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Abstract. The use of lower order approximations in the neighborhood of boundaries 

coupled with higher order interior approximations is examined for the mixed initial 

boundary-value problem for hyperbolic partial differential equations. Uniform error 

can be maintained using smaller grid intervals with the lower order approximations 

near the boundaries. Stability results are presented for approximations to the initial 

boundary-value problem for the model equation ut + cux = 0 which are fourth order 

in space and second order in time in the interior and second order in both space and 

time near the boundaries. These results are generalized to a class of methods of this 
type for hyperbolic systems. Computational results are presented and comparisons 

are made with other methods. 

1. Introduction. It has been established that fourth order methods are much 
more efficient than those of first and second order for hyperbolic partial differential 
equations [5], [9], [11]. When such methods are used for the initial boundary-value 
problem, awkward situations arise in the neighborhood of the boundaries since the 
interior approximations cannot be used there in a straightforward manner. It is at- 
tractive to consider matching lower order approximations in the neighborhood of the 
boundaries to higher order interior approximations. However, it has been established 
by Gustafsson [6] that more than one order of accuracy cannot be dropped near the 
boundaries without sacrificing the rate of convergence over the entire region. Compu- 
tational examples [6] , [11] illustrate this fact. Consequently, a denser net must be 
used with the lower order approximation if the overall accuracy is to be maintained. 

There are many applications where this approach is quite natural for other 
reasons. For example, oceanographic problems often have boundaries and associated 
boundary layer phenomena which are quite complex compared to the solution in the 
interior. A very fine grid may be necessary to adequately represent these boundaries 
and lower order approximations may be appropriate in the boundary layer since the 
boundary influence is often of a forced rather than a transient nature (see [5], [9] 
for details of the error as a function of time for approximations of different orders 
of accuracy). 

In Section 2 we begin by examining methods for the model problem 

(.1) Uut + CUx = 0, c < 0, a 6 x 6 b, t > 0; 

(1.2) u(x, O) = f(x), a 6 x < b; 
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(1.3) u(b,t)=g(t), t>O; 

with compatibility condition f (b) = g(O). We first consider a centered difference 

approximation to (1.1)-(1.3) which is fourth order in space and second order in time 
in the interior coupled with the second order leapfrog method near the boundaries. 
This method is found to be unstable unless the same grid interval is used with both 

the leapfrog and more accurate interior approximation. Consequently, this method 
has limited usefulness. We also consider using the Lax-Wendroff approximation near 

the boundaries. This combined method is found to be stable. We conclude Section 2 

with general results for methods of this type for hyperbolic systems. 
ln Section 3- we present numricA- results obtained- -using- the- met-hods present-e 

in Section 2 and compare these results with those obtained in [11] where uncentered 
approximations of third order were used in the neighborhood of the boundaries. 

We will use the theory of Gustafsson, Kreiss and Sundstrom [7] and assume 
that the reader is familiar with the results of that paper. The stability results presented 
here for constant coefficients can be extended to the variable coefficient case in the 
same manner as those of [7]. 

2. The Methods and Stability Results. We begin by examining an approximation to 
(1.1), (1.2) and (1.3). We can take a = 0 and b = 1 without loss of generality. Let k > 0, 

hC = 1/N and hf = hc/M where N and M are natural numbers. Let Xc = k/hc and Xf = 

k/hf. Define grid functions vj(t) = v(.hc , t) for i. = 0, 1, . . . , N; lv(t) = Il (hf, t) 

for P = O, 1, . . ., 2M and rv(t) = r(1 - hc + Phf, t) for P = O, 1, . . ., M where t= 
0, k, 2k, . . . (see Figure 1). For 2 < v- < N - 2 we approximate (1.1) by the 

0(h4 + k2) approximation 

10 IM 12M rO.. rM 

j - | X J ~ ~~f -- E 
Vo V1 V2 VN-1 VN 
x = O x= 1 

FIGURE 1 

(2.1a) v"(t + k) = vv(t - k) - c2k 
4 

Do(hc) - 
1 

DO(2hc)7 vv(t), 

where DO(nhc)vv(t) = (2nhc)- [vv+n(t) - v-,n(t)] . On the interval [0, 2hc] we 

approximate (1.1) by the 0(h2 + k2) approximation 

(2.2a) lv(t + k) = lv(t - k) - c2kDo(hf )lV(t) for i. = 1, 2, . . . , 2M - 1, 

and at x = 0 by the 0(hf + k2) approximation 

(2.2b) 10(t + k) 1(t - k) - c2Xf [11(t) - 0.5 (10(t - k) + 10(t + k))] . 

