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Asymptotic Formulas Related to Free Products
of Cyclic Groups

By Morris Newman

Abstract. Asymptotic formulas for the number of subgroups of a given index of the

free product of finitely many cyclic groups are given. The classical modular group T’

is discussed in detail, and a table of the number of subgroups of I" of index n is given
for 1 <n < 100.

Formulas for the number of subgroups of a given index of free groups of finite
rank have been given by M. Hall [2], and have been generalized to the case of free prod-
ucts of finitely many cyclic groups by I. M. S. Dey [1]. In this note we consider the
asymptotic behavior of these numbers, and also give some tabular material for the case
of the classical modular group.

These formulas have the common feature that the recurrence formulas associated
with them have the same structure; and before considering questions of asymptotic
behavior, we consider the formulas from a purely formal point of view.

Let ag, ay, 0y, . .., M, M,, M5, . .. be sequences of real numbers such that

n
) oy =1, z o, M, =na,, n=l
k=1
Define the formal power series f(x), g(x) by
=3 ax" gx)= > M,x".
n=0 n=1

Then (1) is equivalent to the identity

@) gx) = xf'(x)/f (x).
Formula (2) implies that
w M
3) >~ x"=log f(x),
n=1
so that
w M, o (_qyi—1
@) > —n—x"=log(l +fx)-D= Y g%—(f(x)—l)”.
n= n=1

Comparing coefficients of corresponding powers of x in (4), we find the follow-
ing result, which we state as a theorem:

THEOREM 1. The numbers M, are given explicitly as functions of the numbers
a, by the formula
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M

' n (_l)k—l
(5) - = — S
PP
where
S, = > o, , Q.
(6) , n1+n2+--°+nk=n;ni>l 172 "k

Conversely, if we rewrite (4) as
oc Mn ©o Mn
fey=exp{ 2 x| = I exp{ 5~ x" ),
n=1 n=1
we find that
@, = 2 MM~ e M1 0 2 2 ) e Ty
r1+2r2+--'+nrn=n;ri>0 "

This discussion implies an interesting formal identity, which we mention in passing.
If we consider (1) as a system of equations for M, M,, . .., M,, then Cramer’s rule
implies the following: If A is the n x n matrix

m ]
a 1 20,
A = a2 Otl 1 3“3 ’
L&, 1% _2 %3 nao, J
then
n ( _ l)k -1
@) det@)=n Y — Sy
k=1
where S, is given by (6).
We now assume certain properties of the sequences o, a;, @,, ..., M, M,,
M,, . . ., and use them to derive the following lemma, which will form the basis of the
discussion of asymptotic properties that follows.
LemMMmA 1. Let a4, @, @,, . . . be a sequence of positive numbers such that
ay = 1. Suppose that M, M,, M, . . . is also a sequence of positive numbers, and
that
n
> @ My =no, n=l
k=1
Put

n-—1
An = kz 0‘k(xn—k/aln’
=1

and assume that A, — Q0 asn—> . Then M, ~ na,,.
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Proof. Because of the positivity, we have that

n
M, < ¥ o, My =na,, n=>l
k=1

Thus
n—1 n-—1 n n-1
< . e
> %G M < Y o, , ko =3 3, 0y,

n--1 n
> o, _x M <5 0,4,.
k=1
It follows that
n—1

n . 1
nan =Mn+kZl an—kMk <Mn+§anAn, Mn>nan <]'—§An>-

Thus
@® 1-%A4,<M,/ng, <1;

and so, M, /na,, — 1 as n —> oo, since 4, — 0 as n — oo, This completes the proof.
For the case of free groups of finite rank we also require the following lemma:
LEMMA 2. Suppose that s 2 1, and put

n-—1 n =S
4, =3 , n=1.
k=1 k
Then A, — Oas n — .

