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Abstract. Let N be an odd integer thought to be prime. The properties of special 

functions which are generalizations of the functions of Lehmer (Ann. of Math., v. 31, 

1930, pp. 419-448) are used to develop algorithms that produce information con- 

cerning the possible prime divisors of N. It is shown how the factors of N + 1, N2 + 1, 

N2 ? N + 1, together with the factor bounds on these numbers, may all be used to 

calculate lower bounds for the possible prime divisors of N. Frequently, these bounds 

are large enough that N may be shown to be prime. 

These tests were implemented on an IBM/370-158 computer and run on the 

pseudoprime divisors of the first 385 Fibonacci and Lucas numbers. 

1. Introduction. In Brillhart, Lehmer, and Selfridge [1], it was shown how an 
odd integer N, suspected to be prime, may be proved prime provided a sufficient 
number of factors of N - 1 and/or N + 1 have been determined. Later Williams and 
Judd [10] showed that if there were not enough factors of N ? 1 known to prove the 
primality of N, the factors of N2 + 1 could also be used. In an attempt, however, to 
demonstrate the primality of 

N = 13484292549345009218015967701713491137426073107017330576389569 

the large (62 digits) pseudoprime factor of the Lucas* number 1368, we find 

N- 1 = 26 11 * 17 23 Rj, 

N + 1 = 2 * 3 5 * 72 * 389 R 

N2 + 1 = 2 * 193 * 37217 * 1717117 * R4 

with each of R1, R2, R4 being composite and having any prime divisor greater than 
4 x 106. This is not a sufficient number of factors to prove N a prime by using the 
tests of [1] and [10]; but, if we examine N2 - N + 1, we find 

N2 -N + 1 = 3 * 109 * 216757 * 1339903 R6. 

In this paper we will develop methods which allow the factors of N ? 1, N2 + 1, 
N2 ? N + 1 to be utilized in an attempt to show that N is a prime. As was done in 

[10], we make use of the properties of the generalized Lehmer functions of Williams 
[9] in order to develop the theoretical background necessary for establishing these 
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algorithms. In the last two sections we discuss the results of a computer run on the 
numbers labelled pseudoprime in the table of factors of In and fn in Jarden [2]. We 
also present several detailed examples. 

It should be noted at this point that D. H. Lehmer [3], [4] has previously 
considered the possibility of using factors of N2 + N + 1 to demonstrate the primality 
of N. His technique, however, involves the use of Pierce's [6] functions; and it 
also requires that N2 + N + 1 be completely factored. 

2. The Function Cn. Let f (x) be a polynomial 

x- P1x + P2Xs-2 - . . . + (- l)Sp 

with integer coefficients and s distinct zeros P1l P2, . .. I Ps. 

Let Q be an integer such that (P1 P2, . . .,Ps, Q) = 1; and let a,, (i =i1, 

2, ..., s) be the zeros of x2 - pix + Q (i-1, 2,.. ., s). Put 

I P2 p22 . S I s- 
1 * 2 * - * S-i 

P1 p 2 ...p1- 
1 P2 P2 P* 

1 s p 2 
* 

S 

A = 62 E =f(2@vQ)f(-2VQ), 

vn(i = ?zi+ pin (i = I1, 2, .. s) 

and define Vjn =O, 1, 2,..., s - 1) as 

1 P1 pl2 * * * il-i jn(pl) p +1 . . . s-I 
P, 

2 ~ "~ v,p) 1p1 

2 P2 p2 Vn(P2) pi21 21 
__1 

Vj,2 - S . 

Ps Ps * pi l vn(Ps) pi+1 * * * ps- 

The function Cn is then defined to be the greatest common divisor (V1 ,n V2 ,n 

V3,n * * * , Vs-i,n)of Vin, V2,^, V3,n, .. . Vs_ln 
As we shall be most concerned in this paper with the case s = 3, we conclude 

this section with some special properties of VOn, V1,n V2n, Cn for s = 3. We first 
note that 

A = p2p2 + 18P1P2P3 - 4P3 - 4PP3 - 27P2 1 2 2 1 
P~~3 3, 

E = (P3 + 4QP1)2 _ Q(2P2 + 8Q)2. 