On the interval [1 - hc, 1] we approximate (1.1) by the similar O(h; + k2) and 

0 (hf + k2 ) formulae 

(2.3a) rv(t + k) = rv(t - k) - c2kDO(hf)rj(t) for i. = 1, 2, . . . ,M - 1 
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and 

(2.3b) ro(t + k) = ro(t - k) - c2Xf [rl(t) - 0.5 (rO(t + k) + ro(t - k))] - 

Corresponding to the initial condition (1.2), we use 

(2.1b) vJ(O) = f (vhc) for i. = 0, 1, . ..N; 

(2.2c) lJ(0) = fQ(hf) for i. = 0, 1, . , 2M; 

and 

(2.3c) r,,(O) =f ( - hc + ?hf for v = 0, 1, . . ., M. 

Corresponding to the boundary condition (1.3), we use 

(2.2d) rM(t) = g(t) for t = 0, k, 2k, .... 

We then link the grid functions l,(t), vj(t) and rj(t) by 

vo(t) = 10(t), v1(t) = IM(t), V2(t) = 
12M(t), 

(2.1 c) 
vN-1(t) = ro(t) and vN(t) = rM(t) 

for t = 0, k, 2k .... 
We complete the specification by giving 

vj,k) = w(l'hc), z) 0, 1, . , N, 

(2.1d) I>(k) = w (lhf), = 0, 1, . . , 2M, 

rv(k) = w(l - hc + rhf), =0, 1,.. M, 

where w is a sufficiently accurate approximation to the solution u(x, t) at t = k. 
It is clear that Eqs. (2.1), (2.2) and (2.3) determine a unique approximation 

which is consistent with the problem (1.1), (1.2) and (1.3). 
The one-sided formulae (2.2b) and (2.3b) are due to A. Sundstrom, and it has 

been shown in Elvius and Sundstrom [4] that they yield stable approximations for the 
related initial boundary-value problems when used with the formulae (2.2a) and (2.3a). 
It is well known that (2.1a) is a stable approximation for the related Cauchy problem 

[5], [9]. 
Note that the approximations (2.2b) and (2.3b) are only 0(hf + k2) accurate. 

However, it follows from the results of Gustafsson [6] that overall convergence be- 
havior is not adversely affected. 

Assumption. We assume that Xc and Xf satisfy stability criteria which guarantee 
that our interior approximations are stable for the related Cauchy problems. 

(2.1a), (2.2a) and (2.3a) are stable for the related Cauchy problems if lclXf < 1 

and IcIXc < 6/A9 ? 24x/& = 0.7287.... 
We now investigate the stability of the method defined by (2.1), (2.2) and (2.3). 

We use the stability Definition 3.3 of Gustafsson et al. [7]. In [7], it is established 

(Theorem 5.4) that the stability of two related quarter-plane problems is equivalent 
to stability for the two-boundary problem in the sense of Definition 3.3. These two 
problems are simply obtained by removing one or the other of the boundaries and 
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extending the domain to ? oo, as is appropriate. We will refer to these as the right and 
left quarter-plane problems. 

It is immediate that the associated left quarter-plane problem, - 00 < x < 1, 
t > 0 (we extend i. over the negative integers in (2.1a)) is stable by Definition 3.3 of 

[7]. This follows from the fact that (2.1a) is stable for the related Cauchy problem and 
and that (2.3a) and (2.3b) are stable on the interval [1 - hc, 1] and provide a vN_l(t) 

which is bounded on every finite t-interval in terms of the data g(t). It is the inde- 
pendence of the calculation of the r. from the v. that makes this trivial. 

The situation is more complicated for the associated right quarter-plane problem, 
0 < x < oo, t > 0. First we must examine the stability of the approximation for the 
Cauchy problem given by (2.1a) with i- extended over all natural numbers and (2.2a) 
with i. extended over the negative integers. This is the problem of matching schemes 
investigated by Ciment [3] for dissipative approximations. This can also be analyzed 
in terms of the theory of [7], since we can think of folding the x-axis at zero and in- 
vestigating the initial boundary-value problem for a vector (vV', MV). 

The new net structure is shown in Figure 2. 

12M 
.. 

IM 10 1_M 2M 

I I I _ 
Vo V1 V2 ... 

x =0 

FIGURE 2 

(v,, lm)' is an approximation to the solution of the differential equation 

(X) ( )(u) Wt ? C W x 

with boundary condition w(O, t) = u(O, t). This technique has been used in [1], [2] 
and [3] where more detailed descriptions of this process can be found. Under this 

transformation the conditions v2(t) = 12M(t), v1(t) = IM(t) and vo(t) = 10(t) become 

(2.1c') v2(t) = 12M(t), v1(t) = lM(t), vo(t) = lo(t) 

and (2.2a) becomes 

lv(t + k) = lv(t - k) + c2kD,(hf)lV(t), 

= 2M - 1, 2M -2,... 0,-i, -2,. 

