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Improvement by Iteration for Compact 
Operator Equations 

By Ian H. Sloan 

Abstract. The equation y f + Ky is considered in a separable Hilbert space H, with 

K assumed compact and linear. It is shown that every approximation to y of the form 

Yln = Enaniui (where {ui} is a given complete set in H, and the an1, 1 < i < n, are 
arbitrary numbers) is less accurate than the best approximation of the form Y2n = f + 

ynbnjKui, if n is sufficiently large. Specifically it is shown that if Yln is chosen optimal- 

ly (i.e. if the coefficients ani are chosen to minimize Ily - Yln 11), and if Y2n is chosen 

to be the first iterate of Ylnl i.e. Y2n = f + Kyln then Ily - Y2n ll < an Ily - Yln II, 
with an- 0. A similar result is also obtained, provided the homogeneous equation 
x = Kx has no nontrivial solution, if instead Yln is chosen to be the approximate 

solution by the Galerkin or Galerkin-Petrov method. A generalization of the first 

result to the approximate forms Y3n' Y4n' . . . obtained by further iteration is also 

shown to be valid, if the range of K is dense in H. 

1. Introduction. This paper is concerned with the approximate solution of the 
equation 

(1) y =f +Ky, 

where y and f belong to a separable Hilbert space H, and K is a compact linear operator 
in H. The main results can also be extended to the eigenvalue equation y = XKy, by 
setting f = 0 and replacing K by XK. The whole discussion has immediate application 
to linear integral equations with square-integrable kernels, H then being an L2 space. 

A common way of approaching Eq. (1) in practice is to seek an approximate 
solution of the form 

n 

(2) Ylfn = E ani 1u1, 

where {u,} is some suitable complete set of linearly independent elements of H, and 
the ani are real or complex coefficients. Indeed, many numerical methods [2], [4] 
for the approximate solution of integral equations (e.g. Galerkin method, collocation, 
least squares and variational methods) make use of an approximate solution of the form 

(2), differing from each other only in the choice of the coefficients. 
The main purpose of the present paper is to show that the alternative form 

(3) n 

Y2n =f + bniKui 
i=l1 
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is always capable of better accuracy than (2), if n is sufficiently large. Specifically, let 
y* and yn denote the best possible approximations of the forms (2) and (3), i.e. 
yl and Y2n are the approximations that minimize the respective Hilbert space error 
norms IIy - y1 n1 and IIy - y2 11- Then it is shown in the following section (Theorem 

1) that IIY Y2*n < anIIY - Yn 11, where an > 0. Indeed, it is shown that even the 
choice Y2n = f + Ky*n (which is of the form (3), but not in general optimal) satisfies 

IIY -y2 11? scxnIy -yln II, with Cn ? 0. In other words, the best approximation 
of the form (2) is always improved by iteration (unless, of course, it is already exact), 
if n is sufficiently large. An explicit expression for an is given in the theorem; hence 
information is available, in principle, on how large n needs to be in any particular case 
for the improvement to be significant. 

An extension of the result to the still more highly iterated approximate forms 

Y3n, . .,given by 

Y3n f+ cniK 2ui, etc., 

is given in Theorem 2. The essential result is that the optimal approximation of the 
mth kind YM*n is always improved by a single iteration, if n is sufficiently large, 
provided (for m > 1) that the range of K is dense in H, or what is equivalent, that the 
null space of K* is trivial. 

For the various practical methods of the first kind, the solutions yIn that arise 
are of course generally not optimal. For each such method, an interesting practical 
question is suggested by Theorem 1, namely: is it true that yIn is necessarily improved 
by an iteration, if n is sufficiently large? In the present work (Theorem 3) this 
question is answered in the affirmative for the Galerkin-Petrov method, thereby extend- 
ing a result previously obtained [6], in the course of a study of degenerate-kernel 
methods for integral equations, for the ordinary Galerkin (or Bubnov-Galerkin) method. 

The result for the Galerkin methods, that iteration necessarily improves the 
accuracy if n is sufficiently large, is of practical importance, because the required 
iteration can be carried out without extra work, since the Galerkin methods already 
require the calculation of the quantities Ku,, i = 1, . . . , n. The fact that iteration 

of the Galerkin solution is sometimes beneficial has been observed previously [2], on 
the basis of practical experience. It is apparent from some recent calculations [7] 
that the benefit obtainable by the iteration can be very striking indeed, even in cases 
where I lK II >> 1. 

2. Principal Result. Let Un be the subspace of H spanned by ul,.. ., un, and 
let Pn be the orthogonal projection operator onto Un. Then Pn has the properties 
P2 = Pn = P JIPI 11=1. The sequence {ui} is assumed to be complete in H, hence 

Pnx - x for all x e H. 
The best approximation to y of the form (2), i.e. the element y I n E Un that mini- 

mizes IlY Y-yn 11, is [1] 

(4) * 
Yin = Pny. 
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Similarly, since y -yY2 n can be written, with the aid of Eqs. (1) and (3), as 
n 

Y -y2n = Ky - bniKu 
i=l 

it is seen that IIY -y2n 11 is minimized by choosing 2bn.Kui to be the orthogonal 
projection of Ky onto KUn (the span of Kul,.. . , Kun). Thus, the best approximation 
toy of the form (3) is 

(5) Y2n-f + P2nKy, 

where P2n is the orthogonal projection operator onto KUn. 
THEOREM 1. If Y2n = f + Kyln, then 

IIY Y2nII I II -Y2nII a anilY Y1n 11, 

where 

a =nlKK-KPnlI0. 

