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Optimal L Estimates for the Finite Element 
Method on Irregular Meshes* 

By Ridgway Scott* 

Abstract. Uniform estimates for the error in the finite element method are derived for 
a model problem on a general triangular mesh in two dimensions. These are optimal if 

the degree of the piecewise polynomials is greater than one. Similar estimates of the 
error are also derived in LP. As an intermediate step, an L1 estimate of the gradient of 
the error in the finite element approximation of the Green's function is proved that is 
optimal for all degrees. 

The finite element method may be briefly described as the Ritz method using a 
piecewise polynomial trial space: the solution to a differential problem is approximated 
by minimizing an integral involving the squares of derivatives of the difference between 
the true solution and piecewise polynomial trial solutions. Thus, there naturally follow 
estimates for the error in the mean square sense (cf. [1], [23]). It is widely believed 
that estimates of a similar form should hold in a uniform sense; but until recently, the 
best general estimates predicted an asymptotically less accurate uniform approximation 
[15], [8], [12]. It should be noted that optimal uniform estimates were known in 
one dimension [27], [9], [26] or, in higher dimensions, on a regular mesh [3] -[6], 
[10], [22]; but those techniques do not generalize to an irregular mesh in higher di- 
mensions. The purpose of this paper is to present a technique for deriving uniform 
estimates on a general mesh that are optimal in a wide range of cases. We consider a 
model problem in two dimensions in order to minimize technicalities not relevant to 
uniform estimates per se. Results similar to ours have been obtained independently by 
Natterer [14] and Nitsche [16]. 

We now describe our results and the method of proof in some detail. Consider 
the Neumann problem 

-Au+u=f inQ2 and 

anu=O on 32, 

where Q2 is a convex domain in R2 with smooth boundary 8Q, and let u* be the finite 
element approximation to u from the space of Co piecewise polynomials of degree 
k - 1 on a quasi-uniform mesh of triangles of size h. Theorem 1 shows that as h tends 
to zero, the L' norm of the error u - u* tends to zero at the optimal rate hk if k > 3 
-(piecewise quadratics and higher) and at least as fast as h2 llog h I if k = 2 (the piece- 
wise linear case) provided that u has bounded weak derivatives of order k. In Section 
6, we derive similar estimates for u - u*, and the derivatives of u - uO. in LP. 1 S p S< no. 
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The proof of the above results is by duality: we derive an L 1 estimate for the gra- 
dient of the error g - g* in the finite element approximation of the Green's function g 
defined by 

A-g+g=5 inQ2 and 
a3g= O on aQ, 

where 6 is the Dirac distribution with singularity at an arbitrary point in Q. In particu- 
lar, Theorem 2 shows that the gradient of g - g* has an Ll norm of order h if k > 3 
and h I log h I if k = 2. This rate of approximation to g is shown to be optimal in the 
Remark in Section 1. Thus, the duality proof is apparently stuck with the I log h I in 
the piecewise linear case. The proof of Theorem 2 contains some new results about 
g - g* of independent interest, in particular, Proposition 1 and Lemma 6, as well as the 
L1 estimate for the gradient of g - g* itself. 

The idea of the proof of Theorem 2 was inspired by the interior estimates of 
Nitsche and Schatz [17] . First, the integral of the gradient of g - g* in a disc of radius 
0(h) around the singularity of g is shown to be 0(h) for all k. Then, in the exterior 
of this disc, the ideas of [17] are used (with some refinements) to reduce the estimate 
of the gradient of g - g* to a global estimate of g - g* in a negative Sobolev norm, to 
which [211 applies. (Schatz and Wahlbin [20] have succeeded in modifying our proof 
to obtain an estimate of g - g* more directly from interior estimates.) The reader will 
notice several similarities in some steps of the proof of Theorem 2 to the technique of 
Natterer [14] and Nitsche [16], although the main thrust of their proof is different. 
Instead of studying the dual problem g - g*, they derive general estimates for u - u* 
in weighted mean square norms. In our proof, weighted norms appear implicitly in the 
special context of g - g*. 

We collect here as a reference some standard notation used throughout the paper. 
For details, see the book by Stein [24]. For a real valued function u defined on a do- 
main Q2 C R2, we use the shorthand notation 

fu fu(x) dcx, 

where dx denotes Lebesgue measure. As usual, if p is any real number in the range 
1 ?p <?00 

LUIP(Q2) (I ") 

with the usual modification when p = oo. Given a multi-index CT = (cal a2), let D'u 
denote the weak derivative of u, that is, 

Q(DaU)lP= (- 1)JU (Q j1ax (a)X2 

for all smooth functions ep having compact support in the interior of Q2, where I CI = 

?f1 + a2. Define a seminorm by 

lul k \IaIkDuIP 
/ 

WaP(na) I om=k L P(Q) 

and a norm by 
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k 

Ilull k = u uj 
WP(92) S=0 p P(Q) 

where k is a nonnegative integer and p is any number that satisfies 1 S p < oo. The 
Banach space We2() becomes a Hilbert space when p = 2, and this is denoted by 
Hk(E2). Its dual space (with the dual norm) is denoted by H-k(E2). 