It is shown in [7] that stability according to their Definition 3.3 is equivalent to the 
fact that a determinantal equation (Eq. (10.3) of [7]) not vanish for complex z such 
that Iz I > 1. This determinantal equation can be derived formally by seeking the 
general solutions of (2.1a) and (2.2a') of the form v>(t) = KvZt/k and lI(t) = 

which belong to 12(hc) and 12(hf) for t > 0 and all complex z such that Iz I > 1, i.e., 

v00 llvand2(h =h E IVI1 <??, 

and 
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1lv(t) II2(hf) = hf Z I'l(t) 12 < oo. 
1v=2M 

When this general solution is substituted into the boundary conditions (2.1c'), a homo- 

geneous system of linear equations for the arbitrary constants in the general solution is 
obtained. Let C be the matrix of this system. The determinant condition (10.3) of 
[7] is det C 0 0 for Iz I > 1. This is the requirement that there exist no nontrivial so- 
lutions of the assumed form for Iz I > 1 which satisfy the boundary conditions. Our 
determinantal condition is equivalent to 

(2.4a) det IK K2 rM ) 0 if K1 0 K2 

\K2 K2 r-2M 

and to 

/1 0 1\ 

(2.4b) det K1 1 rM | 0 if K1 = K2' 

\K1 2K / 

K1 and K2 are the roots of the characteristic equation 

(2.5) K 4- 8K 3 - 6(z2 X ) K2 + 8K - 1 = 0 CXz 

corresponding to (2.1a) such that IKKi I 1. ? is the root of the characteristic equation 

(2.6) t2 (Z2 -1 - 1 = 0 
cXz 

corresponding to (2.2a') such that 11 < 1. The fact that K1, K2 and ? are uniquely 
defined as the continuous functions of z satisfying these criteria is established in [7]. 
It is also shown in [7] that lKi I < 1, i = 1, 2 and I I < 1 for IzI > 1 so the conditions 

(2.4a) and (2.4b) are satisfied for lz I > 1 since these determinants only vanish if K1 = 

?M or K2= ?-M. In order to complete our analysis we must examine the roots K1, 

K2 of (2.5) and ? of (2.6) for z = elO. To do this we need the following lemma. 

LEMMA 2.1. Let z = eio and <1 (0) and K2(0) be the roots of (2.5) which sat- 

isfy IK1 I < 1, j = 1, 2, when Iz I > 1. If we number properly, then IK1 1< 1 and 
IK2 1 ? 1 for all 0. Let c < 0. Define 01 to be the smallest positive value of 0 such 
that 

f(O) l2sin = -36 +96 =-16.46 .... 
cc 

then O<01 i1r/2. Set02 =1r-01,then f (02)=f(01). Define03,02 <03 < r, 

by 3(03) = -16. Define 04, Xr < 04 < 3X/2, by 3(04) = 16. Let 05 be the smallest 

value of 0 such that g(() = A/36 + 9616 = 16.46. . ., then 31r/2 < 05 < 21. Let 
06 = 2 - 05, then ((06) = ((05). Te 0j so defined satisfy ? < 01 < 02 < 03 < X 

< 04 < 05 < 06 < 2r. 61 = 02 and 05 = 06 if and only if I cX I = 12/136 ? 96 

The following properties of K,2(0) hold: 
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K2 = -1 for 0 = 0 
ReK2 <0, lK21 = 1 for 0 < 0?61 

IK21 < 1 for 01 < 0 < 02 if01 < 02 
Re K2 < 0, IK21 = 1 for 02 6 0 < 03 

K2 = i for 0 = 03 
Re K2 > 0, IK21 = 1 for 03 < 0 < X 

K2 = I for 0 = 1r 

Re K2 > 0, IK2 1 = 1 for 1T < 0 < 04 
K2 = -i for 0 = 04 

Re K2 < 0, IK21 = 1 for 04 < 0 S 05 

IK21 < 1 for 05 < 0 < 06 if 05 < 06 
Re K2 < 0, IK2 1 = 1 for 06 6 0 < 2ir 

If c > 0, then K2(0) = 1 and the above properties hold if we replace 0 by 6' = 0 - ITr. 
Proof The properties of the 6 follow easily from the assumption that (2.1a) is 

stable for the related Cauchy problem, i.e., IcX, I < 12/X36 ? 96A/7, and the prop- 
erties of cos0. It was shown in Lemma 2.1 of [11] that K1 I < 1 and IK2 I < 1 if 
(32(0) > 36 + 96 v6and that one of the K1 satisfies IKj =1 and the other IKjI < 1 
for each value of 0 such that 132(0) ?36 + 96VX. From our definition of the 0, 
132(0)>36+96 Wfor01 <0<02 if 061 02 andfor05 <0<06if05 606; 
and 12(0) < 36 + 96\/6 otherwise. For 1 0, +8, + 16 the number of roots of (2.5) 
with positive real part, p, and the number with negative real part, q, are given by 

p = V(1, -8, 64 - ,2, 8132, 12 (12 -256)) 

and 
q = V(1, 8, 64 - 1 2, -81 2, 2 (12 _256)), 

where V(aj, . . . , an) denotes the number of changes of sign in the real sequence 

a1, a2, . . . , an (Theorem (40.1) of [10]). We calculate: 

p = 3 and q = 1 for 0 < 13I < 8, 

p = 3 and q = 1 for 8 < 13I < 16, 

p = 2 and q = 2 for 16 < 131. 