Proof. We may assume that n > 3. Since (;/) > (}) for2 <

k
-5
n-2(n n
An=2n‘s+z<> <2n‘s+(n—3)<>
k=2 \k 2
n—1\-s
=2n‘s+n‘s(n—3)< 3 > .

Now (n — 1)/2 > 1, since n = 3. It follows that

<n — 2, we have
-

-1
_1
A, <2n5 + n=5(n — 3) <” > ) < 4ns,

Since A4,, is positive, the result follows.

We now use these lemmas to obtain our first asymptotic result:

THEOREM 2. Let M, (n) be the number of subgroups of index n of the free group
of rank r, where r = 2. Then

M, (n) ~n-n"" 1

Proof. M. Hall’s recurrence formula for M, (n) [2] states that

n
2 -R"TM@E =n-n""1, a1
k=1
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By Lemma 1 we need only show that if

n—1 1 L ) n—1/n\1-r
=5 Kl - k-t = i
Zwte ot =5 (1)

k=1
then 4, — 0 as n —>oo. But this is the content of Lemma 2, sincer — 12> 1. In
fact, inequality (8) implies that

2 M, (n)

9) 1 - < —" <1, n>3.
=l pepr!
This completes the proof.
ASYMPTOTIC FORMULAS RELATED TO FREE PRODUCTS 839
M n ( l)k—l
n
(5) Z Si>
where
Si = 2 Gy Oyt 0"y

(6) nitngtecctn=nin;z1

Conversely, if we rewrite (4) as
M oo M,, o
f(x) = exp Z H exp ;
n=1 n=
we find that
o, = > M;‘Mgz v M;"/lrlrl! 2r2r2! ceepnnp 1
r1+2r2+°-°+nrn=n;ri>0 n

This discussion implies an interesting formal identity, which we mention in passing.
If we consider (1) as a system of equations for M,, M,, . .., M, then Cramer’s rule
implies the following: If A is the n x n matrix

- )
o 1 2a,
A = a2 (Xl 1 3a3 )
L %1% -2 %3 nao, |
then
n _ l)k— 1

@) det(4) =n Z A
where S, is given by (6).

We now assume certain properties of the sequences ay, o, &,, ..., M, M,,

M,, ..., and use them to derive the following lemma, which will form the basis of the
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The importance of these numbers stems from the work of I. M. S. Dey [1] who showed
that if M, is the number of subgroups of index n of the free product Cp1 * sz LI

* Cl’k’ where p; is either e or an integer = 2, then M, satisfies the recurrence (1), with
= e o o 1
(12) Gy =1y ()7, (1) - 7, (!

Of course, 7., (n) = n!.
When p is prime, 'rp(n) is most easily calculated by the recurrence formula

‘rp(n+1)=1'p(n)+(p——1)! (pil>‘rp(n~p+l), n=zp-1,

with the initial conditions
p,0)=1,()=--=7,-1D=1

The asymptotic behavior of Tp(n) for p prime was determined by L. Moser and
M. Wyman in [3], by means of the generating function (11). They showed that

p—1 p—1

13 - l/p
(13) Tp(n)~erxp< » nlogn > n+n ),
where

(14) K,=2""%"%  K,=p™%, p>2

It follows from (13), (14), and Stirling’s formula that

(15) T,(n)73(n)/n! ~ K exp(% logn — g— +nll2 4 pl3 _ ;—log n),
where K = (127e'/?)~ 112,

Of particular interest is the case I' = C, * C5, the classical modular group. We
wish to show that in this case

M, ~ 1,(m)73(n)/(n — 1.

This is rather more difficult than the problem for free groups of finite rank, and
the asymptotic properties of the coefficients 7,(n), 75(n) come into play. In a well-
defined sense, this is the most difficult case. The coefficients in the recurrence for-
mula grow least rapidly, corresponding to the fact that I has the smallest hyperbolic area
of all noncompact Fuchsian groups. Further comments on this point will be made later
on.