1. Presentation of Results. Let Q2 C R2 be a bounded convex** domain with 
smooth boundary, and let u solve 

-Au + u = f in Q, 
(1.1)~~~~~ au = O on MQ. 

The smoothness of the data f will be specified later implicitly by assumptions on u. 
Define 

(1.2) a(v, w) = L Vv VW + VW. 

We will i-ew this bilinear form as being defined on Wl(i) x Wl (Q). Let T be a tri- 
angulation of Q2 having straight interior edges. We associate two parameters with T, 
namely, for each "triangle" r E T, define p(r) (resp. u(r)) to be the diameter of the 
smallest disc containing r (resp. largest disc contained in r), and let 

(1.3) h = max p(r), -y = min 
,r ET CTeTh 

(A family of triangulations {Tn } is called quasi-uniform if y > yo > 0 for all Tn) 
Given T as above, define Sk = Sk(T) to be the space of continuous piecewise polyno- 
mials of degree k - 1, i. e., the subspace of C?(Q) consisting of functions whose re- 
striction to a triangle r E T is a polynomial of degree < k - 1. Define u* E Sk by 

(1.4) a(u*, v) = (f, v) for all v E Sk. 

The following theorem is the main result of this paper. 
THEOREM 1. Let h and y be the parameters associated with T in (1.3). Then 

h2Iloghl if k = 2 
Su 4,II*l k IUI k suap |u u | < lAk if k > 3 i W(?) 

where c depends only on Q, y, and k. 
Proof: Let zo E Q, and consider the Green's function g with singularity at zo: 

(1.5) -Ag + g = zo in Q, 

ang= O on a2. 

Thus, we have 

(1.6) (u - u*)(zo) = a(g, u - u*). 

Let us introduce the finite element approximation g* E Sk to g: 

(1.7) a(g*, v) = a(g, v) = v(zo) for all v ESk. 

Integrating by parts yields the following: 

a(v,u -u*) = O for all v in Sk. 

* * The restriction of convexity is not essential. 
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Thus, we have 

(u - u*)(zo) = a(g, u - u*) = a(g - g*, u - u*) 
(1.8) - 4 - *,-s - X~~9). -<_! I - g*! wr(n !IV,- vj 'l! w (a),- 

for any v E Sk. It is well known (cf. [23] or see (1.11) below) that there is a v in Sk 
such that 

(1.9) Ilu-vll 1 c c('y, k)hkl1 IUI wk ( )- 

Thus, Theorem 1 will be completed if we prove the following: 
THEOREM 2. Let g and g* satisfy (1.5) and (1.7), respectively, for zo E Q2. 

Then 

(hlloghl ifk=2 and 

1 h if k>3( 

where c = c(Q2, y, k) is independent of zo. 
Remark. It is at this point that we can explain why the factor of log h I appears 

when k = 2. Our proof relies on approximating the singular function g, which just 
fails to be in W21(i2). However, it is in the interpolation space [W1(Q), W1(Q)] 1 

(see [19]). With piecewise quadratics or better, g may thus be approximated to order 
h, although this does not say that g* does. (Our proof that g* does has the flavor of 
interpolation in it, but we do not simply reduce to an approximation problem.) How- 
ever, piecewise linear approximation to g is completely different, as was shown to us 
by Claes Johnson. The singularity of g is primarily logarithmic, so it suffices to con- 
sider g(z) log Iz - zo I with zo in the interior of Q2. Johnson showed that, on a 
quasi-uniform mesh, 

(1.10) inf Ig-vlwl(n) >c(2,z 0,y)hIloghI forh ?h0(E2,z0,y). 
ye-S2 

We reproduce his proof here. For r E T, define rmin(r) = infZT I z - zo I and 

rmax(r) = supzcT Iz - zo 1- Let T E T be such that rmin(T) >h. For such T (see 
(5.7)), rmax(T) < 2rmin(T). Let X* E R2 minimize fl I Vg - XI over X E R2. Then 

Xi* = g i(zi) for some Zi E , for otherwise we could increase or decrease Xi* to get a 
better approximation. We thus have 

g1i (Z) -i = (Z - zi) * VgPi(zi) + Ri(Z). 