The first few values for the functions VO,nl V1,n and V2,n are given in the 
following table. 
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n Von vl,n V2,n 

0 2 0 0 

1 0 1 0 

2 -2Q 0 1 

3 P3 -P2 - 3Q P1 

4 P3P1 2Q2 P3 - PP2 P -P2 -4Q 

3P2 -P2P3 -5QP3 P22 -P2P12 +P1P3 + 5QP2 ? SQ2 P3-22PP2 -5QP, ?P3 

Also, each of the functions V0On, V1 ,n and V2 ,n satisfies the recurrence 

Xn+6 ' PI Xn + 5 (P2 + 3Q)Xn 4 + (2P1Q +P3)Xn? + 3 

(3Q2 + QP2)Xn + 2 + P1Q2Xn 1 -Q3Xn 

and 

VO ,n +I 1 P3 V2 ,n Q VO ,n-1I1 

Vl,n +I = VO,n -P2 V2,n QVI,n-1 

V2,nl = V1,n + P1 V2,n QV2,n-I 

If N is any integer and (N, QP3) = 1, find M, S such that 

QM--P3S=1 (mod N) 

and put 

S2MkI2 VO,k, k even, 

Xk = 

SM(k+l)/2VOk kodd; 

S2,Wk/2 VI,k k even, 

Yk = 

SM(k + 1)I/ 2V*, k odd; 

S2MkI2 V2 k k even, 

Zk = 

SM(k + 1)/2 V2, k odd. 

Then, 

X2m + 1 P3(Y2m +2 + Y2m) + P2Z2m + 1, 
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Y2m+l1 =P3(Z2m+2 + Z2m PiZ2m +i, 

Z2m+l = X2m+2 + X2m- 
Also, 

X2m -Q(Xm + 2YmZmP3 + PlP3Zm )-2S2, 

Y2m = Q(2XmYm - 2P2YmZm + (P3 -Plp2)Z)2 

Z2m = Q(Y2 + 2ZmXm + 2P1 YmZm + (P -p2)Z2 

when m is odd. If m is even, replace the Q in these formulas by P2. Using these 
formulas, we can evaluate Y*k and Zk in O(log k) operations. Since (Yk' Zk, N) = 

(V1 *k V2,k, N), we see that this technique can be used for evaluating (Ck, N). 

3. Properties of Cn. In [9] several divisibility properties of C,, are presented; 
for example, Cn I Cmn if n I m. The following definition is also given. 

Let m be any integer such that (m, Q) 1 and let CT be the first term of the 
sequence 

(*) C1, C2, C3,* Cn 

in which m occurs as a factor. We define the increasing sequence of integers 

by saying that Cr. is the first term of the sequence (*) such that m I C,. and ri 4'j 
(i = 0, 1, 2, . . ., j - 1). We call these r's the orders of apparition of m and denote 

them by ri(m). 
It is then demonstrated that if (m, Q) = 1, then any order of apparition r(m) 

must be a divisor of 2F(m), where 4?(m) is a rather complicated function which depends 
on m, Q, and the polynomial f (x). When f (x) is irreducible modulo a prime p and 
s is odd, we can obtain some special results about the orders of apparition of p. We 
first give some simple lemmas. 

LEMMA 1. If f (x) is irreducible modulo p, then p I Cn if and only if Vn (p*) E 

GF[p], where p* is a root of f (x) = 0 in GF [p'] . 

Proof. Let 
s-1 

Vn(P*) = E V>,nP* 
j=0 

where VP*n E GF[p] (=, 1, 2, .. .,s- 1). 
Now p I Cn if and only if V*1,n = V*n - V3,n=**= Vsin=O thus, if 

P ICn, vn(p*) E GF[p]. If Vn(p*) E GF[p], then 
s-1 

A = E V E;np*iGF[P] 
j=O 

But, since f (x) is irreducible modulo p, we must have 

V* A, Vn V*, V* =0; he ncn =e, PInn 2,n =sln= 

hence, P I C,,. 
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LEMMA 2. Let A, B GK = GF[p2s], where AB # 0 and s is odd. If A + B ? 

GF[ps], AB e GF[p], Ak + Bk E GF[p] and Atm + Bm C GF[p], then Ar + Br E 

GF[p], where m = qk + r. 
Proof. In K we have 

2 2 2 2 
Ak =Ak BkP =Bk AmP =Am, BmP 

hence, 

Aqk+r = AmP qkp 2+rp2 qk+rp2 

and Ar = Arp , also Br = BrP . Since Ar + B' e GF[ps], we have 

(Ar? )P=As r + Br (Ar + r)p =Ar +B. 

r~~~~~~~~~~~~~~~~~~~~~~~~~~~ Since s is odd, it follows that (Ar + B )P - A r ? Br; and consequently, A~ ? Br z 

GFI[p]. 
COROLLARY. If the conditions of the lemma are true, then Ad + Bd EE GF[p], 

where d = (k, m). 

