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Asymptotic Formulas Related to Free Products 
of Cyclic Groups 

By Morris Newman 

Abstract. Asymptotic formulas for the number of subgroups of a given index of the 

free product of finitely many cyclic groups are given. The classical modular group r 

is discussed in detail, and a table of the number of subgroups of r of index n is given 

for 1 6 n < 100. 

Formulas for the number of subgroups of a given index of free groups of finite 

rank have been given by M. Hall [2], and have been generalized to the case of free prod- 
ucts of finitely many cyclic groups by I. M. S. Dey [1]. In this note we consider the 

asymptotic behavior of these numbers, and also give some tabular material for the case 

of the classical modular group. 

These formulas have the common feature that the recurrence formulas associated 

with them have the same structure; and before considering questions of asymptotic 

behavior, we consider the formulas from a purely formal point of view. 

Let a05 a, ? 2 5 .., Ml5 M2' M32 . . . be sequences of real numbers such that 

n 
(1) % =a1, ZE an-kMk=nan, n > 1. 

k= 1 

Define the formal power series f (x), g(x) by 
00 00 

f(X) an OX 
n 

g(x) =, M nXn 
n=o n1 

Then (1) is equivalent to the identity 

(2) g(x) = xf'(x)/f(x). 

Formula (2) implies that 

(3) 
~~~~00 Mn 

( Z xA = log Ax)5 
n= 1 

so that 

(4) E nA = log(l + f(x)-M1) = ( n 

Comparing coefficients of corresponding powers of x in (4), we find the follow- 

ing result, which we state as a theorem: 
THEOREM 1. The numbers Mn are given explicitly as functions of the numbers 

an by the formula 
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Mn (I)k11 

where 

(6) ~~~Sk E' Cn Cn k- o 
(6) n l+n2+. +nk=n;ni>I 12 

Conversely, if we rewrite (4) as 

f(x) = exp( E -xn) =X n 
exP(n-xn) 

we find that 

'n = MEnll lr 2rnMr Mr2 1r 2!...nrnrt. 
rl+2r2+* +nr =n;r->O 

This discussion implies an interesting formal identity, which we mention in passing. 
If we consider (1) as a system of equations for M1, M2, . . ., Mn, then Cramer's rule 

implies the following: If A is the n x n matrix 

1 1~~~2 
a(1 1 2(X2 

_a?Un-1n-2 an-3 n a 

then 

n (_ l) 1 
(7) det(A) = n E k sk 

k= 1 k 

where Sk is given by (6). 
We now assume certain properties of the sequences t0, 1, a 2,..., M1, M2, 

M3, . . ., and use them to derive the following lemma, which will form the basis of the 
discussion of asymptotic properties that follows. 

LEMMA 1. Let a?0, a 1, a2, . . . be a sequence of positive numbers such that 
aC0 = 1. Suppose that M1, M2, M3, ... is also a sequence of positive numbers, and 
that 

n 
E Cna-k Mk nafc, n >1. 

k= 1 

Put 
n-1 

An= E akafn-kl /an' 
k=1 

and assume that A. ? 0as n - oo. Then Mn , ngn. 
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Proof. Because of the positivity, we have that 

n 
M1f < cx k k nanl, n>1I. Mn , ahn -k Mk= ?n 1 

k= 1 

Thus 
n-i n-I n.-i 

E an- Mk6 na,_k *ka, = 2 E2 an-kak, 

n-~~~ k1 
n k=1 k=1 k=1 

n--i 

X an-k Mk 2 anAn 
k= 1 

It follows that 

nan =Mn + E an-kMk <Mn +% anAn Mn >nan(I -2An). 

Thus 

(8) 1-?!An <M/nna <1; 

and so, Mn/natn 1 as n oo, since An ? 0 as n oo. This completes the proof. 
For the case of free groups of finite rank we also require the following lemma: 
