely p(p - 1)/2k. When p k + 1 (mod 2k), however, the number of distinct co- 
set sums must be at least two and may be as great as k. An asymptotic (or exact) 
formula for estimating the number of distinct coset sums would be interesting. The 
surprising fact, especially in light of our data for k = 2 and composite modulus, is 
that the sum in co is not necessarily the smallest coset sum when k > 2. Indeed, 
the sum in Ck/2 is strictly less than the sum in c0 when, e.g., p = 29 and k = 4. (The 
sum in co and the sum in ck/2, k even, are independent of the choice of primitive 
root used to generate the cosets.) 

If n - 2ao P1 P2 ... par, p * ... Pr distinct odd primes, the quadratic 
residues (mod n) form a multiplicative cyclic subgroup of the reduced residues (mod 
n) of order 4(n)/2r+p where , = 1 if a0 = O or 1, B=2 if a0 = 2, and 13 =3if oao 
> 3 [5, p. 167]. This subgroup is the identity of the group of order 2r+-1 con- 

sisting of the subgroup and 2r+P-1 - 1 elements of order 2. (As such, it is noncy- 
clic if r + ,B - 1 > 2, or equivalently, if n does not have a primitive root.) As above, 
we denote the subgroup by co and the other elements of the group, cl, c2, . . .C, 

where t = 2r+p-1 - 1 are the cosets which can be formed with respect to this sub- 

group. 
In Section 3 we examine the generalization of Jacobi's problem to composite 

modulus, first considered by Dirichlet. The most surprising result that emerges from 

our computer data is the fact that for every integer n, 2 < n S 250 for which the 
coset sums are not identical, the sum of the quadratic residues is smaller than the 
sum in any of the other cosets, a result which we now conjecture holds for all n > 2. 
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We call this the generalized Jacobi conjecture; to date only special cases of this 
conjecture have been established; see [2, Chapter 6]. Jacobi's conjecture is clearly the 
special case where n is an odd prime. Recall, from above, that this result is, in general, 
false if we have k > 2 (n = 29, k = 4; n = 139, k =6, etc.), which is precisely the 
reason we are now restricting our investigation to k = 2, although other interesting 
problems would undoubtedly arise from a generalization to arbitrary k and n where 
k I ?(n). 

If n = pa, p an odd prime, it is easy to show that the sum of the quadratic non- 
residues in (0, p') strictly exceeds the sum of the quadratic residues in (0, p') if and 
only if p 3 (mod 4), given the classical result for prime modulus. 

If n = 2pa, ae > 1, p - 3 (mod 8), we prove that the sum of the quadratic 
residues (mod n) is equal to the sum of the quadratic nonresidues (mod n); moreover, 
this proof is elementary. Using Dirichlet's formula for the class number of a quadratic 
number field with discriminant -p, we show that the sum of the quadratic nonresidues 
(mod n) strictly exceeds the sum of the quadratic residues (mod n) for even composite 
integers admitting a primitive root if and only if n = 4 or n = 2pa where p 3 
(mod 8). If n does not admit a primitive root, the problem is, in general, more diffi- 
cult. For example, computer data for n S 1146 suggests that the coset sums are 
identical for n = 2 - 3 p, p 7 (mod 8), if p 7 (mod 24), but not if p 23 

(mod 24). 
However, for n = 2a, oa > 3, we can prove somewhat more than the generalized 

Jacobi conjecture as we derive explicit formulas for the sums in each of the four co- 
sets. These formulas show that the coset sums are distinct with common difference 
2a2, and the sum in c0 is the smallest of the four sums. This result was obtained 
independently by the aforementioned James M. Greene. Moreover, it is not difficult 
to show that for n = 2a 0PI 2 P *pr, ao = 0 or 1, pi 1 (mod 4), 1 < i < r, 
the 2r coset sums are identical and, furthermore, must have exactly the value 