We are now able to prove the following 

THEOREM. If p t 2AEQ and f (x) is of odd degree s and irreducible modulo p, 

then there is only one order of apparition r of p and r T (pS - e)/(p - e), where e = 

(E I p) (Legendre Symbol). 
Proof. Let p* be a zero of f(x) in GF [pS] ; then the other zeros are given by 

p*P p*P,. .., *P also p*P = p*. Let cx*, ,* be the two zeros of x2 - p*x + 

Q in GF[p2s]. We have 

vu(p*) = *n + -*n 

Now (2a* - p*)2 = - 4Q; hence, 

(2a* - p*)Ps-1 = (p*2 - 4Q)(Ps-1)/2 

[(p*2 _4Q)ps-1 (p*2 s-4Q)s-2 (p*2 4Q)]P-l)2 

- 
[((j*P 

)2 
-4Q)((j*P 

)2 
- 4Q) ... (p*2 _ 4Q)] (P-1)!2 

- E(p-1)/2 = 

We see that (2a* - p*)Ps = e(2a* - p*) and 

if e = 1, 
a*ps 

if e = - 1. 

Putting k = (ps - e)lAp - e), we get 

Vk(P*Y - (*kp + 3*kp - 4*(p-e)k+ek + g*(p-e)k+ek 

= o*(p5-e) *ek + p*(ps-e)g*ek = VU(p) 

It follows that p I Ck. 
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We have shown that there exists one order of apparition r of p and that r I k. 
Suppose there exists a second order of apparition r, of p. We have 

a* + G3 ? GF[p], at1 + ,B1 E GF[p]; 

hence, 

a*d + 1*d E GF[p], 

where d = (r, r1j). Now d < r, d ir and p I Cd. By definition of r this is impossible 
and the theorem is proved. 

Let f (x) be a polynomial of odd degree s such that, for any prime p 4' A, f (x) is 
either irreducible modulo p or completely reducible. For example, the cyclotomnic 
period equation [5] is such a polynomial. (For s = 3 the necessary and sufficient 
condition for f (x) to be this type of polynomial is that A be a perfect square.) For 

C,, defined for such an f, we define 

( pS - 
EA 

- e) if f (x) is irreducible (mod p), 

(P) = 

2[p r-1, p - l2, p - 773, O 
. , p - rs] if f(x) is reducible (mod p), 

where -,= (r2 - 4Q I p) and r1, r2, r3,. . . , rS are the s roots of f (x) 0 (mod p). 
With this definition of f and C,, we have the following two theorems. 
THEOREM. If p is a prime and (p, 2AEQ) = 1, then there exists at least one 

order of apparition of p. Further, if rj(p) is any order of apparition of p, then 

r1(p) I 1(p). 

Proof. This follows easily from the Law of Apparition of [9] and the previous 
theorem. 

THEOREM. Let (N, 2AQE) = 1 and N I Cm. If q is any prime divisor of m and 
N4 Cmiq, then any prime divisor p of N which does not divide Cmlq must satisfy 
the congruence 

4Op) 0 (mod qa), 

where qa lI m. 
Proof Let r be an order of apparition of p such that r I m. Clearly, since p I Cm, 

such a r must exist. Now pt Cm/q; hence, rXJm/q; and consequently, qa jr. Since 

r(p) I 4(p), we have 

t4p) 0 (mod qa). 

4. The Sequences {Cni)}. In the remainder of this paper we will consider s to 
have the value 3. 

Let N be an integer which we wish to test for primality. Select a prime P such 
that P 1 (mod 3) and (NIP) 3 1, and let 4P =2 + 27T2, where S =1 (mod 3). 
Then, if N is a prime and (N, PT) = 1, x3 - ax - b, where a = 3P, b = PS, is irreduc- 

ible modulo N. Let G be a fixed integer and put 0 = (G IN), where I 0 1 = 1. 
For any three integers hi, ki, li, put 
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m1 =0h + 2bliki- G, m2 = bl + 2h.k + 2akl, 

m3 =k? + al1 + 2hili, 

d =m2 + 2am3m +a2m2 -am2 -bm2m3, d2 = bm2- mm2, 1 3 1 3 
2 2 

3 

d3 =m2 - m1m3 - am23. 

