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A Bound on the LOO-Norm of L2-Approximation by 
Splines in Terms of a Global Mesh Ratio 

By Carl de Boor* 

Abstract. Let Lkf denote the least-squares approximation to f E L1 by splines of 
order k with knot sequence t = (ti)1+k. In connection with their work on Galerkin's 
method for solving differential equations, Douglas, Dupont and Wahlbin have shown 
that the norm IILklIo, of Lk as a map on Loo can be bounded as follows, 

IlLklloo < constkMt, 

with Mt a global mesh ratio, given by 

Mt := max Ati/min {AtilAti > 0}. 

Using their very nice idea together with some facts about B-splines, it is shown here 
that even 

JlLk lloo < constk(mt ) 

M(k) with the smaller global mesh ratio Mt given by 

A4 :=) max (ti+k-ti)(t+k - ti). 

A mesh independent bound for L2-approximation by continuous piecewise poly- 
nomials is also given. 

1. Introduction. This note is an addendum to the clever paper by Douglas, Du- 
pont and Wahlbin [2] in which these authors bound the linear map of least-squares 
approximation by splines of order k with knot sequence t := (ti), as a map on L., in 
terms of the particular global mesh ratio 

Mt= max Ati/min {Ati lAt1 > O}. 

Their argument is very elegant. But their result is puzzling in one aspect: The ratio 
Mt is not a continuous function of t. If, e.g., t is uniform, hence Mt = 1, and we now 
let t -+ t* by letting just one knot approach its neighbor, leaving all other knots fixed, 
then 

lim Mt =?, while Mt *=2. 

Correspondingly, their bound goes to infinity as t > t*, yet is again finite for the 
particular knot sequence tO. 

This puzzling aspect is removed below. It is shown that (as asserted in a footnote 
to [1]) their very nice argument can be used to give a bound in terms of the smaller 
global mesh ratio 

(1) Mtk) : max (ti+k -t)/min (ti+k -ti) 

Received November 10, 1975 
AMS (MOS) subject classifications (1970). Primary 41A15. 
Key words and phrases. Least-squares approximation by splines, error bounds. 
*Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. 

Copyright ( 1976, American Mathematical Society 

765 



766 CARL DE BOOR 

which does depend continuously on t in {t E Rn+k It, < t1+ 1, t, < ti+k, all i}. 

2. Least-Squares Approximation by Splines of Order k. Let t := (ti)n+k be a 
nondecreasing sequence, with ti < ti+k, all i. A spline of order k with knot sequence 
t is, by definition, any function of the form 

n 
Z oiNi 

i=1 

with a E Rn and Ni the normalized B-spline of order k with knots ti, . . . ti+k, i.e., 

NP() :=Ni,k,t(t) =(ti+ k ti) Iti, ***iti] -t)k+ 

In words, for each t, NP(t) iS (ti+k - ti) times the kth divided difference at ti, .. ., ti+k 

of (s - t)k-las a function of s. 
+ 

We denote the totality of all splines of order k with knot sequence t by Sk,t. 
More detail about Sk,t is provided in [1] and its references. 

Next, let Lk denote the linear projector on L1 defined by the condition that 
Lkf E Sk,t, and, for all g E Skt f(ff Lk f)g = 0, i.e., Lkf is the L2-approximation 
to f in Sk,t. We are interested in estimating the norm I[Lkllp of Lk as a map on Lp. 
Since 

IILk Ilp = IILkllq for I/p + 1/q = 1, 

and IILkII2 = 1, interpolation will given a bound on IILkllp in terms of IILkllc, = IILklll, 
as is pointed out in [2]. It therefore suffices to consider IILkIL. 

Let Lk f = la^N,. Then IILkfIK1o < Hall0 since Ni > 0, all i, and jN1 S 1, while 

ZfNiNv aj = f <SK [(ti+k - t1)/k] If Ill, all i, 

since Ni > 0 and fNi = (ti+k - ti)/k. Therefore, 

(2)- IILkIll < JIG-1 llo 

with 

(3) G:=G. = E1/2G2E-/2 

where E is a diagonal matrix, 

(4) E r= rkl(tk + 1- t, ***klk(tk +n tn)J 

2 
and G2 is the Gramian matrix for the basis (Ni) of Sk,t i.e. 