fp(l/r+lwie ncnrat f a1 a2 .ar n 0n)121 while in contrast, if n = p 1 P2 Pr , Pi 3 (mod 4), 1 S i < r, it is 
easily shown that the coset sums cannot be identical. We conjecture, but are unable 
to prove that if 4 I n, or if n is odd and has a prime factor 3 (mod 4), or if the 
odd prime factors of n are all 3 (mod 8), then the coset sums cannot be identical. 
Since there are more than two cosets if n does not have a primitive root it seems 
worthwhile to distinguish the case where the coset sums have distinct values (no two 
have the same value), and the case where the coset sums are not identical, but are 
also not distinct. Computer data supports some surprising conjectures. For example, 
if 22 In, 23In, then we conjecture that the 2r+ 1 coset sums are distinct if the odd 

prime factors of n are all 3 (mod 8) in spite of the fact that the coset sums for n 
= 2 3 - 11 and for n = 23 - 11 are not distinct. 

Throughout the rest of the paper p will always denote a prime and n and k 
will denote integers > 1. By the sum of the quadratic residues (mod n) we will al- 

ways mean the sum of the positive integers less than n and relatively prime to n which 

are squares (mod n), and similarly for quadratic nonresidues (mod n). 
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2. The Problem of Jacobi for k > 2 and Prime Modulus. 
THEOREM 2.1. Let p be 1 (mod k). Then a necessary and sufficient condition 

that the coset sums be identical is that p be 1 (mod 2k). Moreover, if p =k + 1 
(mod 2k) and coset a is the coset obtained by multiplying the elements of coset ,B by 
- 1 for some (, O < < k/2, then 

(2.1) ?: a: + ? a, 
aEca aEco 

the sum in each case being taken over the reduced residues (mod p). 
Proof That the condition is sufficient is easy to see. If p 1 (mod 2k), then 

- 1 is a kth power residue since for any primitive root g of p 3 an integer a with 
p - 1 = 2aok and 

(2.2) g(p-1)/2 # 1 (mod p) *g(p-1)/2 -1 (mod p) 
g 

(g)k- 1 (mod p). 

Hence, for each integer a, 1 S a < p - 1, a and p - a are in the same coset. More- 
over, (p - 1)/k is even, and there are (p - 1)/k elements in each coset. Thus, a and 
p - a are distinct and letting ci denote the ith coset, 

(2.3) ,a=p(p-1)/2k, i=0,1,...,k-1. 
aEci 

If, on the other hand, p t 1 (mod 2k), then p k + 1 (mod 2k) so that k 
must be even since p is odd. But, then, (p - 1)/k is odd and - 1 is a kth power non- 
residue since (- 1)(P-1)/k =- 1 (mod p), see [3, p. 58]. Let a and , be defined as 
above and denoting cosets at and ,B by c.. and c,p respectively, we have 

(2.4) E a + E a = p(p -1)/k. 
aEca aEco 

Consequently, the proof is complete if each of the sums on the left-hand side of (2.4) 
is a multiple of p since (p - 1)/k is odd. 

But letting g be a primitive root of p we have 

(2.5) a _gi + gi+k + . . . + gi+(p-l-k) (mod p), 
aEci 

since get E ci if and only if a i (mod k). This geometric progression sums to 

(2.6) gi(gp- _ 1)/(gk - 1). 

However, gk # 1 (mod p) if p > k + 1 since g is primitive, and p ie- - 1 
by Fermat's theorem, i.e., the numerator in (2.6) is divisible by p and the denomina- 
tor is not. This completes the proof since if p = k + 1 each coset consists of one 
distinct integer and we take this to be the sum. 

Remark 1. Let p be k + 1 (mod 2k). It is not true that the sum in co is 
always less than the sum in ck,2. (Coset k72 is always the coset obtained by multi- 
plying the elements of co by - 1.) In particular, it is not true when p = 29 and k 
= 4, p = 139 and k = 6, p = 137 and k = 8,p = 131 and k= 1O,p = 277 andk= 
12, p = 547 and k = 14. We have not found an example in which the sum in c0 ex- 
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ceeds the sum in all the other cosets. Let d denote the number of distinct coset 
sums. Clearly, d = 2 if (p - 1)/k = 3 since only two coset sums are possible, namely, 
p and 2p. It is reasonable to conjecture that d/k increases as p/k -* and dlk may 
even increase monotonically as p increases (k fixed) or k decreases (p fixed). However, 
an informative expression for d as a function of p and k appears hard to obtain. 