Let 
R = d1m1 + bd2m3 + bd3m2) 

A = 4Gd1 + 2R, B =4Gd2, C= 4Gd3' 

We define the sequence C(i) by using the parameters below: 

p(i) = 3A + 2aC, Ps') = 3A2 + 4aAC - aB2 - 3bBC + a2C2, 

p(i) = A 3 + bB3 + b2 C3 - 3bABC - aAB2 - abBC2 + a2AC2 + 2aA2C, 3 

Q(i) - R2. 

If a,, a2, a3 are the zeros of x3 -ax - b, we see that p1 = A + Ba1 + Ca? 
( = 1, 2, 3) are the three zeros of 

f(x) = x3 - p(i)x2 + p(i)x _ p(i) 

Now let a be any one of the three zeros a1, a2, a3 and put 

p = A + Ba + Ca2, X(a) = hi + kia + lia2, 

Y(a) = di + d2a + d3a2. 

Then 

ml + m2a + m3a2 = (X(a))2 -G, 

R = Y(a)(m1 + m2u + m3a2) = Y(a)((X(a))2 - G), 

p = 4Y(a)G + 2R. 

It follows that 

p2 - 4Q = [4 Y(U)X(a)] 2G. 

Since E(i) = (p2 - 4Q)(p2 - 4Q)(p2 - 4Q), we have E(i' - V2G, where V= 

43 GY(a1 ) Y(a2) Y(a3)X(a1 )X(a2)X(a3). 

Also 

1 2 2 1 a 

-(i) (B3 _aBC2 - bC3)2 1 2 2 

1 a3 3 

- 36(B3 - aBC2 - bC3)2(pI)2. 
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Thus, if p is any prime such that (p, 2A(i)E(i)Q(i)) - 1, then (A(i) I p) = 1, (E(i) p) = 

(G Ip) = 0(p) and if f (x) is reducible, rli = 0(p) (i = 1, 2, 3). We see that these are 

independent of the values of hi, kj, l* Also, if x3 - ax - b is irreducible (mod p), then 

so is f (x); thus, 4(p) is always the same for any sequence {C(i)}. Also (p) = 

2(p - 0(p)) when f (x) is reducible modulo p. 

5. Some Criteria for Primality. Denote by F3 the completely factored part of 

N2 + N + 1 and by F6 the completely factored part of N2 -N + 1. ThenN 2 + 

N+ 1 =F3R 3, N2 -N+ 1 =F6R6, where (R3, F3) = (F6, R6) 1. For 0=1 

put 
(1) For each prime q IF3, there exists some hi, kj, ii such that (N, A(l)E(i)Q(i)) 

= 1 for the sequence {C(i)}, 

NIC(?)2 and (C(i)2 ,N)1. 
N +N+ 1 (N +N+ 1)/q 

(2) For some hi, ki, li such that (N, A(i)E(l)Q(l)) = 1 for the sequence {C(i)}, 
we have 

NIC(?)2 and (C(i) 2 ,N) = 1. 
N +N+ 1 (N +N+1)/R3 

For 0 = -1, put 

(3) For each prime q IF6, there exists some hi, ki, 1i such that (N, E(l)/A()Q(l)) 

= 1 for the sequence {) 

N IC(1? _ and (C(') 2N1 
N2-N+ 1 (N -N+ l)/q 

(4) For some hi, ki, 1i such that (N, A(l)E (i)Q(i)) = 1 for the sequence {C(i)}, 

we have 
NIC(1) and (C(i)2 ,N) = 1. 

N -N+1I (N -N+1)/R6 

It should be noted that if NtC()2 then N is composite. 
N2 +ON+1' 

We are now able to prove some theorems which give some information about 

possible prime factors of N should any of (1), (2), (3), or (4) be true. 

THEOREM. If 0 = 1, (1) is true, and p is any prime divisor of N, then 

4(p) 0 O (mod F3). 

Proof. Since the value of 4(p) is the same for any of the sequences {C(i)} 

(i = 1, 2, . . .), it follows that if q is any prime divisor of F3 and (1) is true, then 

q ;(p), where qv II F3; hence F3 I (p). 
THEOREM. If 0 = 1, (2) is true, and p is any prime divisor of N, then 

--p) 0 (mod q), 

where q is some prime divisor of R3 depending on p. 
Proof. Let r = r(p) be an order of apparition of p such that r IN2 + N + 1; 

then 'r-4'F3; and consequently, (R3, -r) > 1. Thus there must exist a prime q such that 

q 1R3 and q Ir. Since r I 4(p), the theorem follows. 
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THEOREM. If 0 = - 1 and (3) is true, and p is any prime divisor of N, then 

4(p) 0 (mod F6). 

