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A Bound on the L.-Norm of L,-Approximation by
Splines in Terms of a Global Mesh Ratio

By Carl de Boor*

Abstract. Let L, f denote the least-squares approximation to f € L, by splines of

order k with knot sequence t = (ti)'11+k. In connection with their work on Galerkin’s

method for solving differential equations, Douglas, Dupont and Wahlbin have shown
that the norm ||Lk“°° of Ly as a map on L, can be bounded as follows,

||Lk||°° < constkMt,
with Mt a global mesh ratio, given by
M, := max Aly/min{At;lAt; > 0}.
i
Using their very nice idea together with some facts about B-splines, it is shown here

that even ,
MLglleo < consty (k)%

with the smaller global mesh ratio Mgk ) given by

M = max (1~ 1)/ Gy —1)-
A mesh independent bound for L2-a;;éroximation by continuous piecewise poly-
nomials is also given.

1. Introduction. This note is an addendum to the clever paper by Douglas, Du-
pont and Wahlbin [2] in which these authors bound the linear map of least-squares
approximation by splines of order £ with knot sequence t := (z,), as a map on L, in
terms of the particular global mesh ratio

M, := max At;/min {At;|At; > 0}.
1

Their argument is very elegant. But their result is puzzling in one aspect: The ratio
M, is not a continuous function of t. If, e.g., t is uniform, hence M, =1, and we now
let t — t* by letting just one knot approach its neighbor, leaving all other knots fixed,
then
}i_r)rtl“ M, =, while M. =2.

Correspondingly, their bound goes to infinity as t — t*, yet is again finite for the
particular knot sequence t*.

This puzzling aspect is removed below. It is shown that (as asserted in a footnote
to [1]) their very nice argument can be used to give a bound in terms of the smaller
global mesh ratio

1) M®) = max (tigr — ’i)/"}i“ (i — 1)
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766 CARL DE BOOR

which does depend continuously on tin {t € R**¥|t; <t 1, t; <t; ., all i}.

2. Least-Squares Approximation by Splines of Order k. Let t := ()" % be a
nondecreasing sequence, with #; <, ;, all i. A spline of order k with knot sequence
t is, by definition, any function of the form

n
2 N
i=1
with @ € R” and N; the normalized B-spline of order k with knots [ PR PRI N

N{D) := Ny () = (Gyppe = 0t - s 1 1 DKL

In words, for each ¢, N(?) is (¢, — ¢;) times the kth divided difference at #;, . . ., #;, &
of (s — t)ﬁ"las a function of s.

We denote the totality of all splines of order k£ with knot sequence t by Skt
More detail about S, , is provided in [1] and its references.

Next, let L, denote the linear projector on L, defined by the condition that
Ly f€ S ¢, and, forall g€ Sk,t> J(f—Lxf)g = 0,ie., Ly fis the L,-approximation
to fin Sk,t. We are interested in estimating the norm IILkllp of L, as a map on Lp.
Since

Lgll, = WLglly for 1/p + 1/q =1,

and ||L|l, = 1, interpolation will given a bound on IILkllp in terms of |[Lgll. = ILgll;,
as is pointed out in [2]. It therefore suffices to consider [|IL|l.,.
Let L, f= Ea]-Ni. Then |IL; fll.. < llello, since N; = 0, all i, and ZI-N]- < 1, while

ZthNiai = [Nf < Wtyx = t)/KNf e, el
)

since N; 2 0 and [N; = (t;, — t)/k. Therefore,

@ Il <IG7M,
with

— 3 —1
(3) G_Gw_EGzE /,

where E is a diagonal matrix,

4) E:=Tk/(tyy =) s k/(tygy — 1)

n

2
and G, is the Gramian matrix for the basis (V;) of Sy 4, i.e.