3. Generalizations of the Conjecture of Jacobi for Composite Moduli. 
THEOREM 3.1. If n = p', p odd, then the sum of the quadratic nonresidues 

(mod n) exceeds the sum of the quadratic residues (mod n), if and only if p 3 
(mod 4). 

Proof If p Y 3 (mod 4), the two sums are identical by Theorem 3.4. If p- 
3 (mod 4), then r is a quadratic residue or nonresidue of p't, at > 1, 1 < r < p&, if 
and only if it is a quadratic residue or nonresidue of p since x = r (mod pa) * x2 
-- r (mod p) while if (rlp) = 1 then (r/p&) is the product of a Legendre symbols all 
with value + 1; and consequently, r is a quadratic residue of p't. Thus, the quadratic 
residues of p' are precisely r1, r, + p, . . . , r1 + (pj-' - 1) (p), r2, r2 + P . . . w 

r2 + (p' 1 - l)p. . * r(p-1)/2, r(p-)/2 + py *. I r(p-1)/2 + (p -1 - 1)p, where 

rl, r2, .- . ., r(p-)/2 are the quadratic residues (mod p). But the quadratic nonresi- 
dues of pa are n1, . . . , n1 + (p - _)p,.** , n(p1)/2, a . , n(p-,)/2 + 

(pot-l - l)p and the result is seen to be an immediate consequence of the known re- 
sult for prime modulus. 

THEOREM 3.2. If n = 2`a, a> 1, no two coset sums have the same value. More- 
over, if a > 3, the coset sums can be arranged in strictly increasing order with common 
difference 2`-2. The smallest of these four coset sums is the sum in c0 which is 
precisely 2'-3(2a-l - 3) for all oa > 3. 

Proof: If n = 2, there is only one coset and if n = 4, 1 belongs to co 
and 3 belongs to cl. Hence, we may assume at > 3. Then there are four cosets 
formed with respect to the cyclic subgroup of quadratic residues (mod n); see [5, 
p. 167]. The quadratic residues (mod 2") are clearly 1 (mod 8) since the square 
of each odd integer is 1 (mod 8), and the modulus is 0 (mod 8). Conversely, 
it is well known [3, p. 54] that 5 is an element of the group of reduced residues 
(mod 2?) of order 2`-2. Thus, the 2 a-3 even powers of 5 are distinct quadratic 
residues (mod 2a). But, among the odd integers less than 2t, exactly 2-3 (4 of 
the odd integers) are 1 (mod 8). Hence, an integer cannot be 1 (mod 8) and 
fail to be a quadratic residue. 

Without loss of generality, arrange the cosets so that 3 belongs to coset 1, 5 
belongs to coset 2, and 7 belongs to coset 3. Then the elements of coset 1 are 

3 (mod 8), of coset 2 are-- 5 (mod 8), and of coset 3 are 7 (mod 8). Since 

?(n) = 2a1 each coset must have 2a-1/4 elements and summing these 2a-1/4 

elements in the arithmetic progressions 8n + 1, 8n + 3, 8n + 5, and 8n + 7, respec- 
tively, and denoting the ith coset by ci, we have 

(3.1) Ea = 2?&-3(2`1 - 3) + i(2 a-2), i = 0, 1, 2, 3. 
aEci 
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Remark 2. If a > 4, although 3 and 5 are elements of order 2a-2 and, conse- 

quently, generators of cyclic subgroups of the reduced residues (mod 2') with index 

2, 7 has order less than 2a-2. Thus, if a > 4, it is not possible to form cosets with 

respect to any cyclic subgroup of the reduced residues (mod 2') for which the coset 

sums are all the same. We mention this lest the reader is tempted to create identical 

coset sums by combining coset 0 and coset 3. Although the combined sum in clearly 

equal to the combined sum in cosets I and 2, the combination of coset 0 and coset 
3 does not form a cyclic subgroup of the reduced residues (mod 2'?) if a > 4. 