Examining the roots of (2.5) at z =1 and at z = 1 + 6, 6 > 0, we find that K1 - 

0.127..., K2 = -1 andp = 3,q = 1 at 0 = 0. By continuity, sincep = 3,q = 1 
for 0 < Io13 < 8 and since K = ?i are roots of (2.5) if and only if 13 = T 16; we can 
conclude that K2 remains in the left half-plane for the 0-neighborhood of 0 such that 
0 ? 101 < 8. Since ?i are not roots of (2.5) for 1 = ?8 and IK2 I = 1, we can conclude 
that K2 remains in the left half-plane for the larger 0-neighborhood of 0 such that 0 < 

111 < 16. Examination of the roots of (2.5) at z = e 11 and z = (1 + 6)e 1 shows 
K2(01) = (-0.2247 ...) + i(O.9744. . .). Similarly, at z = e06 we find K2(06) = 

(-0.2247 ...) + i(-0.9744. . .). So, again by continuity, K2(0) must remain in the 
left half-plane for 113 > 16 since p = 2, q = 2 for all such 1. Examination of the 
roots of (2.5) at z = e 3 yields K2(03) = i, and at z = e104 we find K2(64) = -i so 
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it is K2 that moves into the right half-plane as we enlarge the 0-neighborhood of 0 
beyond 03 and 04. We can conclude that I K I < 1 and that ReK2 < 0 for 0 < 0 < 03 

and 04 < 0 < 21r and Re K2 > 0 for 0 3 < 0 < 04. This concludes the proof for c < 0. 
The proof for c > 0 proceeds similarly. 

It follows from Lemma (6.2) of [7] and the formulae immediately preceding it 
that: (1) 1 = 1 and sign (Re t) = -sign(c Re z) when z = eio and 0 satisfies Isin 0 I < 

IcXfI, (2) I?1 < 1 when IsinOl > IXf c, and (3) I = -1 when z = -1 and I = 1 when 
z = 1. 

We now return to the examination of the determinant condition. We saw that it 
was satisfied for iz I > 1 and now consider z = eio. It follows easily from Lemma 2.1 
and the preceding paragraph that K1 = r-M since IK1 I < 1 and I -M I > 1. Now we 
only have the condition K2 # t-M remaining to examine. We consider three cases. 

Case I, M = 1. If M = 1, then Xc = Xf and 

-sin | 1 if and only if l,1(0)I = 12 sin 0 
< 12. 

CXlf CXf 

If I sin 0 /cXf I S 1, then Lemma 2.1 implies that sign (Re K2) = -sign (Re -1') since 
Rer = Rer-1 and 1i3I < 12. If Isin0/cXfI> 1, then I?I <1 so Ir1 1> 1 and IK2I 

< 1. We can conclude that K2 = t-[ and that the combined method is stable for the 
Cauchy problem if M = 1. 

Case II, M Even. If M is even, then rM = K2 at 0 = ir since ? = -1 and K2 = 1 
at 0 = 7r. The determinant condition is violated and the combined method unstable 
for the Cauchy problem for any even M. 

Case III, M > 3 and Odd. Consider 0 on the interval 02 < 0 < 03, where 02 

and 03 are defined as in Lemma 2.1. K2(0) is a continuous function of 0 and IK2 1 = 1 

on this interval. From Lemma 2.1 we have arg(K2(02)) = 1.797.. . and arg(K2(03)) = 

7r/2 so arg(K2(02)) > arg(K2(03)). It is easily seen [7] that 

= i sin 0/cXf + sign(cos 0)(1 - sin20/c2X2)1/2. 