THEOREM. If 0 = - 1, (4) is true and p is any prime divisor of N, then 

4p) 0- (mod q), 

where q is some prime divisor of R6 depending on p. 
The theorems requiring the truth of either (2) or (4) are unfortunately not as 

useful here as their analogues in [1] or even [10] ; however, we will show in a later 

section how these theorems can occasionally be useful. 

We conclude this section with two results which allow us to demonstrate the 

primality of N when either N2 + N ? 1 or N2 - N + 1 is sufficiently factored. 

THEOREM. If 0 = 1, (1) is true, N is not a perfect square and F3 > N213 > 36, 

then N is a prime. 
Proof. Suppose N = P1P2P3a and a is any positive integer. Since 

Wi4p) 0- (mod F3) 

and 4(pi) = p2 +pi? 1 orpi? 1,wehavepi >F3 -1. If F3Ip+ 1,thenpi> 
F3 - 1 > \/3F3 - 1. Since N is not a perfect cube there must be at least two 

distinct prime divisors p1 and P2. 1fF3 IP 1 ? 1 and F3 IP2 + p2 ? 1, then for 

one of these p's, say p1, it must be true that 

+p1 ? 1 > 3F3. 

Thus, we have 

N = lP2Pa > (XF-3 - 1)2 (4XVF3 - 1) > F 3/2, 

which is impossible. 
Hence, if N is not a prime, it must be the product of two primes p1, P2. 

Now (P1P2 IP)3 # l and (G I P1P2) = 1; hence 0(P1) = 0(P2) c, say. If 

(P1 P)3 = 1, then (P2 1P)3 # 1 and 

p1,c (mod F3) and P2 + CP2 + 1-0 (mod F3). 

We have 

P1 >2F3-1 and p2>\/i3 -1; 

consequently, 

N = P1P2 > (F3)3!2. 

If (P1 1P)3 # 1, (P2 1P)3 # 1, 

pi ?p1 ? 1 p2 + ?P2 + 1 =p p2 + P1P2 + 1-O (mod F3). 

It follows that 

(Pl -P2)(P1 +P2 +?e- (mod F3). 
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If q IF3 and q 4p -P2, then q Ip1 + P2 + e and 

p2 =P2, P2-ep1 (mod q); 

hence, 

q 12p1p2 + 1 and q13. 

Thus, 

p1 -p2 (mod F3), 

where* * 

(F313 if 3 IF 3 

F3 = 

F3 otherwise. 

If 3 IF3, then pi ep1 + 1 0 (mod 3) and p1,e (mod 3), also p2 e (mod 3). 
Since (3, F3) = 1, we have 

p1 -p2 (mod F3). 

Since pi # p2 we have p1 > p2 and 

P1 =p2+2kF3 and p1>2F3+1. 

Hence 

N = PlP2 > 23 + 1 ) (N3 -1> 33. 

Thus N is a prime. 
THEOREM. If 0 = - 1, (3) is true and F6 > N213 > 36, then N is a prime. 

6. Prime Testing. Let F1 be the completely factored part of N - 1, F2 be the 
completely factored part of N + 1, and F4 be the completely factored part of N2 + 1. 
Put 

R1 = (N- 1)/F1, R2 = (N + 1)/F2, R4 = (N2 + 1)/F4, 

Fl = F1/25 F2 = F2/25 F4 = F4/25 

R2= r +SF1, O?r<F1, 

2R1R2 s (mod F4), 

S + sN-t (mod F4), 0 <s, t <F4, 

=-1 + rF2 + tF1F2 ji2 = 1 + sF1F2. 

In [10] it was shown that if C and D are selected such that 

**We also deflne 

F F6/3 if 3IF6, 

F6 otherwise. 
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(DIN) = (C2 - 16DIN) =- 1, 

tests can be developed for demonstrating the primality of N. For very large N we 
sometimes are unable to demonstrate the primality of N but can use a result 

(Theorem 6) of [10] to show that N is either a prime or N = P1P2, where p1 and P2 
are primes, 

P1 = ?i + mF1 F2f4 P2 = 12 + m2F1F2F45 

and (D Ip2) + 1, (D IP1) = - 1, (C2 - 16DIp2) = + 1, (C2 - 16DIp1) = - 1. (We 

call a prime p such that (Dlp) = (C2 - 16Dlp) = - 1 a prime of the first kind; other- 

wise, we say it is a prime of the second kind [10] .) When this occurs, the tests (1) 

and (3) can be used to attempt to show the primality of N. 
If we select G such that G u2 (mod N), then (G IN) = + 1; and if N is the 

product of the two primes p1, P2, then (Glpl) = (GIp2) = 1. If (1) is true, we have 

three possible cases. 