Proof The first inequality follows from the optimal nature of Y2*n. To prove 
the second inequality, note that 

(6) Y-Y2n =f + Ky)-(f + KY n) = K(y-Pny) = (K-KPn)(y Pny), 

giving 

Ily -Y2n ,I S IK - KPn 11 Ily -Yrn 11- 

The proof is completed by the standard result [5, p. 204] IlK - KP II1 0. (This 
follows, for example, by noting that 

1IK - KPn 11 = IIK* - PnK* 11 = sup 1IK*x - PnK*x 11; 
xEH,lIx 11=1 

hence if the contrary IlK - KPn II -+ 0 is supposed, then there exists e > 0 and a 
sequence {xn} C H such that IIK*xn - PnK*xn 11 > e, IIxn 11 = 1. Since K* is compact, 

{K*xn } may be assumed to converge to an element v E H, which implies 

II K*xn -PnK *xn 11 -<- I(IV- Pn)(K*xn- v) 11 + 1I v -Pnv 11 0, 

a contradiction.) Q.E.D. 
The key to the proof of Theorem I is the factorization carried out in Eq. (6), 

by exploiting the projection property P,2 = Pn. 

3. Generalization of Theorem 1. Let Ymn be an expression of the form 

m-2 n 
(7) Ymn= E Kjf + amniKm-lui, m > 1, 

j=0 i=l 

where the amni are numbers; and let Pmn denote the orthogonal projection operator 
onto Km-lUn (the span of Km-lul ... ., K mlun), so that P 2 Pmn- Pmn 
and 11 Pmn 11 = 1. 
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By repeated iteration of Eq. (1), the exact solution y can be written in a form 
similar to (7), namely 

m-2 

(8) y= E Kif + Krm-y, m >1. 
j=O 

Hence, y - Ymrn can be written 
n 

Y Ymn = Km-ly- amniKm -lui, 
i=l 

from which it follows that the approximation to y of the form (7) that minimizes 

IIY Ymn 11 is 
m-2 

(9) Ymnn = , KJf + PmnKm-ly. 
j=O 

THEOREM 2. If K*x = 0 has no nontrivial solution in H, then 

IlY Ym* + i,n 11 < Ily - (f + Kymn) 11 ?armn IIy-Ymn 11, m >1, 
where 

amn = IIK - KPmn 11 O as n oo. 

Proof It follows from Eq. (9) that 

Ky m-1K -y 
(10) fKymn = Kif+Kp Km-ly. 

j=O 

Since this is of the form (7) with m replaced by m + 1, and since Ym + , is the best 
possible approximation to y of that form, the first inequality of the theorem is obvious. 
Furthermore, it follows from (10), and from (8) with m replaced by m + 1, that 

y-(f + Kymn) = Kmy-KpmnKm-'y = (K- KPmn)(Km-ly - PmnKm-lY) 
(11) 

= (K -KPm n)(Y -Ymn), 
hence 

1 - (f + KY*)II S IIK KPmn 11 ILy -Ymn 11 

It only remains to prove that I I K - KPmn II11 0 as n> oo. Since the null 

space of K* is trivial, it follows that the null space of (K m)* = (K*)m is trivial; and 
hence that the set {Kmu,, KmU2, . .. } is complete in H (since otherwise there 

exists a nonzero element x E H satisfying 0 = (x, Kmui) = (Km *x, u1) for each i > 1, 
which because {u4} is complete yields the contradiction Km*x =0). Thus Pmnx 
x as n - oo for each x E H. The required result Il K - KPmn 11 0 then follows 

exactly as for IlK - KPn II in the previous section. Q.E.D. 
Again the key step in the proof is a factorization, this time carried out in (11) 

and based on the property p2 = 

4. Galerkin and Galerkin-Petrov methods. The simple Galerkin (or Bubnov- 
Galerkin) method [3, p. 223] makes use of an approximate solution of the form (2), 
with the coefficients being fixed by requiring the residual yn - f - Ky in to be 

orthogonal to Un (the span of u,, . . . , un), or equivalently, by requiring that 



762 IAN H. SLOAN 

(12) Pn(yIn -f-Ky1n) = 0, 

where Pn is the orthogonal projection operator onto Un . Since Pnyn1 l =yI,it 
follows that y In satisfies an equation of the second kind, 

(13) Yin = Pnf + PnKy1n- 

The more general Galerkin-Petrov method [3, p. 223] again makes use of an 
approximate solution of the form (2), but it uses a second set of linearly independent 
functions {vi} to determine the coefficients: Eq. (12) is replaced by 

(14) Qn(y1n -f- Kyln) = 0,- 

where Qn is the orthogonal projection operator onto Vn, the span of v1, . . ., vn. 
Obviously, the Galerkin-Petrov method includes the ordinary Galerkin method as a 
special case. 