When 02 < 0 < 03, then II = 1 and Imr = sin 0/cXf satisfies 

1.372... _ _ 36 ?96 6 sin02 sinO sin03 4 1.333... 
M 12M C- f Cxf CXI 3M M 

? and ?-M are also continuous functions on this interval. arg(?) = sin-1(sin0/cXf) 

and arg(?-M) = -Marg(>) so arg(?-M(02)) = -Msin-1 [(-V36 ? 96V 1yl2M] and 
arg(?-M(03)) = -Msin1'(-4M/3). We consider values of sin-1(0) on [0, 21r). It is 
clear that arg(?-M(02)) < arg(GM(0 3)) and easily seen that arg(K2(02)) > arg(&"M(02)) 
for all M> 3. Thus, we have two continuous functions, K2(0) and r-M(0), whose 

ranges coincide for some interval [02, Oo], where 02 < 00 < 03, SO they must take 
on the same value for some 0 E [02, 001; and the determinant condition is violated 
there. By a similar argument we can see that there is another value of 0 between 04 

and 0. where the determinant condition is violated. Therefore, the combined method 
is unstable for the Cauchy problem for all odd M > 3. 
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The stability of the right quarter-plane problem now follows easily for M = 1 

since (2.2b) is stable with (2.2a). This results from the fact that we can represent the 

vV in terms of ? and the determinantal condition to be verified is just that for (2.2a) 

with (2.2b) which has already been verified [4]. We have 

THEOREM 2.1. The approximation (2.1)-(2.3) is stable for M = I and unstable 

for all M > 2. 
Before commenting on this result we will first present a modified version of this 

method. 
It is of interest to consider handling the right boundary with the rv mesh extend- 

ing from x = 1 - 2hc to x = I (over two hc intervals as we have done with the left 

boundary). This is natural to consider for vector equations where there are both inflow 

and outflow quantities on both boundaries, and for equations with coefficients which 

are functions of t so that the artificial internal boundary at x = 1 - hc may be at times 

an inflow and at times an outflow boundary. We can accomplish this by redefining 

the grid function rv(t) for v = 0, 1, . . , 2M as rv(t) = r(l - 2hc + vhf, t) and using 

the equations 

(2.1e) r2M(t) = g(t), rM(t) = VN1 (t), ro(t) = Vn-2(t), 

instead of those involving the r. of (2.1c). 
Let us consider the stability of this method. The associated right quarter-plane 

problem is the same as before and, therefore, stable if and only if M = 1. We now 

consider the associated left quarter-plane problem. Since (2.3a) is stable with (2.3b) 

as previously remarked we need only consider the stability of (2.1a) coupled with (2.3a) 

by the conditions (2.1e) for the related Cauchy problem. If we fold the x-axis at x = 1 

and renumber the v. and rv we again obtain the conditions (2.4) which we have already 

examined. We have 
THEOREM 2.2. The approximation (2.1)-(2.3) with the rV approximation ex- 

tended over [1 - 2hC, 1] and the rv(t) equations of (2.1c) replaced by those of (2.le) 

is stable for M = 1 and unstable for all M > 2. 

The methods found to be unstable in Theorems 2.1 and 2.2 have only violated 

the determinant condition for values of z which lie on the unit circle, i.e., they satisfy 

the Godunov-Ryabenkii condition [7]. It is easily seen that the roots K2(z) and t(z) 

are simple roots of the characteristic equations for those z which violate the determinant 

condition. Such instabilities have been discussed by Kreiss [8]. Approximations of 

this type for problems on bounded x-intervals have solutions which grow like N't, 
a > 0. Further, the extension of any estimates obtainable for problems with constant 

coefficients to problems with variable coefficients is, in general, impossible. 

Computational experiments with M > 1 for the model problem (1.1)-(1.3) have 

indicated that these methods can be used successfully for limited times to approximate 

smooth solutions. However, experiments with the equation ut - uX - uy = 0, 0 < 

x S< 1, 0 S y S 1, have shown disastrous growth when M is even while behaving 

reasonably for limited times with M odd. 
Theorems 2.1 and 2.2 are disappointing. If we couple leapfrog with the centered 
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0(h4 + k2) interior approximation, we obviously have no opportunity to refine the 
mesh to achieve uniform accuracy. Computational results with M = 1 are given in 
Section 3. They illustrate the fact that we really need M > 1 to achieve overall 
0(h4 + k2) accuracy when compared with results obtained in [11]. However, there 
are situations where these techniques with M = 1 can be useful. If the boundary data 
is rather inaccurate, then nothing could be gained by a refinement, M > 1. If this is 
the case and the boundary is sufficiently removed from an interior portion of the do- 
main where the approximation is desired, then these technilues with M = 1 can be 
useful. Of course, the area of integration must be so large that the boundary errors 
will not propagate into the region of interest during the duration of the computation. 

We next consider replacing the approximations (2.2) and (2.3) by the dissipative 
Lax-Wendroff method. We replace (2.2a) by 

(2.7a) l(t + k) = l,(t) - kcDo(hf)l,(t) + ?k2c2D+DjI>(t) 
for v = 1 25 . . . 2M - 1, 

where D+D-J>(t) = (l+ 1 (t) - 21>(t) + l_1 (t))h72. We replace (2.2b) by 

(2.7b) 10(t + k) = 10(t) - kcD+ 10(t), 

where 

D+ lo (t) = (11 (t) - 1l (t)) hi 

Similarly, we replace (2.3a) by 

(2.8a) r,(t + k) = rv(t) - kcDO(hf)rv(t) + ?2k2c2D+D-rv(t) 

for v = 1, 2,..., M - 1, 
and (2.3b) by 

(2.8b) ro(t + k) = ro(t) - kcD+ ro(t). 