Case 1. (P1 IP)3 = 1, (P2 IP)3 # 1. Here 

P1 1 (mod F3), P2 =N (mod F3). 

Case 2. (P1 IP)3 # 1, (P2 IP)3 = 1. Here 

P2 1 (mod F3), P1i N (mod F3). 

Case 3. (Pl IP)3 # 1, (P2 IP)3 # 1. Here 

p1 -p2 (mod F3), 

p2 p2=p N (mod F3) and p2+p1?1-p2?p2 ?1-O (mod F3); 

hence, 

P1P2- N - 1 (mod F3). 

If HF1F2F4 1 (mod F3), we see that we must have 

Ml =(I -8)H, m -(-2) (mod F3) 

or 

(a) m1 (N-111)H, m2 - (1 -1(2)H (mod F3), 

or 

ml-M (N(-N - I - p1W, m2-(N 2W (mod F3). 

If we select G such that G u2(C2 - 16D) (mod N), then (G IN) = - 1; and if 

N is the product of the two primes p1, P2, then (G Ip2) = + 1, (G IP1) = - 1; and 

if (3) is true, we again have three possible cases. 

Case 1. (P1 IP)3= 1, (P2 IP)3 # 1. Here 

p1 --1 (mod F6), P2---N (mod F6). 
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Case 2. (P1 P)3 # 1, (P2 P)3 = 1. Here 

P2 =1 (mod F6), p1-N (mod F6). 

Case 3. (P1 P)3 # 1, (P2 P)3 $ 1. In this case 

p1~--p2 (mod F6), p2 2=- N (mod F6), 

and 

P2 + P2 ?1 - P1?+10 (mod F6); 

hence, 

P2=N- 1 (mod F6) and p1-N + 1 (mod F6). 

If H'F1F2F4 1 (mod F6), we see that we must have 

m1 (-1 -g1)H, m2 (-N - 2)H' (mod F6), 

or 

(b) m1 (N- -1)H, m2-(1 -i2)H' (mod F6), 
or 

ml-(-N?+-pLi)H, m2=(N-1-p2)H' (modF6). 

By using (a) or (b) or both, we can often increase the possible size of m1 and m2 to 
the point where we get P1P2 > N; when this occurs we have proved N a prime. 

If by using the tests of [10] we are unable to show that N is either prime or 
the product of two primes, we can use the tests (1) and (3) of this paper to increase 
M3, the minimum size of a prime divisor of the first kind of N. This can be done 
by finding all the positive solutions Sl, S2, S3. . . ,SSn which are less than K = 

FJF2F3F4F6 of the system 

Z-1 (md(mod FF3) 1 mod F2F6), Z2-- 1 (mod F4), 

and all the positive solutions S', S, S', . . ,Sk, which are less than K of the system 

Z 1 (mod F1), Z-- 1 (mod F2), Z2 I-1 (mod F4), 

Z2 + Z + ?1 0 (mod F3), Z2-Z+1=O (modF6). 

If S = min{S1, S2., S3, ... , Sn, St, S2, S3, .. I,S} and none of 21 32, .... 
S, S I., St, S , S' is a divisor of N, then, if G is defined as above and (1) and 
(3) are both true, any prime of the first kind which divides N must exceed S + K. 
Thus, M3 must exceed S + K; and this is usually an increase in the previous size of M3 
as determined by the methods of [10]. 

Other methods which utilize the tests (1), (2), (3), or (4) can also be devised for 
proving primality. Some of these will be discussed with respect to certain examples in 
a later section. 
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7. Some Computational Results. A computer program similar in design to that 
of Selfridge and Wunderlich [8] was written for an IBM/370-158 computer. This 
program incorporated the tests of [1], [10] and those of the present work (including 
the selection of G as presented in Section 6) as a means of proving a given number N 
prime. This program attempts to factor N - 1, N + 1, N2 + 1, N2 + N + 1, N2 - 

N + 1 by utilizing, as test divisors, all the primes less than a certain factor bound B. 
The method described by Wunderlich and Selfridge [11] was used in this particular 
program segment. 