The basic problem will be to show that if

a, = 1y(m)73(n)/n!,

then
n—1

A4, = Z o, _gla, — 0 asn-—> oo,
k=1
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The discussion that follows is devoted to this end.
The asymptotic formula (15) implies that

(16) 4, = 0( T expO() +0(n - k) - 0(n))> ,

1<k<n/2
where

0(n) =6£ log n + n'/2 +n'/3,

(Here we have used the symmetry of the sum, and the facts that the terms in the expo-
nent corresponding to — n/6 disappear, and that n/k(n — k) is bounded by an absolute
constant for 1 <k <n — 1))

Consider

(x) = ’6—‘ log x + x1/2 + x!/3,

Then a brief calculation shows that
36x3/30"(x) = 6x2/3 — 9x1/6 _ 8,

and that 8" (x) = 0 for x = 6.17250 . . . . Hence 6"(x) = 0 for x = 7, and it follows
that 6'(x) is monotone increasing for x > 7.
Now consider the inequality

a7 bk+ D) +0(n—k—-1)<8k)+0(n-k).
This will hold if and only if
0k +1)—0(k)<0(n—k)—0(n—-k—1).
We have
0k +1) —0(k)=0'(k + 0,), 0<o, <1,
0n—k)—0(n—-k—-1)=0n-k—-1+0,), 0< o, <1
Assume that
(18) T<k<¥%n-1.

Then k + 1 <n — k — 1, and using the fact that 6'(x) is monotone increasing for x >
7, we get

0k +1) — (k) =0'(k + o) <Ok + 1)<0'(n —k — 1)
<0(n—-k—1+0,)=00n-k—0@n—k—1).

It follows that (17) holds, provided that k satisfies (18). We state the consequence of
this result as a lemma.
LeEMMA 3. The function 0(k) + 0(n — k) satisfies

0(k) +0(n — k) <O(T) +0(n—7), 1<k<n/2.
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We also remark that if k£ remains bounded, then

(19) 0(k) + 0(n — k) — 0(n) = — ’% log n + O(1).

We can now prove

LEMMA 4. Let A, = T} 1 a0, Jay,, where a, = 1,(n)r4(n)/n!. Then A, =
O(n=11%), so0 that A, — O as n — =

Proof. By Lemma 3,

A, = 0( S exp(O(k) + 0(n — k) - 0(n))>

1<k<6
+0( 3 ew@D +00i-7) - 0(n))> .
7<k<n/2
We have
L exp@0) +001 -0 -0@) = X exp (—16‘- log n + 0(1)) = 0(n~11%),
1<k<6 1Sk<6
and

> exp(0(7) + 6(n — 7) — 0(n)) = 0(/1 exp (-— z—log n+ 0(1))) = O(n=1/9),

7<k<n/2
The result now follows.
Lemmas 1 and 4 now imply our desired result:

THEOREM 4. Let M, denote the number of subgroups of index n of the classical
modular group T. Then

M, ~ 1,(n)75(n)/(n — 1)! ~ K exp <% log n —g+n1/2 +nll3 + é—log n) ,

where K = (12me'/?)=1/2

Precisely the same discussion applies to the more general case when M,, is the
number of subgroups of index n of the free product Cp1 * sz *oeee ok Cpk, with one
exception. The corresponding result is that

M, ~ Tpl(")sz(”) cee Tpk(n)/(n -,

where Tp(n) is the number of homomorphisms of C, into S,. The exception occurs
for C, * C,. The difficulty here is that 12(n)2/n! does not grow fast enough; in fact,

7,(n)*/n! ~ K exp <2n1/2 - é—log n) ,

where K = (8me)~ /2. The exception is quite natural in view of the fact that this is
the only group of the form Cp1 * sz *oeee ok CPk which does not have a representa-
tion as a Fuchsian group, since it would correspond to one of genus O, with a

single parabolic generator and 2 elliptic generators of order 2; and so would have zero
hyperbolic area, which is not possible.
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M(N) is the number of subgroups of the classical modular group of index N