The approximations (2.7a) and (2.8a) have local truncation error 0(h2 + k2), and the 
boundary approximations (2.7b) and (2.8b) have local truncation error 0(hf + k). 
The approximations (2.7) and (2.8) have been shown to be stable for the related quarter- 
plane problems in [7], and the convergence results of Gustafsson [6] apply in this 
case as before to tell us that the overall convergence will not be adversely affected if 
the method is stable. When we apply the same techniques to this method, we again 
obtain the determinantal conditions (2.4). In this case ? is the root of 

Xc x2 c2 

(2.9) (z - 1)Z - 2T 1)1)2 = ? 

such that <t I 1 for Iz I > 1. It was shown in [7] that this condition uniquely de- 

fines ?, that It l < I if Iz I > 1 and c > O, and It l < 1 if Iz I > 1, Z :* I and c < O. 

If c < 0 and z = 1, then ? = 1. Therefore, the determinantal conditions (2.4) are 
satisfied for all M since IKi I < 1, i = 1, 2, and I .-M I > 1. If we consider the refine- 
ment over two intervals on the right-hand end of the interval, stability is again equiv- 
alent to the conditions (2.4) which we have already verified. We have established 

THEOREM 2.3. The method given by (2.1), (2.7) and (2.8) with the matching 
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conditions (2.1c) is stable for all M. The analogous method resulting from the ex- 
tension of rv over [1 - 2hc, 1] and the replacement of the r, equations of (2.1 c) by 
those of (2.1 e) is also stable for all M. 

We present results for this method in Section 3. 
It is now easy to see how these results generalize to systems of equations and 

that the form of the results is independent of the approximations used to a great extent. 
Consider the strictly hyperbolic system 

ut=Aux, a <x<b,t>O, 

where u E RS and A is a constant s x s matrix of the form 

/I O 
A = AA < O, A > . 

0O AI, 

To simplify matters we assume that A has already been transformed to diagonal form. 
Let us prescribe initial conditions u(x, 0) = f(x) and boundary conditions 

u' =Su"? + gt) at x = a 

and 

Ull = S u' + g"I(t) at x = b, 

where u = (u', u")' is partitioned with A and Sa and Sb are constant rectangular 
matrices, see [7] for this notation. We assume that this problem is well-posed with 
the prescribed boundary conditions. 

We introduce vector grid functions l,(t), v,(t), and r>(t) as before and denote 
approximate methods for these three grid functions by A1, A2 and A3, respectively. 
We assume that A1 and A3, with their boundary approximations, are stable for the 
related quarter-plane and Cauchy problems and that A2 is stable for the related Cauchy 
problem for the given X. and Xf defined as before. 

In this situation it is more natural to consider the second method of linking the 
net functions together. That is, we link the grid functions at both ends of the interval 
requiring equality at some number of points on the vl,(t) grid. Under the assumption 
that the methods A1 and A3 are stable for the related quarter-plane problems, we need 
only look at the stability of the related Cauchy problems for the combined A1 - A2 
and A2 - A3 methods; and we can do this separately. We only consider one case; the 
other is similar. If we look at the related folded problem for A 1 - A2 for a < x < oo, 

it is an approximation for the modified equation 

A\AUXSAll 

ut ~ A" -A' XAI, ? <0t0 
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with 
U=UI UII UIII ^-,IV) 

and boundary conditions 

ui = u III, Uiv = uii at x = a. 

We then write out the appropriate modified approximation using method A2 for the 
vector (uI, U"II)' and A1 for the vector (u"'III, U IV). The characteristic equations 
K1 (t, z) and K2 (K, z) related to the approximations A1 and A2, respectively, are 
polynomials in K and ?, say, with coefficients which are polynomials in z. Since A1 
and A2 are stable for the Cauchy problem the roots of K1 and K2 split into two groups 
as before,Ml,Ki andM2,,Ki, with the property that IK1 i 1 ans,d I i I 1 for I zI> 1 

if i EMl,K1 and Ki EMl,K2 ,and IKiI >1 > for 1ZI > 1 if ti EM2,K 
and K E M2 ,K2 This is shown in [7] and simply follows from stability for the re- 
lated Cauchy problems. Let M1 ,K 1 contain ml roots and M1 ,K2 contain m2 roots. 