/2 2 \n 
(5) G2 

and 
p 

(6) Ni := [k/(ti+k - t)] /PNi 

With this normalization, we are assured of the existence of a positive constant Dk de- 
pending only on k and not at all on t or n so that 
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(7) D-'JJctJp <|| Ffj < Ilallp, all a ERn+k 

(see the theorem on p. 539 of [1]). This inequality implies that 

(8) IIG-1 llo ?< constk 

for some constk depending only on k as we will show below; and, on combining this 
with (2)-(4), we obtain the desired conclusion 

(9) IL l6 constk(M,(k))11 . 
2 

3. A Bound for IIG1 II.. With (a11)'1 G-1, let f1 Y21a1N._ Then 

= ij, all j; 

hence 

2 2 
iNi fi + ? . L icN4fi = atj, 

)?i 

i.e., 

(10) 2fiI2 = i 

Therefore, by (7), 

Dk2(4?Di 2 Cia12 <?III2 = ai 

hence, as (xii = lltiI2 O (G-1 is invertible!), we have a1i 6 Dk; and so, IIf4II2 ?Dk 

and 

(1 1) ( |~~~1aii |12 6Difil D(a) < D2 

This shows that 

IIG2 11|00 = max EIaij I 6 n max ( aij 12) 6 nh/2D2 2 
k~I 

and so bounds IIG-1 llo in terms of only k and n. From this, one obtains 

IG11< (2M,(k))112 
2 

a bound in terms of the desired global mesh ratio, except that the bound goes to in- 
finity with the number of mesh points. Note that we can express Mt(k) in terms of 
n and the local mesh ratio 

m(k) max (ti+k - ti)/(tj+k - 

Ii-j l-1 

hence, we even have a bound or, JIG-1 '11 in terms of that local mesh ratio but, alas, 
involving also n. 

In order to remove this dependence on n, we use the ideas of Douglas, Dupont 
and Wahlbin [2] to prove the following lemma. 

LEMMA 1. There exist constk and Xk E (0, 1) independent of n or t so that, 
for all i and j, 

I a1i1 I < constk(Xk)i. 
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if2 Proof We observed earlier that the function t = ai N, is orthogonal to 

span(N,)j1j. Hence, for any m > i, 
2 

fi, m : 2 aNi 
m j 

is orthogonal to fJ and, therefore, also orthogonal to fti, m-k+ 1 since the latter function 
agrees with fi on the support of fi m. This proves that 

(12) 1Ifi,m-k+1 l2 ? II fi,m112 = 
1fi,m-k+ 1 i,mII2 

from which we conclude that 
2 2 2 2 

m-k<j 2 m-k<j<m 2 

or, with the inequality (7), 

(13) E Ic I2>Di2 Z DIk12, m = i+ 1, i+ 2,. 
m-k<j<m m-k<j 

Faced with a similar inequality, Douglas, Dupont and Wahlbin [2] make use of 
what amounts to the following discrete Gronwall inequality: 

LEMMA 2. If the sequence ao, a,, . . . satisfies 

(14) lam Ic X a,1, m=0, 1,2,. 
m<j 

for some c E (0, 1), then X := 1 - c e (0, 1) and 

(15) lam I < lao lXm/c, m = 0, 1, 2, .... 

Proof. Let Am := Zm<jJai j. Then (14) reads 

Am -Am+, > cAm, all m, 

or, A m+1 S (1 - c)Am, an m, therefore, with X := 1 - c, 

Am+ j S XiAm' all m, j, 

and so, 

lam I=Am -Am+1 ?Am XmAoIaoIXm/c. Q.E.D. 

In order to apply this lemma to (12), we pick mo > i and let 

Jm {= i e Z ImO + (k - 1)(m - 1) <j < mo + (k - l)m}, m= 0,1 .... 

Then, with 

am : l ti1I2, allm, 
)EJm 

we obtain from (12) that 

-mD2 , aj, m 012.. 
m?j 

hence, from the lemma, 

max I ot..I < am S Dk(l - D*-2)m/2a1/2 
JeJm 
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while, by (11), 

aO 2< (E clij I1) < D2 

This proves the asserted exponential decay of I aii I for i > i; but G2 is symmetric. 
Q.E.D. 