LEMMA 2. Suppose that s > 1, and put 

n-1 /n 

k- 1 tk 

Then An O as n oo. 
Proof. We may assume that n > 3. Since (n > ()for2 k n-2, we have 

n 2 /n-l\-s 
An = 2n-S+ <-n) 2n-s +(n -3)( 

= 2n-s + n-s(n - 3) 1)2 

Now (n - 1)/2 > 1, since n > 3. It follows that 

An < 2n-5 + n-s(n -3) j ) < 4n-5. 

Since An is positive, the result follows. 
We now use these lemmas to obtain our first asymptotic result: 
THEOREM 2. Let Mr((n) be the number of subgroups of index n of the free group 

of rank r, where r > 2. Then 

Mr(n) n n!r-l. 

Proof M. Hall's recurrence formula for Mr(n) [2] states that 
n 

, (n- k)r- 1Mr(k) = n * n !r- 1, n 1. 
k= 1 
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By Lemma 1 we need only show that if 

n- 1 n-iF" 1- 
An = , k!r-l(f _ k)!r-l/n!r-1 =- 1 ( 

n 
)-r 

then An > 0 as n -+oo. But this is the content of Lemma 2, since r - 1 > 1. In 
fact, inequality (8) implies that 

(9) 
2 Mr(n) I >3 

1r-1 n.!r- 

This completes the proof. 
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12 (I)k- 1 

(5) n E k- Sk, 

where 

(6)~~~~~~ 1 +n2+' +nk=n;ni->- 1 2 k 

Conversely, if we rewrite (4) as 

f(x)= exp( n x ) n xn I exp( n xn), 

we find that 

tn =mr, M22 *.*.* rnnl r,rM 2r2r n! 2 . r.nr 
rl+2r2+***+nrn;ri>O 

This discussion implies an interesting formal identity, which we mention in passing. 
If we consider (1) as a system of equations for M1, M2, . . , Mn then Cramer's rule 

implies the following: If A is the n x n matrix 

?1 1 00 
1i 2a2 

A a2 ai 1 3%3 

a-1n-lan-2 2n-3 n an 

then 

n ( )k- 1 
(7) det(A) = n E k Sk 

k= 1 

where Sk is given by (6). 
We now assume certain properties of the sequences a0, a1, a,2..., M1, M2, 

M3 ,and use them to derive the following lemma, which will form the basis of the 
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The importance of these numbers stems from the work of I. M. S. Dey [1] who showed 
that if Mn is the number of subgroups of index n of the free product C * C * 

P1 P2 

* C where pi is either oo or an integer > 2, then Mn satisfies the recurrence (1), with 

(12) an = Tp 1 (n)rp2 (n) *. k.(n)/n! 

Of course, r,0(n) = n!. 
When p is prime, rp(n) is most easily calculated by the recurrence formula 

rp(n + )=TP(n) + (p-1)! (- ' )rp(n - p +), n >p - 

with the initial conditions 

TP(O) = Tp(1) = r * p * *= p 1) = 1. 

The asymptotic behavior of rP(n) for p prime was determined by L. Moser and 

M. Wyman in [3], by means of the generating function (11). They showed that 

(13) rp(n) Kpexp p ( n log n p nP +nlp 

where 

(14) K2 = 2-/2e1/4, K =p -/22 p > 2 

It follows from (13), (14), and Stirling's formula that 

(15) -2nT()n ~K ex,p 
n 

log n _ n + n' /2 + nl' 3- log n) 

where K = (127re1/2)- 1/2 

Of particular interest is the case f = C2 * C3, the classical modular group. We 
wish to show that in this case 

Mn - 1r2(n)r3(n)/(n - 1)!. 

This is rather more difficult than the problem for free groups of finite rank, and 
the asymptotic properties of the coefficients r2(n), r3(n) come into play. In a well- 
defined sense, this is the most difficult case. The coefficients in the recurrence for- 

mula grow least rapidly, corresponding to the fact that F has the smallest hyperbolic area 