Then the m1 + m2 conditions 

(2.10) v>(t) = lMv(t), v = 0, 1, * . , (ml + m2- 1), 

for the original problem uniquely determine the solutions in 12. We obtain the deter- 
minantal condition det C # 0 as before. In this case C is equivalent to a block Vander- 
monde or block confluent Vandermonde matrix. In fact, if D is the matrix we would 
obtain using the approximations A and A2 for u E R1 and D = (di1), then we can 
represent C as 

C = (d iIs) 

and det C = 0 if and only if Ki = ?,M for Ki E Ml,K2 and rj E Ml,K Thus, we see 
that analogs of Theorems 2.1, 2.2 and 2.3 hold in these more general circumstances. 
In particular, the matching theorem of Ciment [3] holds if only one of the stable 
matched schemes is dissipative. Details on the derivation of the form of C are given 
in [3]. We summarize in 

TIEOREM 2.4. The method given by the combination of A1, A2, and A3 
through conditions of the forn (2.10) is stable if ?7-M # Ki for Iz I > 1, where the 

s are roots of the characteristic equations corresponding to the boundary methods 
A1 and A3 such that I j I < 1 and the Ki's are the roots of the characteristic equation 
corresponding to the interior approximation A2 such that IKiI < 1, for I zI> 1. In 
particular, if A2 is dissipative, or both A 1 and A3 are dissipative, and the root condition 
K1 # P-M holds for z = ?1, then the combined method is stable. 

Proof To complete the proof we only need to remark that the roots of the 
characteristic equation for a dissipative approximation [7] satisfy IK I < 1 for Iz I > 1 
and z #A ?1. 

The paper of Gustafsson et al. [7] presents several stable boundary approximations 
which can be used for A1 and A3. 

Theorem 2.4 shows that dissipative modifications of the leapfrog method could 



HYBRID DIFFERENCE METHODS 735 

be used with the 0(h4 + k2) centered approximation treated in Theorems 2.1 and 
2.2 to yield a stable method with M > 3 and odd. 

So far our discussion has always assumed that we use the same time step, k > 0, 
for both the interior and boundary approximations. The stability restriction on Xc 
places a restriction on M since Xf < Xc and Xc is an increasing function of M. For the 
0(h4 + k2) and 0(hf + k2) methods this usually does not cause any real problem. It 
is natural to choose hC and k so that the truncation errors arising from the spacial and 
temporal discretizations are of roughly the same size. This leads us to the condition 

h4 t k2 or h2 t k. 

It is reasonable to choose M so that 

hr 2t h4 or h2 t hf 

so that the spatial truncation error is of roughly the same size for the interior and 
boundary approximations. This leads us to 

hf t k or Xf = k/hf l 

which indicates that the usual stability restrictions for explicit methods will not create 
a problem. This also agrees with the condition we obtain if we ask that the spatial 
and temporal truncation errors be of the same size in the boundary approximation, 
i.e., hf t k2. The computational results in Section 3 bear this out. 

If a situation arises where the previous estimates are not valid, due to the behavior 
of the solution, a smaller time step can be used on the refined grid by interpolating in 
time on the v. net where intermediate values are needed after first computing the new 
values on the v. net. This is always possible with an explicit method. The previous 
analysis does not hold in this case but we have performed several computations in this 
manner which indicate the success of this procedure. Some calculations of this type 
are presented in Section 3. 

3. Computational Results. Our first set of computations are approximations to 
(1.1),(1.2) and (1.3) with c = 1,a = 0, b = 1,f(x) = sin4rx and g(t) = f(-t) which 
has the solution u(x, t) = f(x - t). This could be stated as a periodic boundary prob- 
lem but we treat it as an initial boundary-value problem. This is useful since it allows 
direct comparisons with periodic computations as done in [11]. It was somewhat more 
convenient to discuss our theoretical results with c < 0 but we have chosen to use 
c = 1 > 0 here so that the computations will be immediately comparable with those 
of [11]. The theoretical results are, of course, unchanged and the difference approx- 
imations are just the reflections of those already introduced. 

We define the error in the vth grid point to be ej(t) = u(x^, t) - vj(t) and com- 
pute error norms over the vj(t) grid. We use the previously defined 12(hc) norm and 
the loo norm defined as lle,I1, = maxIe, I. 

In Table 3.1 we give the results of the method analogous to that defined by Eqs. 
(2.1)-(2.3). We include results obtained using smaller time steps on the refined grid 
and use L = kC/kf to denote this ratio in the table. We append the letters q or I to 
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TABLE 3.1 