Using the fact that I Vg i(zi) I Iz, - zo i-2 and Taylor's theorem to bound Ri, we find 

2 r C2 r3 C 2 2 3 
rmax rmin min min 

where cl depends on y. Let Aj= U {r E T: jh < rmin(r) < ( + 1)h}, j 1, 2. 
Then 

inf IA Vg -Vv I >h E (8/ --3) 

Let N be the greatest integer less than dist(zo, i2e)/h. If j ? N, then there are at least 
11/ triangles T C Ai, so we have 
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vinf2 A Vg - Vv I > he _ 
UES2 f1v Vu 

Summing for j = 1, 2, ... , N, we find 

inS IVg - Vv > h(c5log N - C6)c7h Ilog h I - c8h, 

and this proves (1.10). Note that if we allow mesh refinement near zo, then a better 
approximation to g is obtained, so quasi-uniformity is necessary for (1.10) to be valid. 

Before beginning the proof of Theorem 2, we collect some well-known facts that 
will be used throughout the proof. We begin with the concept of the interpolate of a 
continuous function. Let l' be a fixed triangle, and choose the following nodes for T: 

(i) the vertices of T, 
(ii) the k - 2 points on each edge of T that divide the edge into k - 1 equal 

segments, and 
(iii) ?(k - 3) (k - 2) distinct points in the interior of T, chosen so that if a poly- 

nomial of degree k - 4 vanishes at all of them, it vanishes identically. 
Here, (iii) applies only to k > 4 and (ii) applies only to k > 3. Now define nodes 

for each triangle r in T by an affine identification of r and T. (When X is a boundary 
triangle, we identify the two straight sides of r with two of the sides of T.) Define the 
interpolate ui E Sk of a continuous function u by the requirement that u - ui vanish 
at all the nodes. The following well-known [23] estimate establishes (1.9): 

I 

(1 .1 1) h2P lIu 
- 

ullJ,O(2 
+ hpll 

- ulll (n) (y ws(n) 

where 1 S p < o, 2 < s 6 k. In addition to this estimate, we will need several esti- 
mates used in deriving (1.11), so we recall now its proof. It suffices to prove a local 
version, namely, for T E T, 

(1.12) h21pIIu -UIIL( ) + hillu -UIIwj( c('y, k)hs Iulws(. L 
()j=0 Pi()Ws() 

This is proved as follows. Because the nodal basis for Sk is uniform [23, Section 3.11, 
we have 

(1.13) IIUhI|w( -) c('y, k)h 2/PjjIjUIILjj = 0,1, ... ,k- 1. 

By the Bramble-Hilbert lemma, there exists a polynomial P of degree < k - 1 such that 
1 

(1.14) h2/PIIU PIIL (T) + E h-Iju PI W (,) <chs lulws() 

The proof of this in [2] requires that c depend on -, but in [11], a proof is given 
showing that for convex r, c depends only on Py and k. We may write u - ui = 
u - P - (u - P)I because P = PI. Applying the triangle inequality plus (1.13) and 

(1.14) yields (1.12). 
Finally, we need an inverse relation for Sk. Let X (resp. w0) be the disc of 

diameter 2 (resp. y) centered at the origin. Denote by P,n the space of polynomials of 
degree n in two variables. Then because of the equivalence of norms on a finite dimen- 
sional vector space, we have 
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IIPIIWs(A) < c(L, k)IIPIILP( for all P E Pk- I 

(The constant c may be chosen independent of p and q in view of H6lder's inequality; 
it may also be assumed to be nonincreasing in wy.) Scaling the variables by a factor h, 
we find 

IIPI W(hw) <c( y, k)h21q2ps llpllLP(hwo) for allPE Pk-1' 

where hw = {x E R2: h- 1x E co}, etc. Now each r E T contains a disc of diameter 
'yh (say with center z) and is contained in a disc of diameter 2h with center z. Thus 
(after shiftingthe origin to z) we have 

(1.15) IIvIIws(r) < c(,y, k)h2q 2/ps IVII,LP() for v E Sk 

becausevlrEPk -1 

2. Error Estimate in L2. We begin with the following proposition which extends 
the results of [21] up to the boundary and has a simplified proof. 

PROPOSITION 1. ForO < s < k-2, |Ig-g*IIH-S() S chl +s, where c = 

c(Q2, k, y) is independent of z0. 
Proof Let r be a triangle in T containing zo, and let Q be the polynomial of 

degree k - 1 satisfying f7 QP = P(zo) for all polynomials P of degree k - 1. Because 

'r contains a disc of radius 'yh, we see that [211 

(2.1) sup IQ I c(y, k)h2. 
7. 

Define 6 E L2(Q2) by 

~ Q in , 

0 inQ-r. 