2 2\n
) Ga :=( N"Nf)i,i=1
and
p
(6) N, o= [k/(tx — t)1 VPN,

With this normalization, we are assured of the existence of a positive constant D, de-
pending only on k and not at all on t or » so that
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™M

Di* e, <! <lledl,, all @ € RA+¥

z,:ar"si

(see the theorem on p. 539 of [1]). This inequality implies that
® IG5 |, < const,

for some const, depending only on k as we will show below; and, on combining this
with (2)—(4), we obtain the desired conclusion

) Lyl < const, (M{F)*.
-2
3. A Bound for [|IG;|l,,. With (@)} j=1 = Gyl letf; == T,a;N;. Then
fmv,. =5, allj;
hence
2 2
faiiNifi + Z N fy = oy,
) j#i
ie.,
(10) I3 = oy

Therefore, by (7),
D% <D;? Z o P <NAI2 = oy,

hence, as o;; = ||f||2 #0 (G‘l is mvemble') we have a; < Dk, and so, || fill, <D,
and

123
(1) (Zla P) <D, IIfl, = Dy(o) < D?

This shows that

%

1G5 ., —malea,,l n* max (Z.Ia"f|2> <n%p?
j

and so bounds IIG; 1|, in terms of only k and n. From this, one obtains

| IG™ ., < (nM{¥)%D2,
a bound in terms of the desired global mesh ratio, except that the bound goes to in-
finity with the number of mesh points. Note that we can express Mt(k ) in terms of

n and the local mesh ratio
mgk) = I.Infllx 1 (T AV 5);
i—-jl=

hence, we even have a bound on [|G™!|l, in terms of that local mesh ratio but, alas,
involving also n.

In order to remove_this dependence on n, we use the ideas of Douglas, Dupont
and Wahlbin [2] to prove the following lemma.

LEMMA 1. There exist const, and \; € (0, 1) independent of n or t so that,
foralliandj,

loy; | < const, (A)! 71,
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Proof. We observed earlier that the function f; = E]-ociij\z;- is orthogonal to
span(V,);.;. Hence, for any m > i, ,
fi,m = Z 0‘ij]vi
m<j
is orthogonal to f; and, therefore, also orthogonal to f; ,,,_,; since the latter function
agrees with f; on the support of f; ,, . This proves that

(12) "f;',m—k+1”§ + "-fz,m"% = ||fi,m—lc+l _ft,mllg
from which we conclude that
2 |2 2 |2
2 N < > N
m—k<j 2 m—k<j<m 2

or, with the inequality (7),
(13) 2 P =D X leylk, m=itl,i+2,....
m—k<j<m m—k<j
Faced with a similar inequality, Douglas, Dupont and Wahlbin [2] make use of
what amounts to the following discrete Gronwall inequality:

LEMMA 2. If the sequence ay, a,, . . . satisfies
(14) la, 1 =>c 2. lgl, m=0,1,2,...,
m<j

for some ¢ € (0, 1), then A :=1—-c € (0, 1) and
(15) la,, | <lagIN"/c, m=0,1,2,....

Proof. letA,, =% |ll,-|. Then (14) reads

m<j
A4, -4, =>cA,,, alm,
or,4,. ., <(1-0A,, all m, therefore, with A :=1 —¢,

ApyjSNA,, alm,j,
and so,
g, | =4, Ay SA, SN"4, <lgyIN"/c. QED.

In order to apply this lemma to (12), we pick m, > i and let

I ={I€EZImyg+k-D(m-1)<j<my+k-1m}, m=0,1,....
Then, with
a, = 2 Iai,-lz, all m,
i€,
we obtain from (12) that
4, >D;> X a

J’
m<j

m=0,1,2,...;

hence, from the lemma,

max lo; | < a2 <D (1 - D2ym/24%
i€
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while, by (11),
%
algz <(Z Ia'.]. |2> < D%.
j

This proves the asserted exponential decay of |ay| for j > i; but G, is symmetric.
Q.ED.
It follows at once that

(16) IG5 e < consty 2/(1 = \p).

In view of the discussion at the end of Section 2, we have therefore proved the follow-
ing theorem.