THEOREM 3.3. If n = 2aopai 'P2 ... * *pr is the prime factorization of n, then 

there are 2 1 cosets which can be formed with respect to the subgroup of qua- 

dratic residues (mod n); , = 1 if ao = O or 1, ( = 2 if ao = 2, (3 = 3 if ao > 3. If 
the coset sums are all equal, each must have the value (n - o(n))12r 

Proof The first assertion is proved in [5, p. 167]. The second follows immedi- 

ately from the observation that the sum of the reduced residues (mod n) is 

(n * $(n))/2 since there are ?(n) such integers, and each such integer a < n/2 can be 

paired with n - a yielding 0(n)/2 pairs each summing to n (proved by Crelle in 1845). 

Remark 3. A proof that the coset sums cannot be identical if 4 1 n, which we 

are able to obtain only in special cases, combined with Theorem 3.3 would yield the 

result: A necessary and sufficient condition that the coset sums be identical is that 

the integers in each coset sum to (n * 0(n))/2r+l. For each n not divisible by 4, and 

not containing a prime factor 3 (mod 4), we prove this result in the next theorem. 

We also note that our computer data indicates that for all n, the coset sums are 

identical if and only if the sum of the quadratic residues (mod n) is (n * 0(n))/2r+l, 
a slightly stronger assertion. 

THEOREM 3.4. If n = 2a0pa'1p22 P * Pr with pi 1 (mod 4) Vi, 1 S i S r, 

and if ao = 0 or 1, then the sum in each coset is (n * q0(n))12r+l. 
Proof By Theorem 3.3 there are 2r cosets and, consequently, 4(n)/2r elements 

in each coset. But pi 1 (mod 4) clearly X 4 1 4(pai) for each i, 1 < i S r. Conse- 

quently, 4r I ?(n), and we have easily that 0(n)/2r is even. Moreover, - 1 is a qua- 

dratic residue of n since - 1 is a quadratic residue of each pi and of 2a? when ao0 = 1. 
Thus, for each coset, say c1, a E c*, if and only if n - a E ci. Since 0(n)12r is even, 

a and n - a are distinct, yielding 0(n)12r+ 1 pairs in each coset each summing to n 

and, thus, the sum in each coset must be (n * 0(n))/2r+l. 

In contrast to Theorem 3.4 we have the following theorem. 
THEOREM 3.5. If n = pa1p22 * p' r with pi 3 (mod 4) Vi, 1 S i < r, 

then the coset sums are not identical. 
Proof If pi 3 (mod 4), then 2 1 4(pi) but 4X O(p'i) for each i. Thus, 

2rI 4(n) but 2r+ 1i 4(n) which * (n * 4(n))12r+ Iis not an integer; and the result 

follows from the second part of Theorem 3.3 since (3 = 1. 
Remark 4. As indicated in the introduction the problem of deciding when the 

coset sums are identical and when they are not is far more interesting and difficult 

than is suggested by the relatively trivial Theorems 3.4 and 3.5. In particular, n may 

have a prime factor 3 (mod 4); and yet all coset sums may be identical, contrasting 
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the situation for prime modulus. Indeed, if n is even, all odd prime factors of n can be 

3 (mod 4) and all coset sums be identical, e.g. n = 42 = 2 - 3 - 7. However, in the 

following two theorems we resolve the generalized Jacobi conjecture for integers which 
admit a primitive root by showing that for composite integers n = 2pa, p odd, the sum 

of the quadratic nonresidues (mod n) exceeds the sum of the quadratic residues (mod 

n) if and only if p 3 (mod 8). 
THEOREM 3.6. If n = 2pa, a > 1, p 3 (mod 8), then the sum of the qua- 

dratic nonresidues (mod n) exceeds the sum of the quadratic residues (mod n). 

Proofi Let q = the number of quadratic nonresidues of pa in the interval 

(pa/2, pa) minus the number of quadratic nonresidues of pa in the interval (0, pa/2). 
Since 2 is a quadratic nonresidue of pa, q = the number of odd quadratic residues of 

pa minus the number of odd quadratic nonresidues as is readily seen by multiplying 

the integers in the interval (pa/2, pa) by 2 and reducing modulo the odd integer pa. 