If, after the factoring, sufflcient information is available to prove N a prime, the 
required final tests are executed. If insufficient information is available, Pollard's [7] 
method is used to attempt to factor R1, R2, R4. If this produces enough additional 
factors, the final tests are executed. 

Should the computer still not have enough infornmation to execute the final 
tests, the algorithm of [8] is used when either R1 or R2 is a pseudoprime. That is, 
the computer attempts to prove the pseudoprime a prime, or, failing that, attempts to 
increase the appropriate factor bound. (See [1, p. 627].) 

This program was run on all the pseudoprimes listed in the factorization tables 
of In and f, in [2]. Of the seventy-nine pseudoprimes, forty are easily found to be 
prime by using only the tests of [1] and B = 5 x 105. Two of the remaining numbers 
(the pseudoprime divisors of f33 1 and f353) have been discussed in [1 0] . The 
remaining thirty-seven are also all prime, and the techniques needed to demonstrate 
the primality of each one are described in Table 1. 

In the first column of Table 1, we denote by Nn the large pseudoprime factor 
of In and by Nn the large pseudoprime factor of ft. In the second column we give 
the number of digits of the pseudoprime in the first column; in the third column we 
give the value of B the program used. When no entry appears in this column, B = 5 
x 105. In the fourth column the final tests needed to prove Nn or Nn a prime are 
given. These are presented as [1] to indicate that only the tests of [1] were needed; 
[1], [10] to indicate that the tests of both [1] and [10] were needed; and [1], [10], 

PW to indicate that the tests of [1], [10] and those of the present work were needed. 
Finally, in the fifth column we give some appropriate remarks. When the letter P 
appears in this column, it indicates that one of R1 or R2 is a pseudoprime, even though 
this fact was not needed by the program to prove the corresponding Nn or Nn prime. 

8. Some Special Cases. In this section we discuss some of the more interesting 
of the numbers of Table 1. 

For N = N368, the number in the introduction, we have (using the notation of 
[10]) 

M> 6 x 1043 M3 > 1024, 

and consequently 

N < min(MM3, Mi). 
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TABLE 1 

N 
No. of B Tests Remarks 
Diaits 

N 38 [1], [10],PW P 206 

N208 29 [1],[iO] P 

N212 36 [11, [10],PW P 

N218 42[1ii,[10] Pollard's method found the factor 
8570437 of N+1 

14 223 30 [1],[10] 

N229 45 [l],[l0],Pw Pollard's rmethod found the factor 
2948041 of N+1 

N239 44 [11,[10] P 

N241 38 [1],[10] P 

N247 31 [1],[10] P 

N259 42 [11, [10] P 

N263 40 [1],[10] 

N263 46 [1], [lol,PlW p 

N278 53 [1], [10],PW P 

N281 46 [1],[101 P 

7 
N289 48 1.6x10 [1] [10],PW 

N293 56 Il-J,[101 

29 56 [i], [10] 
N299 

5 

N 62 3x108 [l],[lO],PW See discussion below. 
307 

N311 61 [1],[10],PW 

N311 44 [1],[10],PW p 

N314 57 [1], [10i,FPw 

N 60 l.lxlO6 [1], [lO],PW R (53 digits) proved prime using 
316 1 [l1,[71,PW (P), then N proved 

prime using [11. 

N319 50 [1], [101,PW p 

N321 36 [11 R2 proved prime, then N proved 
prime. 

6 
N .9 51 2.5x10 [1], [10],PW 

73 
332 64 6x10 [1] N+1 = 2 .3.7.83-59138939-R2. 

R2 proved prime, then N proved 
prime. 

N337 58 [1] Pollard's method found the factor 
12815681 of N-i 
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TABLE 1 (continued) 

N No. of B Tests Remarks Digits 

N;341 50 [1], [10] P 

N343 46 [1] Here R2-1 = F'R'. R1, then R 343 2 1~~~~ ~ ~~~~~~~~ I 1 2) 
then N proved prime. 

N356 69 [E], [10],PW See discussion below. 

N357 41 [1], [10] Pollard's method found the factor 
106929516613 of iq2+1 

N368 62 1.8x10 | [1],[10],PW See discussion below. 

N371 61 5xlO [1],[10],PW See discussion belowq. 