THEOREM 1. There exists a constant ¢ depending only on k so that the norm
ILillo of L,-approximation by splines of order k with knot sequence t, as a map on
L., satisfies

MLl < c@M@y”

with the global mesh ratio M{*) given by

t’]
There seems to be little hope that this argument would even support a bound
in terms of mgk), let alone a bound independent of the mesh t.

4. A Mesh Independent Bound for L,-Approximation by C°-Piecewise Poly-
nomials. Pick k > 1. Let £ = (&)} in (a, b) witha =: §, < -+ <§,,, :=b,and
let Pf be the L,-approximation to f by elements of Py N C% := {fECJa, b]|
Fle;, g € P,}. Todd Dupont [3] has shown some time ago that P can be bound-
ed as a map on L, independently of £ by constructing a basis for ran P for which a
certain matrix related to the Gramian is strictly diagonally dominant. We take the
occasion to give a proof in terms of B-splines.

If t = (¢)7*¥ is the nondecreasing sequence which contains a and b exactly &
times and each of £,, .. ., &, exactly k — 1 times (and nothing else), then

P, NC= Sk 12

hence then P = L, introduced in Section 2, therefore, ||P|| < IIG™1|| with G given by
(3)—(6) in terms of t as determined from £.

THEOREM 2. Let G := (k f(}NiNi)f, j=1 be the matrix G in the special case
r= 0, [a,p] = [0, 1]. Then, forall £, IG7 1|, = NG~ Y.,. In particular, ||P|| <
G|, for all §&. Hence (T. Dupont) sup|IP|| < e.

Proof. let§ | =a,§,,,=>b. Then,form=0,...,r+ I,Nm(k_1)+1 has
its support on the two intervals (£,,_,, &, +,) of £&. All other V; have their support
in just one interval. Correspondingly, the matrix G is almost block diagonal, with
r+ 1 k x k blocks overlapping in just one row and column. For k = 4 (the cubic
case) and r = 2 this looks like
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X X X X
X X X X
X X X X
X X X X X X X
X X X X
X X X X
X X X X X X X
X X X X
X X X X
X X X X

Since the linear change of the independent variable taking [£,,, &,,.,] to [0, 1]
carries

Ny =1y +i O Em> Em+a] tOA’C’gOH [0,1], i=1,...,k,
we have
B /Gyt — Em NG i=1
(D) Gpumtytiam -1y = Gypi=2,...,k-1 L J=1,...,k,
(A /Emsr = Em)) O i = K
for m= 0, ..., r. This says that each of the r + 1 blocks of G is essentially equal
to G.

G is totally positive by [1]. Its inverse is therefore a checkerboard matrix, hence
(see [1, p. 541])

(18) if y is such that 25 G;(=)*/y; = 1, alli, then IG™ |, = I Yl
j
But such a y is easily constructed. Take x = (x,, ..., X;) so that
. A _ .+ . _ .
(19) 2 Gy =1, alli,
i

and extend x to a (kK — 1)-periodic function y = (y,)] on all of (1, ..., n). This is
possible since x, = x; by symmetry. Then, for i = m(k — 1) + I, we have from (17)
and (19) that

LN 3

TG () y = ¥ Gy iy =1, I=2,...k-1;m=0,...,r,

j i=1
and also
61 = Bemar/ Emrr ~ Emer)) 2 Gry(F i,
j ]

+ (AE,,,/(E,,,H - Em—l))zélj(_)l+jxi =1
j

foriI=1,m=0,...,r+1.
This proves with (18) that
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-1 A1
G e = 1Yl = IXlle = IG" lo. Q.E.D.

Mathematics Research Center
University of Wisconsin
Madison, Wisconsin 53706

1. C. de BOOR, “Bounding the error in spline interpolation,” SIAM Rev., v. 16, 1974,
pp. 531—-544. MR 50 # 13976.

2. J. DOUGLAS, JR., T. DUPONT & L. WAHLBIN, “Optimal L, error estimates for
Galerkin approximations to solutions of two-point boundary value problems,” Math. Comp., v. 29,
1975, pp. 475—483. MR 51 # 7298.

3. T. DUPONT, Private communication.