Since - 1 is a quadratic nonresidue of pa, q = the number of even quadratic residues 

of pa minus the number of even quadratic nonresidues. 
Now each odd quadratic residue (or nonresidue) of p' is a quadratic residue (or 

nonresidue) of 2pa whereas t is an even quadratic residue (or nonresidue) of pa if and 

only if t + pa is a quadratic residue (or nonresidue) of 2pa. Because of Theorem 3.1 

we must have q > 0 and the result follows at once. Indeed, if the sum of the qua- 
dratic nonresidues (mod pa) minus the sum of the quadratic residues (mod pa) is s, 

then the sum of the quadratic nonresidues (mod 2pa) minus the sum of the quadratic 

residues (mod 2pa) is exactly s + qp'. 
Remark 5. For the primes 3 (mod 4) for which 2 is a quadratic nonresidue, 

the difference between the coset sums for n = 2pa is rlpa greater than the difference 

for n = pa, a significant magnification. Clearly, the question of whether or not 2 is 
a quadratic residue of p is central to the problem as the next theorem indicates. This 

causes us to wonder whether the quadratic residuacity of 3 has a bearing on our con- 

jecture that the coset sums are not identical for any n = 2 - 3- p if p-23 (mod 24), 

although they are identical (for n < 1000) if p 7 (mod 24). A natural extension of 

Theorem 3.6 which we are unable to prove is that if n = 2pl1 * * Prr where Pi- 
3 (mod 8) Vi, 1 < i < r, the coset sums cannot be identical. 

THEOREM 3.7. If n = 2pa, oa > 1, p an odd prime P 3 (mod 8), the sum of 
the quadratic residues (mod n) and the sum of the quadratic nonresidues (mod n) 

is exactly (n - 0(n))/4. 
Proof Because of Theorems 3.3 and 3.4 it suffices to show that the coset sums 

are equal when p 7 (mod 8). But letting q be the difference between the number of 

quadratic nonresidues and the number of quadratic residues in the interval (p/2, p), 

whether positive or negative, it is well known [1, p. 301] that for all p-7 (mod 8), 
the difference between the sum of the quadratic nonresidues (mod p) and the qua- 
dratic residues (mod p) is qp. Moreover, the difference is qpa if p 7 (mod 8) and 

a > 1 since a is a quadratic residue (mod pa) only if it is a quadratic residue of p, 

and summing over the intervals (0, p), (p, 2p), . . ., (pa - p, pa) the difference qp 
occurs exactly pa-l times. But 2 is a quadratic residue of p, and so by reasoning 



656 RICHARD H. HUDSON 

analogous to the proof of Theorem 3.6, the number of even quadratic nonresidues 

(mod pa) minus the number of even quadratic residues (mod pa), is -7. This com- 

pletes the proof as each even quadratic residue of pa, say r, contribute r + pa to the 

sum in c0 for n = 2pa and each even quadratic nonresidue, say n, contributes n + pa 

to the sum in cl, exactly cancelling the difference between the coset sums for n = pa 

Remark 6. We have separated the proofs of Theorems 3.6 and 3.7 for the funda- 

mental reason that in the proof of Theorem 3.7 we do not need to use that a > 0 and, 

consequently, the proof is completely elementary. We note that the coset sums cannot 

all be the same if n = 2Pi ?p1 PE 3 (mod 4), for any ao # 1 as a relatively immed- 

iate consequence of Theorems 3.3 and 3.5. Indeed, each coset contains q(n)/2r+O 
odd integers if ao = 0, but 0(n)12r+fl is odd so that the sum in each coset must be 

odd; however, (n - 0(n))I2r+I is even and, hence, the coset sums cannot be identical. 

Thus, Theorem 3.7 can be phrased: for n = 2ao ap -3 (mod 4), the coset sums are 

all identical if and only if ao = 1 and P1 7 (mod 8). 
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