M L liv ll le i, lievff 1 IVVI 1e J 1e Ile ft' 
f2 2 2 Vti2 Vtf 

t = 0.5 t = 1.0 
1 1 6.554-1 1.llt-1 2.42-1 5.71-1 1.85-1 4.16-1 

2 1 7.02-1 1.76-2 3.63-2 6.99-1 2.69-2 t4.97-2 

3 1 7.04-1 6.16-3 1.19-2 7.0oo- 9.28-3 1.78-2 

4 1 7.07-1 3.02-3 5.55-3 7.07-1 4.38-3 9.26-3 

4 2,q 7.06-1 5.99-3 1.14-2 7.05-1 9.48-3 1.95-2 

4 2,2 7.06-1 5.99-3 1.14-2 7.05-1 9.48-3 1.95-2 

5 2,q 7.06-1 4.13-3 8.00-3 7.04-1 5.98-3 1.20-2 

5 2,2 7.06-1 4.422-3 8.59-3 7.OM4-1 6.18-3 1.38-2 

t = 2.0 t = 4.o 
1 1 5.35-1 2.21-1 4.07-1 5.37-1 2.03-1 3.76-1 

2 1 7.02-1 2.39-2 5.81-2 6.994-1 7.145-2 1.60-1 

3 1 6.98-1 9.67-3 1.76-2 6.99-1 9.63-3 1.75-2 

4 1 7.07-1 4.4t3-3 9.65-3 7.07-1 4.76-3 9.99-3 

4 2, q 7.06-1 8.85-3 2.20-2 7.06-1 8.95-3 2.21-2 
4- 2,2 7.06-1 8.85-3 2.20-2 7.06-1 8.95-3 2.21-2 
5 2,q 7.03-1 5.51-3 1.05-2 7.03-1 5.54-3 1.05-2 
5 2,2 7.014-1 4.83-3 9.774-3 7.04-1 4i.90-3 1.01-2 

the numbers in the L-column to indicate whether quadratic or linear interpolation was 
used. We have used Xc = 1/4 with N = 20 for these calculations. We have used the 
solution at t = k for w in (2.1d). We use the notation a - b to represent a x 10-b in 
our tables. Recall that these methods are not stable according to the Definition 3.3 of 
[71 for M > 1. 

In Table 3.2 we report the results of the same computation using Lax-Wendroff 
in the refined regions, i.e., the reflections of Eqs. (2.1), (2.2a'), (2.2b'), (2.3a') and 

(2.3b'). 
These results can be compared with those given in [111. We include some re- 

sults obtained in that paper using uncentered O(h') approximations in the neighbor- 
hood of the boundaries for purposes of comparison. The problem and all other para- 
meters are the same as those used here. These results are in Table 3.3. 

It is clear that we only need M = 3 and L = 1 in this case to achieve the same 
accuracy. Interpolation in time is not necessary to obtain this accuracy. If greater 
accuracy is required interpolation may become necessary. 



HYBRID DIFFERENCE METHODS 737 

TABLE 3.2 

M L 
llvv[lle2 

IleVl 
e2 IleVill llvvl 2 IleVll2 IleVi 

t = 0.5 t = 1.0 

1 1 6.52-1 9.97-2 1.97-1 5.75-1 1.60--1 3.44-1 

2 1 6.96-1 1.66-2 3.32-2 6.84-1 2.52-2 3.86-2 

3 1 7.()4-1 5.97-3 1.09-2 7.00-1 9.02-3 1.39-2 

4 1 7.07-1 3.02-3 5.55-3 7.07-1 4.38-3 9.26-3 

4 2,q 7.04-1 5.51-3 9.64-3 7.01-1 8.44-3 1.39-2 

4 2,2 7.04-1 5.56-3 9.27-3 7.01-1 8.32-3 1.43-2 

5 2,q 7.05-1 4.11-3 6.32-3 7.0o4-1 6.21-3 1.17-2 

5 2,2 7.05-1 4.18-3 6.67-3 7.o4-1 6.14-3 1.21-2 

t =2.0 t = 4.o 
1 1 5.48-1 1.88-1 3.32-1 5.52-1 1.77-1 3.14-1 

2 1 6.83-1 2.69-2 3.98-2 6.83-1 2.70-2 4.05-2 

3 1 6.99-1 9.41-3 1.52-2 6.99-1 9.42-3 1.53-2 

4 1 7.07-1 4.43-3 9.66-3 7.07-1 4.73-3 9.91-3 

4 2,q 7.01-1 8.78-3 1.49-2 7.01-1 8.79-3 1.50-2 

*4 2,Q 7.01-1 8.20-4 1.45-2 7.01-1 8.23-3 1.48-2 

5 2,q 7.03-1 6.33-3 1.16-2 7.03-1 6.34-3 1.17-2 

5 241 7.04-1 5.76-3 1.13-2 7.04-1 5.79-3 1.15-2 

TABLE 3.3 

llv II II V 1 II e, 11 I lvv IQ1 II e, 11 II e,11 
2 2 C)2 2 

t = 0.5 t = 1.0 

7.12-1 9.69-3 2.34-2 7.08-1 1.34-2 2.51-2 

t = 2.0 t = 4_ o 

6.96-1 1.30-2 2.04-2 6.96-1 1.25-2 2.28-2 
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