of all noncompact Fuchsian groups. Further comments on this point will be made later 

on. 
The basic problem will be to show that if 

72 n = )T3(n)/n!, 

then 
n-1 

An= t ak-N-kn 0 as n oo. 
k= 1 
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The discussion that follows is devoted to this end. 
The asymptotic formula (15) implies that 

(16) 
An = ?( E exp(O(k) + 0(n - k) - 0(n))), 

1 6 k An /2 

where 

0(n) =6- log n + n12 + n3 

(Here we have used the symmetry of the sum, and the facts that the terms in the expo- 
nent corresponding to - n/6 disappear, and that n/k(n - k) is bounded by an absolute 
constant for 1 < k < n -1.) 

Consider 

8(x) log x + xl/2 + x/3. 

Then a brief calculation shows that 

36x 5130'(x) = 6x213 - 9X16 8, 

and that 0"(x) > 0 for x > 6.17250 .... Hence 0"(x) > 0 for x > 7, and it follows 
that 0'(x) is monotone increasing for x > 7. 

Now consider the inequality 

(17) 0(k + 1) + 0(n - k - 1) < 0(k) + 0(n - k). 

This will hold if and only if 

0(k + 1) - 0(k) < 0(n - k) - 0(n - k - 1). 

We have 

0(k + 1)-0(k) = 0'(k + ), 0 a1 1, 

0(n-k)-0(n-k-1)=0'(n-k-I+u2), 0 <02<1. 

Assume that 

(18) 7<k6<?n-1. 

Then k + 1 < n - k - 1, and using the fact that 0'(x) is monotone increasing for x > 

7, we get 

0(k + 1)-0(k) = 0'(k + ?a) < 0'(k + 1) < 0'(n - k- 1) 

6 8'(n - k-I + u2) = 0(n - k) - 0(n - k-1). 

It follows that (17) holds, provided that k satisfies (18). We state the consequence of 
this result as a lemma. 

LEMMA 3. The function 0(k) + 0(n - k) satisfies 

0(k) + 0(n - k) < 0(7) + 0(n -7), 7 < k < n/2. 
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We also remark that if k remains bounded, then 

(19) 0(k) + 0(n - k) - 0(n) k log n + 0(1). 

We can now prove 
LEMMA 4. LetAn = Sk= 1 akoan - k/lan, where a,n = r2(n)i-3(n)/n!. ThenAn = 

0(n- 116) So that An > ? as n oo. 

Proof By Lemma 3, 

An = exp(0(k) + 0(n - k) - 0(n))) 
1 < k <6 

+ O E exp(0(7) + 0(n-7)-0(n))). 
( 7?k?n/2 / 

We have 

E exp(O(k) + 0(n - k) - 0(n))= E exp (-k log n + 0(i)) = (n 6) 
1 Sk66 1 SkS6 

and 

Z exp(0(7) + 0(n - 7) - 0(n)) = 0(n exp (- 
7 

log n + 0()))= 0(n- 1/6). 
7 S k Sn /2 

The result now follows. 
Lemmas 1 and 4 now imply our desired result: 
THEOREM 4. Let Mn denote the number of subgroups of index n of the classical 

modular group r. Then 

Mn 'r T(n)r3 (n)1(n -1)! , K e_xp - log n - 6n+ nl +n3+2lon) 

where K - (l2re1/2)-1/2. 

Precisely the same discussion applies to the more general case when Mn is the 
number of subgroups of index n of the free product Cp, * Cp * * * Cp with one 
exception. The corresponding result is that 

7n ...)pn 7-Pk(n)l(n -1)! 5 

where rp(n) is the number of homomorphisms of Cp into Sn. The exception occurs 
for C2 * C2. The difficulty here is that r2(n)2/n! does not grow fast enough; in fact, 

(n)21n! - K exp (2n 1/2 - Ilog n) 

where K = (8ire)- 1/2 . The exception is quite natural in view of the fact that this is 
the only group of the form Cp * Cp * * * * * Cp which does not have a representa- 

tion as a Fuchsian group, since it would correspond to one of genus 0, with a 
single parabolic generator and 2 elliptic generators of order 2; and so would have zero 
hyperbolic area, which is not possible. 
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M(N) is the number of subgroups of the classical modular group of index N 