Then,(6 -6,v)=OforallvESk (6 =6,). Letg solve 

-Ag+g=5 inQ2, 

ang = on a2. 
Since g* may be viewed as the finite element approximation to g, we have the well- 

known estimate (cf. [1, Chapter 6]) 

g- * 
IIH*s(n) < c(y, Q, k)h + II2I2(n) 

From elliptic regularity theory, we have 

I Ig I IH2 (Q) <S M() 116 IL 2 (Q) < c (Q, y, k) h 
Therefore, 

(2.2) - 
gH-S() < c(Q2, y, k)h +S. 

To estimate g - g, we let Op E Hs(2) and solve 

- A ? + = ep in Q, 

an( = ? on M. 

Integrating by parts (twice), we get 
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Since 6 - 6 is orthogonal to Sk, we have 

(2.3) (g-g,ip) 

In view of (1.11) and (2.1), (2.3) is estimated by 

l(g -g 
' 

p) I c (y, k) h' +'I 1,II W2+s(n 

6 c(Q2, y, k)h' +s jj1pj1 Ws (Q), 

Since (p was arbitrary, this means that 

lIg - g IIH_ S() < c(Q2, y, k)h1 +s. 

Combined with (2.2), this completes the proposition. 

3. Expansion of g to Required Accuracy. The purpose of this section is to show 
that the only singularities of g that we must contend with are logarithmic. While this 
is obvious for zo in the interior of Q2, it must be demonstrated to hold uniformly as 

zo >2. Let K(z) denote the curvature of M2 at the point z E M2, and let 

d = ?2(SUPz,aQ K(Z))-1. For each zo E Q2 such that dist(zo, aQ) < d, there is a 
unique z1 E M2 such that 1z1 - zo I = dist(zo, M2). For such zo, let us define 

(3.1) Z = Z + (Z - z0)/(1 - K(Z1) z - zo l). 

LEMMA 1. Let zo E Q2 satisfy dist(zo, aQ) < d and define 

G(z) = log jz - z + log iz - z, 

where z0 is given by (3.1). Then g = (1/2iT)G + W, where W satisfies 11 WIIH2(Q) < 

c(Q2) with c(Q2) independent of zo. 
We give the proof of Lemma 1 in the Appendix as it is technical and unrelated 

to the rest of the paper. To complement the expansion given in Lemma 1, define 

G(z) = loglz - zo I if dist(zo, aQ) > d. 

Then, for all zo we have g = (1/2n7)G + W, where 11 WIIH2(n) < c(Q2), with c(Q2) inde- 

pendent of zo E Q2. The mapping u > u* defined by (1.1) and (1.4) is linear, so we 

may write 

(3.2) g - g (G - G*) + (W - W*). 

It is well known (cf. [1, Chapter 6]) that for - 1 < s < k - 2, 

(3.3) 11 W - W*IIHsS(n) < c(Q2, y, k)hs+2 11 WIIH2(n) < c(Q2, y, k)hs+2. 

Applying this with s = - 1 shows that, to complete the proof of Theorem 2, it suf- 
fices to verify that 

G h lloghI if k= 2 and 
(3.4) 11IG - G*11 WI (Q) < c(Q2, y, k) ifk 3 

The remainder of the paper is devoted to proving (3.4), and makes use of the simpli- 
fied form of G. As a first step, we apply (3.3) and Proposition 1 to the decomposition 
(3.2) to obtain the following: 

PROPOSITION 2. For 0 < s < k - 2, we have 

* is the reflection of zo with respect to the osculating circle to a 2 at z 1 
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JIG - G*IIH.S(n) < c(2, wy, k)hs+ 1, 

where the constant does not depend on zo. 

4. Estimates Near zo. We first prove a result that is analogous to the fact that 
the logarithm has bounded mean oscillation [13]. 

LEMMA 2. Let z1 be any point in R2, and let 0 < p < o0. Then there is a con- 
stant G depending on z1 and p such that 

z z (G - G)2 < 9irp2. 

Proof Consider the case G = log Iz - j. We first observe that 

(4.1) rf(Z-Z0I?R} (log lz zo - [(log R) - ?2])2 = 4R2. 

There are two cases to consider: 

(1) Iz, - zo I < 2p. Apply (4.1) with R = 3p, using G = (log 3p) - ?2. 

(2) iz1 -zoI>2p. Then IVGI< l/pfor Iz-z 11p,andifwetakeG= 
G(z ),we have 

t{1 1< }(G - )2 < 
I-T 

p2 

by Taylor's theorem. 

Thus, we have shown that we can find G such that 

(G - G)2 < 7p2. 