N M(N) N M(N)

1 1 S1 10425042304325308

2 1 €2 22£3258168183056

K] 4 s3 501882737057S5404

4 8 €4 10547567621517112

5 5 58 23788180556758856

6 22 s6 51216574162595680

7 42 €7 1084201401505584¢€4

) 40 s8 24455€72£280402557

) 120 59 531051678812563744

10 2€€ €0 11320£8252012247S36

11 286 61 2555221387154759289

12 7€4 €2 SE91154€05087446054

13 172% 62 12000605074451550160

14 2198 €4 27117£52811153855680

15 5168 €S 5674%471015816115222

16 12144 €€ 12G09€12322€67775868166

17 17034 €7 2G621€2183506165140220

18 237702 €8 €47820632613<303527128

16 88¢cs8 6G 140868030£2338€63887$66

20 126584 70 3162€61365458309148284

21 28827¢C 71 7123474£18%20529826856G2

z2 6€2572 72 15E85S€E€680€5303338€4208
23 1118596 2 3540835%627074036560816

24 2320€4€4 74 7C4117G96G26SESESS3012G4
25 5428800 75 1747868€6873511715532628

2€ S4CC€517 76 3€7988203771373672865G668

27 16103588 77 8G7183482867489002743454

28 44701696 78 168608132273065424270502¢€0

2¢ 80504113 79 453333701587714366€107784

20 162344502 80 10269150024287€408€365S7G2
31 37924<288 81 22858848125¢7554139€52380

32 711568944 ez §2311144432011656725752204
33 1434840718 a3 11904515015943060S536306820

24 33208<€S70€2 g4 2€€4080384095645G623245611632

35 6391672638 85 61125786553452232881072€884

2é 129213283022 ee 13G6725767512C158765C8€758632
37 29€11074174 87 3143030€17470775207826061556

28 58602551708 es8 7231G702€6€R814825521348985G2

39 119001063028 89 16599 371653596567362869244032
40 271231133136 <o 37S2€3€77C72148704S7477862058
41 5478720€5136 S1 865€1501222729298577622800376
42 1119204224 €€6 S2 1€G5€6118484543€465408618451008
43 2541384267716 S3 453310522764485671147172334106
44 S215606253184 S4 1046023788372134074385428350460
4c 10733985041S78 S5 2427025112004378€47451505343€00
46 243200S140€1436 S€E SE38777G065385705215€7323058368
47 50€35071045768 S7 128543913784226053720256237323900
48 104875726986272 s8 26853181 0€6151480€750695788647 7212
49 23€€34212877€84 SS 68435631318931500012779730780508
50 46G877S70SES660 100 1£92665£2010€047518789028053 84624

To illustrate how the problem depends on the hyperbolic area, assume that each
p; is > or a prime. Let the multiplicity of < be # — 1 (¢ > 1), and let the remaining
p; be denoted by ¢; (1 <i<s),sothats+s—-1=k Then if

& =1, ()7, (1) *** 7, (D/n!,
formula (13) implies that

K
an~Kexp(Hnlogn—Hn+an/e"+ é—t—l logn |,

\ i=1
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where K is a constant which need not be specified, and

- 1
H=t-2+2 (1-—).
i—=1 ei

Thus the growth of o, depends upon H, and apart from a constant factor, H is just the
hyperbolic area of CPl * sz * ook CPk'

In conclusion we append a table of M, for 1 <n < 100, where M, is the number
of subgroups of index n of I' = C, * C;. The table was computed in a negligible
amount of time using residue arithmetic by means of the recurrence formula (1), with
a, = 7,(n)75(n)/n!. The approach to 1 of the ratio M, /na, is quite slow, and agrees

well with the estimate
11— M, /na,| = O(n~115)

derived before.

A useful check on the computation is that if n = p€, where p is a prime and
n > 3, then M, = 0 mod p. This is so because I" contains no normal subgroups of
index n.
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