It follows at once that 

(16) IIG1 l1L. < constk 2/(1 -Xk) 

In view of the discussion at the end of Section 2, we have therefore proved the follow- 
ing theorem. 

THEOREM 1. There exists a constant c depending only on k so that the norm 

ILkllo of L2-approximation by splines of order k with knot sequence t, as a map on 
Lo<, satisfies 

ILk ll ? c(Mt k))'12 

with the global mesh ratio M(k) given by 

j(k) max (ti+k 
- 

ti)/(tj+k -tj). 
i,j 

There seems to be little hope that this argument would even support a bound 
in terms of M(k), let alone a bound independent of the mesh t. 

4. A Mesh Independent Bound for L2-Approximation by C?-Piecewise Poly- 
nomials. Pick k > 1. Let Q = (j)Y in (a, b) with a =: tO < ... < b, and 
let Pf be the L2-approximation to f by elements of Pk t n CO {f E C[a, b] I 
f l(i, ti+ 1) E Pk}. Todd Dupont (3] has shown some time ago that P can be bound- 
ed as a map on L. independently of t by constructing a basis for ran P for which a 
certain matrix related to the Gramian is strictly diagonally dominant. We take the 
occasion to give a proof in terms of B-splines. 

If t = (ti),+k is the nondecreasing sequence which contains a and b exactly k 
times and each of tl, . exactly k - 1 times (and nothing else), then 

Pkft n C0 = Sk,tI 

hence then P = Lk introduced in Section 2, therefore, 111 < JIG-'1 II with G given by 
(3)-(6) in terms of t as determined from t. 

TlHEOREM 2. Let G (kfJN-N-)i11 be the matrix G in the special case 
r = 0, [a, b] = [0, 1]. Then, for all t, JIG-1 =l - IIG.1ll. In particular, IIPII < 

IG-1 Il. for all S. Hence (T. Dupont) suptlPIl < oo. 
Proof. Let t-1= a, r+2= b. Then,for m=0,...,r +1,Nm(k-1)+l has 

its support on the two intervals (tm-1 , tn + 1) of t. All other Ni have their support 
in just one interval. Correspondingly, the matrix G is almost block diagonal, with 
r + 1 k x k blocks overlapping in just one row and column. For k = 4 (the cubic 
case) and r = 2 this looks like 
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X X X X 

X X X X 

X X X X 

x x x 
Xxx x x x x 

X X X X 

X X X X 

x xx x 

Since the linear change of the independent variable taking [tm m + l] to [0, 1] 
carries 

Nm(k-l)+ion [ +m'm+1] toNion [0, 1], i= 1, ... .k, 

we have 

W(Am/(Qm+ 1- tm_0))Gij, i = 1 

(17) Gm(k-1)+i,m(k-1)+j = Ge1, i=2, .. . , k -1 . , j= 1, .. . ,k, 

W(m m + 2(2- m))Gkj, i = k 

for m = 0 ... , r. This says that each of the r + 1 blocks of G is essentially equal 

to G. 
G is totally positive by [1]. Its inverse is therefore a checkerboard matrix, hence 

(see [1, p. 541]) 

(18) if y is such that ZG11(-)+iyy = 1, all i, then JIG-'I 11 = IIyll. 

But such a y is easily constructed. Take x = (x1, . .. , Xk) so that 

(19) G11( )i+)x1 = 1, all i, 
j 

and extend x to a (k - 1)-periodic function y = (yi)' on all of (1, . . ., n). This is 

possible since xk = x1 by symmetry. Then, for i = m(k - 1) + I, we have from (17) 
and (19) that 

kA 

EGii (-l)i+ jyj= EGIj(-)I+ jxj = 1 I=2 . . .,k-l1;m=O,. ..,r 
j j=l 

and also 

ZGij(') Yj = (1Amli/(Qm+i -Mm-b)) Gki()k+ ) Xi 
i i 

? (/.tm/(tm+ - tm-b))EG lj(_)1+)xi = 1 

for I =1; m = 0 ... , r + 1. 

This proves with (18) that 
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JIG-1'II = IIYIyl = IIxIL0 = JIG11K. Q.E.D. 
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