When G = log Iz - zo I + log Iz - zO 1, we apply this twice and use the triangle inequal- 

ity to complete the lemma. 

LEMMA 3. Let O < p < c1h be given. Then 

nfizz16;<P} Iz - Z0i'fIV(G - G*)IP <c(Q, y, k, 3, p, cO)pph2P 

for 1 < p < , + 2. 
Proof. We have i VGI < r- r , where r = Iz - zo l and r = Iz - zo 0. 

Since r > r in Q2, we have 

IQn{rSp} rg I VG IP < T2P+ 1JPr-P+ 1 dr < c(,p)p-p+2. 

To estimate VG*, we pick r E T such that r n {r < p} + Z. Then choose G by 

Lemma 2 so that 

(4.2) f (G- G)2 - Th 

Now we have 

jrIv-jrI (G-G I ?(?h) 2 SUP I V(G* - G-)IP. (4.3) r VG* IP r (G* - G)wP (P + h)h 

Aplylling (I1.15) with v =G* G, wp have 
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sup I V(G* - G) I 6 c(y, k)h-2 (G* - G)2)1/2 

Applying the triangle inequality, (4.2), and Proposition 2, we get 

sup I V(G* - G)I < c(2, y, k)h1. 

Substituting this into (4.3) completes the lemma. 

5. Estimates Away From zo. Lemma 3 shows, in particular, that in a disc of 
radius 0(h) around z0, the Wl norm of the error G - G* is 0(h), regardless of k. We 
now concentrate on estimating the error outside such a disc (this is the heart of the 
proof) using the ideas of interior estimates [17] (here they should be called exterior 
estimates). Let us write r = Iz - zo 1, and for "cut-off function" we choose ra, where 
ox = 2 when k = 2 and x = 3 when k > 3. Let us use the expression E for the error 
G- G*- 

(5.1) E-G - G*. 

Given any constant cl > 0, we have 

f{r > C 1 } n~ Q {>I VEI f } nn Q ra/2ra/2 IVEI 

(5.2) (f{r > c1h}f rO)n l r > c1h}fn 5 rl VE12 ) 

<~~~ l 
C)n 

log h 1/2 if k 2 
rc2 E1 / 

h-Y2 if k 3 rr IV12 
We now expand the remaining integral, essentially commuting ra with V: 

(5.3) frc I VE 12 = 
f 

VE V(rE) -f E(VE * Vra) 

6 VE V(raE) + ?t (f rc-2E2 )/2( rc VE 12 )1/2 

where we have used the fact that I Vr' I = oar- 1 Therefore, 

(5.4) raI VE 12 2f VE * V(raE) + ?t2 fra-2E2. 

LEMMA 4. Suppose that 0 < e 6 1. Then 

f ra2E2 e r' IVEI2 + c(Q2, y, k)elh e 

Proof. When k = 2, this follows from Proposition 2, so assume that k > 3 (and 
thus ax = 3). We have (Proposition 2) 

(rE, E) 6 II rEIIH1 H IIEIIH_ 1 (Q) 6 c(Q2, y, k)h2 IlrEIIH1(Q) 

< c(Q2, y, k)h3e-1 + heIlrEII,1 (2) 
Expanding, we have 

IIrEII2 1 6 (rf 2 + 3)E2 + ft 2r2 IVEI2 

< c(Q2, y, k)h2 + 2r2 IVEI2. 
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We have r2 < h1r3 on {r > h}, so Lemma 3 implies that 

fr2 IVE12 =({ r } +f{ r>h} n&:r2IVE12 

< c(, y, k)h2 + h-f r3 IVE 12. 

These estimates combine to prove the lemma in view of the fact that e < e- 
Applying Lemma 4 with e = 1/18 to (5.4), we find that 

frIlVEI2 6 4f VE * V(rE) + c(Q2, y, k)hc. 

What remains to be shown, to complete Theorem 2, is that 

(5.5) VE * V(raE) < - ra I VEI2 + c(2, y, k)hc Ilog h 13-a* 

First, let us define an interpolate of G. Define 

Q1 = U{r E T: dist(zo, r) > h}. 

Then {z E Q: Iz - zo I > 2h} C Q1, and G is a smooth function on Q2. Define G, 
on 21 by requiring G, to be the restriction to Q1 of a function in Sk that equals G at 
all nodes contained in Q2. 

LEMMA 5. With G, defined as above, we have 

fQ r-2(G - GI)2 < c(Q2, Y, k)ha 

and 

r- I V(ra(G - G,)) 12 c(Q2, y, k)ha llog h 13 -. 