Some restriction is necessary on the choice of {vi} in the Galerkin-Petrov method, 
to avoid the possibility of Qnyl n vanishing, or becoming very small. A suitable 
restriction [3, p. 224], assumed in the present work, is that the aperture 6(Un, Vn) 
between Un and Vn, which is defined by [3, p. 205] 

6(Un, Vn) = IIPn - Qn 11, 

should be strictly less than 1 in the limit, 

(15) 1M O(Unn Vn) < 1- 

It follows easily from this condition and from the completeness of the set {uj} 
that the set {vi} is necessarily complete. 

The following theorem asserts that the approximate solution by the Galerkin- 
Petrov method is necessarily improved by an iteration for n sufficiently large, provided 
that 1 is not an eigenvalue of K. 

THEOREM 3. If the homogeneous equation x = Kx has only the trivial solution, 
and if Y1 n is the approxinmate solution of (1) by the Galerkin-Petrov method and if 

y2n is defined by y2n = f + Ky 1 n, then 

IlY Y2n 11 S< On IlY Y*ln 11 -< n IIY -Yin1, 

where On 0 as n - oo. 

An explicit expression for On is given by Eq. (26). 
Proof. Since K is compact and does not have 1 as an eigenvalue, the solution 

of Eq. (1) is unique and exists for any f E H, and can be written 

(16) y=(I-K)-1f, 

where I is the identity operator, and (I - K)-1 is a bounded linear operator in H. 
The first step in the proof is to obtain from (14) an equation of the second kind 

for yn, similar to the Galerkin equation (13). From the condition (15), it follows 

[3, p. 206] that for n sufficiently large, say n > no, Qn maps Un one-one onto Vn. 
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Thus, if Qn denotes the operator Qn with its domain restricted to Un, the inverse Q,- 
exists for n > nO. Furthermore, the inverses are uniformly bounded, 

(17) -IQ'II < nM, n 

By applying Q1- to Eq. (14), and using Qny1n = Onyin we obtain the desired 
equation 

(18) yIn = Hnf+ HnKyn, n > no, 

where 

(19) Q Qn Q. 

In particular, if Vn = Un, then ln =Qn = Pn, and (18) reduces to the Galerkin 

equation (13). 
In the general case, it follows from (19) that the range of fln is Un, and that 

1 2 = In ,so that fl is a projection operator (in general not orthogonal) onto Un. 
From (17), 11 fln 11 is uniformly bounded, 

(20) Ifin II < M, n > nO. 

It also follows from (19) that flnPn = Pn and that Qnfn = Qn; hence I - Hfn can be 
written in either of the forms 

(21 ) I -Hn = (I- fln)(I -Pn) = (I- Qn)(I - fn). 

Since Y2n = f + Ky 1 n, where y1I n satisfies (18), it follows immediately that y1I n 
= Hny2 n hence Y2n satisfies 

(22) Y2n = f + KHf ny2n 

an equation of the second kind with compact kernel KHln. 
The operator Kfln converges in norm to K, because by virtue of (21) and (20), 

IIK -Klnll = II(K-KQn)(I-Hn)II < IIK-KQnll(1 M+ ), 

in which IlK - KQn I I 0 by the same argument as used for IIK - KPn II in Section 2. 
It follows that (I - Kfln)-1 exists as a bounded linear operator for n sufficiently large, 
and that it converges in norm to the bounded operator (I - K)-1. The solution of 

(22) can therefore be written, for n sufficiently large, as 

(23) Y2n = (I - KHfn-lf 

It follows from (16) and (23) that 

y -Y2n = [(I-K)-1 - (I-KHK)- 'If = (I-Kfln)-Y(K -Kln)(I-K)Ylf 

= (I-Kfl n)-1(K -Kln )y . 

On using flnPn = Pn, the last factor can be written as 
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(24) (K - KHn)y = (K - Kn)(y -Pny); 

hence we obtain 

(25) Ily -yY2n 11( - KH1)1 11 IIK-Klnl Iy - Pny 11 = On ly - Yln 11, 

where 

(26) On = fI(I-KHd-l11 IIK-KUn 11. 

The limit O3n 0 follows from 11(I - KHn)1-* 11 (I - K)71 11 and the result 

IIK -KHnlI -0 proved above. 
The remaining inequality I Iy - YTn I IIY - y1n II follows from the optimal 

property of Y n . Q.E.D. 
The key to the rapid'convergence established for the Galerkin-Petrov method is 

the factorization carried out in (24). 
The bound on IIy - Y2n II given by (25) may be very large if K has an eigenvalue 

close to 1, so that it may occasionally be useful to note that even in the worst case 
Iy -Y2 11 is also bounded by 

IIY -Y2n II = I I(f + Ky)- (f + Ky1 n)I S I1K II IIY-y n 11. 

However, it has been found in practical calculations [7] that the iterated Galerkin 
approximation retains a marked superiority over the Galerkin approximation itself, 
even in cases where there is an eigenvalue of K very near to 1. 
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