N M(N) N M( N) 

1 1 5 1 1 042904230435308 
2 1 52 23E3258168183056 
3 4 93 5018827370579404 

4 8 54 lC547E97621517112 

5 5 55 237881805567S8856 

6 22 56 5 1219E74162595680 
7 42 57 10842014015058464 

8 40 58 2a4556725280402557 
9 120 59 531051678812968&44 

10 2E5 60 1 1320 8252012247S36 

11 286 61 25552213871547559289 
12 764 62 55911546oS0e7446054 
1 3 17292 63 1 2000 60 507445155 01 60 

14 2198 64 2711 '5281115385968o 
15 5168 65 59749471015816115222 
16 12144 EC 12909612 267775868166 

17 17034 67 29212218390611;5140270 
18 37702 68 6478206'613'303527128 
19 88958 65g 140868030O233863687966 
20 12 6584 70 315 69136545e309148284 

21 2P827C 71 7123474185205298268692 
22 6?2572 '2 1E585E668C6530333864208 

23 1118996 7 35408399627074036560816 

24 2'06464 ,4 7 > 441179692695Ee5 5 301294 
25 5428800 75 174786866873511715532628 
26 4CC517 76 54 
27 1S103'988 77 897183482e67489002743454 

28 44701696 78 1Ce60e1323730942427050260 
29 80904113 79 453 333701 58771 436661 07784 
30 163344502 P 1026S1900242876408?3656792 
31 37924;288 81 228588481 25S 75541396523980 

22 71 1598944 e2 52311i44432011656725753204 
33 1434840718 8? 1190451501=59430609536306820 
34 330OBC7062 e4 2f64080384OS645923245611632 

35 6391673638 e5 611297865534522328810726884 

216 12S21383032 e6 1'572=767512Cl'8769C8q798632 
37 2961107417A 87 3143030617470'75207826061556 

28 58602=51708 e8 7231970266E8148255213489e592 

39 119001063028 89 16599- 371653596567362869244032 
40 2'1131133136 90 375263977'C21A870497477e620S8 

41 547872065136 91 865'1501222729298577623800376 
42 1119204224CE6 92 1CS5611848454364SS40861841008 
43 2E413842 57716 93 453 _ 10522764h85671147172334106 

44 5219606253184 94 lC450237883721340743e5428390460 
4F 10733985041978 55 242702'911300437864745150l343600 
46 2400q14061436 56 553e'779065385705215C73:33058368 
47 50635071045768 97 1285491378422605372029623733900 
48 104875736986272 58 2Se53181061s14eO675G6978864-7212 
49 256C34212877684 99 68435931318'31500012779730780508 
50 4 877570E5b6C 100 1I92555E201O0 47518789028053e4624 

To illustrate how the problem depends on the hyperbolic area, assume that each 

Pi is ?? or a prime. Let the multiplicity of oo be t-I (t > 1), and let the remaining 

Pi be denoted by ei (I < i < s), so that t + s-1 = k. Then if 

T = 1 (n)TP2(n) TPk T (n)/n!, 

formula (13) implies that 

t K exp (Hn log n - Hn + n le ? (+ t-1) logn), 
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where K is a constant which need not be specified, and 

H=t- 
s(2?Z 

i-l1 ei 

Thus the growth of x,, depends upon H, and apart from a constant factor, H is just the 
hyperbolic area of C * C * * * C 

In conclusion we append a table of Mn for 1< n < 100, where Mn is the number 
of subgroups of index n of r = C2 * C3. The table was computed in a negligible 

amount of time using residue arithmetic by means of the recurrence formula (1), with 

?,, = 'r2(n)'r3(n)/n!. The approach to 1 of the ratio MI/ncx, is quite slow, and agrees 
well with the estimate 

I -Mjncx,j 0(n- 1/6 

derived before. 
A useful check on the computation is that if n = pe, where p is a prime and 

n > 3, then M- 0 mod p. This is so because r contains no normal subgroups of 
index n. 
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