Proof. Let rET be contained in Q1. Then by (1.12), 

(5.6) JIG - GIIIWs() 6 c(, k)hksIGII Wk() 

for s = 0, 1. Let rmax = sup7r and rmin = infrr. Then II GII Wk ( ) 6 c(k)(rminfk. 

Since rmax - rmin < h and rmin > h, we have 

(5.7) rmax/rmin < 2. 

Thus, we conclude that 

rg(G - GI)2 + h2f rgI V(G - G,) 12 < c(y, k)( r2k) h2k. 

Summing over all r C Q2, we prove the lemma, since 

( Ilog h i if , - 2k + 2 = 0, 
rl r.-2 

62k(2/(- hg2k+2( ? + 2k - 2) if , - 2k + 2 < 0, 

and 

r-aIJVr0(G - GI)12 < 2a2ro,-2(G - GI)2 + 2ra'IV(G - GI)12. 

LEMMA 6. IIGI-G* IIL (1) < c(Q, y k) 
Proof. By (1.15), Proposition 2, and Lemma 5, 
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JI, -G*11 L0(S2 1) < c(-, k)h- 1 
11GI- G*11 L2(n ) 

<c('y, k)h1(IIG - 
GIIIL2(n 1) + JIG - G*l L2(Q1)) 

< c(y, k)h-Fa12 11r /2 -l(G - GI)1IIL 2 (Q ) + c(Q2, -y, k) 

< c(Q2, y, k)- 

LEMMA 7. Let ep E Sk* Then, if v = (rasp)i, we have 

f r I v(rpt - v) 12 < c(, k) f ra-2p2. 

Proof. Let rE T, r C 21. Thenby(1.12), 

(5.8) Irp VI W1 (T) < c(y, k)h k1Iralwk () 
(5.8) 0k 

0 

c c(y, k) h 
k1 

IrWl T lIW k - (,rk 

because D%plr) = 0 for Io31 = k. In view of (5.7) and the fact that r > h on Q 

Ira I < c(j) inf ta-i <c(j)(inf ra- 1) h1-i. 

Combining (1.15) with (5.7), one obtains 

klfWk_j 
- < c (y, k)hi k- 1 11 <I112( 

00-1(,( 7. )LL T <c (y, k)(inf rl1a/2) hWk1liirPl210 2(T 

Applying these estimates in (5.8) yields 

WI~ 1 (T) <C (y, k) ( inf r I ) h-' 11 ra/2 -1 ,pL(,) 

Now H6lder's inequality implies that 

rT r I V(r 2 - v) 12 < c(, k) ra-2 p2 

Summing this over r C S21 completes the proof. 
We return now to the proof of (5.5). Let v E Sk* Since a(E, v) = 0, Lemmas 

3 and 4 yield 

|VE V(raEI) = fVE E V(r'uE - v) - fEV 

< fQ VE * v(raE - v) + c(Q2, 'y, k)(hl + h Iv I wl (Qc) 

(5.9) + f| r-2E2 + r r2-v2 

< VE * V(rE - v) + c(Q2, y, k) (h' + h I v iwi (n C) 

+ 32 |Qfra I VE 12 + c(Q, y, k)h + |Qr2 2v . 

Let v e Sk be any function that interpolates ra(GI - G*) in Ql. The triangle inequal- 
ity plus Lemmas 4, 5, and 7 give 
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|f,VE V(raE - v) < I2 tna IVE12 + 8|s r-ol IV(taE- V) 12 

< 
I J a I VE12 + 16 

f r I V(ra(G - G)) 12 
?2 1 
+ 16 JQ ` I V (rc(GI - G*) - v) 12 

(5.10) ~ < 
I 

r' I VEI2 + c(&2, y, k)h' log h 13-a 

+ c (y, k) I ra-2 (GI - G*)2 

< 
I 

jQro'IVEI2 + c(Q2, y, k)h I loghi3-a 

+ c(y, k)(fQ ro,2(G - GI)2 +fQ ra 2(G - G*)2) 

< 6 ra I VEI2 + c(Q2, y, k)h? log h i3c- . 

Applying (5.10) to (5.9), one obtains 

VE * V(r?'E) <A 3 r?' I VE12 + c(Q2, y, k)hoa llog h 13a- 
+ f r2-v2 + c(Q2, y, k)h IvIwI (Qc) 

where v E Sk is any function that interpolates ra(GI - G*) in Q1 . For definiteness, 
we take v to be zero at the nodes in the interior of Q2. Thus all that remains is to 
bound v suitably. From (1.13), (5.7), and (1.15), we find 

hlvlw1 +() h 2 llra/2 v11 2 () c(,y, k) sup Irc(GI G*)I 00(n C) L~(S'j a~1as 
and 

11rl-ao/2 vIIL2(, ) S c(y, k)llr /2 a+ 1(GI - G*) 11 2() 
The first line is estimated by Lemma 6 and the second is estimated as in (5.10) with 
the triangle inequality plus Lemmas 4 and 5, proving (5.5). This completes the proof 
that 

k hllogh Iif k = 2, 

IG - G 1(Q) h c(Q, k) if k > 3. 

From Proposition 2, we have IIG - G*IIL1(Q) < c(Q, y, k)h, so the proof of Theorem 
2 is complete. 

6. Further Results. We filrst extend Theorem 1 to give estimates for the error 
u - u* in LP. It is notable that they do not immediately follow by interpolating be- 
tween the known L2 estimates and Theorem 1. This would require knowing what are 
the interpolation spaces between Wk and Wk for p = 2 and q = oo. However, this is 

p q 
known only when 1 <p, q <oo [7], [19]. 

THEOREM- 3-. Let u andau* be as in Theorem 1. For p- a-number-such- that i < 

p < oo and s an integer such that 1 S s S k, 
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Ilu - U*IILP(2) < c(Q, Py, k)hS llog h 10 lu IWs w), 

where . = O if k > 3 and3 = 1 - 2/p I if k = 2. 
Proof. Following the proof of Theorem 1, let y E Q, let gy be the Green's func- 

tion with singularity y, and let gy be its projection onto Sk. Define K(x, y) = gy(x) - 

gy(x). Then K is a symmetric function and 

(U - U*)(X) = f K(x, y)u(y) + VK(x, y). Vu (y) dy. 

The kernel (K, VK) defines a mapping K for bounded functions U: Q R3 by 

KU(x) = K(x, y) U1 (y) + VK(x, y) - (U2, U3) (y) dy 

By Theorem 2 and Theorem 4.1.2 of [18], K maps LP(Q)3 -LP(Q) x LP(Q) x LP(Q) 

to LP(2) and 

('hlloghl if k = 2 
11 KUIILP() < c h 11 IILP(U)3, h if k >3 

where c is the constant in Theorem 2. By (1.7), K(v, Vv) 0 for v E Sk, so 

(hiloghl if k = 2) 
IIu - U1 < c h inf 11(u, Vu) - (v, Vv)IILp(5)3 

h if k v>S3 

If s > 2, we choose v = ui to get 

(6.1) Ilu - U*11 - < c 
hs llog h I if k = 2 

)u (hs if k > 3 p 

If s = 1, the choice v = C yields the same estimate, where C is the constant such that [2] 
IIU - CIIW1Q < c(Q) lu j1Q 

This proves the theorem if k > 3 or if k = 2 and p = 1 or oo. 

Now suppose that k = 2. It is known [1] that 

(6.2) llu-U*tL2(U) S c(Q, y)hIluIIH1(u). 

As will be shown subsequently, this implies that for all U E L2(Q)3, 

(6.3) IIKUIIL 2() Sc(Q, y)h 1 UllL2(Ei)3. 

Assuming this for the moment, the Riesz convexity theorem [25] implies that for all 
p, < p < oo, 

I|KUIILp(1) < c(, ^y)h llog h it II UILP(U)3. 

The rest of the proof is as before. 
Now we prove (6.3). The idea is standard: we simply project a general U onto a 

function of the form (u, Vu) and apply (6.2). So let U E L2(Q) x H' (2) x H' (2) 
be given, and let u solve the boundary value problem 

-Au+u=Ul +V-(U2,U3) inQ, 

anu = n * (U2, U3) on an. 

Integrating by parts shows that KU = K(u, Vu) because the kernel of K has the special 
form (K, VK). SO (6.2) yields 
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11 KUII = 11 K(u, Vu)tI < ch 1I(u, Vu)II < ch 11 Ull, 

where the norm is the norm in L2(Q)3. This proves (6.3) for U E L2(Q2) x H'(2) x 
Hl(2), and the general case follows because this space is dense in L2(Q)3. 

Up to now, we have estimated only function values. However, as is well known, 
these estimates suffice to obtain optimal estimates of derivatives also. 

THEOREM 4. Suppose that u and u* are as in Theorem 1. Let s and t be integers 
with 1 < t < s < k and let p satisfy 1 p < oo. Then 

( E llu- u 11wt ( ) < c(Q2, y, k)hs-t llog h 10 lu IW., (Q2), 

where 1 = 0 ifk>3 and = 11 - 2/pI ifk = 2. (When p = oo, the term on the left 
is replaced by maxTrT I!u - U*IIWt (T)-) 

Proof. Write u - u* = (u - u1) + (u1 - u*) and apply the triangle inequality. 
For u - uj, we apply (1.1 1). For ui - u*, apply (1.15) to reduce to norms of function 
values, rewrite ui - u* = (u - u*) - (u - u1), and apply Theorem 3 and (1.11) respec- 
tively. 

Appendix. Proof of Lemma 1. Let us focus our attention on z1 rather than zo, 
i.e., let z1 E 32 and consider 

zo = Zi +tn(zl), Zo =Z (Z)n(z1) 

for t E ] 0, d], where n (zl) is the inward normal to MQ at zl. Let D be the disc of 
radius R = K(Z,)-1 with center at Z -zl + Rn (z1), let D be the domain obtained by 
deleting the line {z = z? + tn (z1) t E [R, 2R] }, and let r be 3D minus this line. 
Viewing the z's as complex numbers, the function 

N(z) = log Ilog(z - z^) - log(z0 - z)i + log j log(z - z) - log(z 0 - zI 

satisfies A(G - N) = O in D1 =R2 - {z = z1 + tn (z1): t > R} and anN = 0 on rpt 
To see this, write z = Ret + z' and view G and N as functions of ? for ? E S 

{t +i: < < + 2ir}, where 
' 

is chosen so that n (z1) = e . We have 

(A.l) G (z (G)) - N(z(?)) = log |R2 ie- 1 e? -e?O I } 

For any analytic function f, (f(z) - f(zo))/(z - zo) is also analytic, so G - N is of the 
form log I(p1, where ep is analytic and # 0 in S. Thus, G - N is smooth, and since both 
G and N are harmonic in D1 - {z0, z }, G - N must be harmonic in all of D1. (N is 
obviously harmonic as a function of ?, and since z = Ret + z' is analytic, N is harmonic 
as a function of z.) As a function of + = h ? it1, N is symmetric about the line {t = O}, 
hence N(O + i) = O. Thus, anN is zero on the image r of {=0 < <' + 2ir} 
via the conformal map z = Ret + z'. Let i = {Z E 2: Iz - z1 1 < 3d/2}. Then 

iINdn G II H2(e o cf(A) 

independent of zo (i. e., independent of t) in view of (A. 1). Now choose a smooth cut- 

tWhen ,c(z1) = 0, choose N G and let r be the tangent line to a2 at zl. 
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off function X such that X- 1 in Q-0 {IZ - Z1 I < 4d/3} and x 0 outside &21. We 
have 

w=g- G= (g-7XN +2 X(N-G)+y (X1-)G. 27r 27r2ir/2rr 

The last two terms are bounded irn H2(Q2) independently of t, so it remains to prove 
the same of w1 g - XN/2ir, which satisfies the equations 

- Awl + wi = 
I 

(NAX + VN- VX - Nx) in Q, 

anwl= - 
I 

(NanX + XanN) on aQ. 

The function NAx + VN- VX - NX is in L2(Q2), boundedly in t, and the function 

Na,,X is in Hl(M2), boundedly in t. Hence, it remains to show that 

(A.2) 11 xanNl H 1 (anQ) < c (Q) 

independently of t. (Elliptic regularity then implies that 11 w llH2() 6 c((Q), com- 
pleting the proof.) The reason (A.2) is valid is that anN = 0 on r, and r is a third or- 
der approximation to M? at z1. Let us define a mapping from M2 to F (near zl) by 
choosing r = r(s) so that 

z (s) -- z(s) + rn (z(s)) e F, 

where z(s) parametrizes Mi by arc length with z =z(O). The function z(s) is smooth 
for s near 0, and 

ds' dsi ( z)(?) = o i=0,11 2. 

Let v (s) be the normal vector to r at z7(s). Then v is smooth for s near 0, and 

ds' (v n n(0)= 0, i= 0, 1, 

where n (s) =n (z(s)). We have 

a NAz(s)) = n (s) * VN(z(s)) 

= n (s) [ l VN(z(s)) - VN(z(s))I + [n (s) - v (s)] VN(z (s)) 

because v (s) * VN(z (s)) 0_ . Viewing N as a function also of t, we have 

anN(z(s)) = (s, t), 
where 

p(s t)l C IS 13 ? Cs2 
1 (SI t)I < S2 + t2 

+ 
(S2 + t2)2 

and 
~p(s ) I ? C IS 13 + cIS13 + clsl 

las .O(S t)I (S2 + t2)312 +(S2 + t2) (S2 + t2)'12 

where we have made use of the observation that IDzoNI 6 c(s2 ? t2f1"o1I2. These 
terms are all bounded as t 0, so we actually have 11 anNII W ( < 6 c(Q) for some 

neighborhood X of z1 in aQ. Outside of any such neighborhood, anN is clearly 
bounded, so we are done. 
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