N372, 47 [1],[10],PW P 

N373 75 [1],[10],PW p 

14373 58 [1], [10] P 

N381 43 [1], [10],PW 

Thus, N = P1P2, where p1 and P2 are primes, 

P1i 762385150126634192052929 (mod F1F2F4), P2 > 1024, 

and (C2 - 16D 1pl) = - 1, (D Ip1) = - 1. By verifying (3) and using (b) for p1, it 
was shown by actual division that any possible value of p1 less than F1F2F4F6 is not 
a divisor of N. Hence 

P1 > 9 x 1023 x 2.7 x 1013 > 2.4 x 1037 and PiP2 > 2.4 x 1061 >N. 

Thus N must be a prime. 
For 

N356 = 565768471959285714079262248889509474547974219027885983055827845016103 

andB=5 x 105,we get 

F1 =2 * 3 * 659 * 1567, F2 = 23 * 53 * 89, F4 = 2 * 5, 

F3 = 3 *7 *2659, F6 = 241 * 7759. 

This is not enough to prove N356 a prime. However, R1 and R2 are both pseudoprime. 
The larger of these (R2) is easier to prove prime than R1. In fact, if 

N' =R = 14992804535702928611386004051555794852341907436609232114050981689 

(65 digits) and B= 3 x 106, we get 

F 23 * 3 67 7411 51169, F' = 2 * 5 * 31 * 23039, 

F = 2 * 172 37, F 3 * 7 * 13 * 43 * 61 * 1087 * 5119 * 10501, F'6 2221. 
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By using the tests of [1, [101 and PW (neither R'1 nor R' is a pseudoprime), N' can 
be shown to be a prime. It is then a simple matter to prove N356 a prime. 

For 

N = N 371 = 1066891454330692360911118469915492770211286402568532457966113 

andB=5 x 107,we get 

F1 = 25 * 29, F2 = 2 * 3 * 7 * 11 * 53 * 11239 > 2 * 7 x 108, 

F4= 2 5 165041, F3 = 1431907, F6 = 3 * 13 * 19, 

and R1 and R2 are both composite. With this information it is possible to demonstrate 
with the computer program that either N is a prime or it is the product of two primes 

p1 and P2. Further, if N = P1P2, P1 is a prime of the first kind; and P2 is a prime 

of the second kind. 
It follows by using the results of Section 6 that 

p1 = rl, ri, rI (mod K), P2-r 2, r" (mod K), 

where rl, r2 are obtained by using the first case of (a) and (b), r, r' by the second 

case of (a), (b), and r', r"' by the third case of (a), (b). 
Now K = F1F2F3F4F6 > 3 * 7 x 1025 and if 

p1 =r, + t2K, p2 =r2 + t2K, 

then 

N = r1r2 + (t1r2 + t2r1 )K + t1t2K 

We now make use of an extension of an idea introduced in [1]. For if 

(N - 
rIr2)/K T (mod F2), 

where I TI < F2, then, recalling that r1 - 1 (mod F2), r2 1 (mod F2), we get 

tI - t2 T (mod F2). 

If tz - t2 : T, then I t1 - t2 I > F2; and consequently, t, or t2 > F2 > 1.37 x 
108. It is possible to verify on the computer that 

P1I N , P2 tN for 0 < tl, t2 S 6; 

hence 

P1P2 > 6 x 1.37 x (3.7)2 x 1058 >N 

If tz - t2 = T, we must have 

A =(r1 -r2 +KT)2 +4N 

a perfect integer square. It is easy to use the computer to find a small prime ir tK 
such that (A I 1Ir) = - 1. In a similar manner we can dispose of the other two cases: 
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p1 r1, p2 rt and p1 r'[, p2 r"' (mod K). By using this strategy the number N 
was proved prime. 

For 

N = N307 = 11739610117429203651282768407085324070169775523763828726810201 

and B = 3 x l08, we get 

F1 = 23 .52 . 7 . 307, F2-2 - 3 431 * 6911 > 1.78 x 107, 

F4=2, F3 = 737497, F6 = 3 - 229; 

and R1, R2 are both composite. None of the other numbers considered in Table 1 
presented as much difficulty in proving primality as this one. The strategy used to 
prove N prime is a refinement of that used in demonstrating the primality of N37 1 
In this particular example use was made of tests (1), (2), (3), and (4) as well as all the 
tests (I, II, III, IV) of [1] and the test (3) of [10]. 

We have M = I + B3F1 F2P4 
> 1038. In order to show that N is the product 

of at most two primes, we must obtain a large (> 1.2 x 1023) lower bound on any 
prime of the first kind p which divides N. We have 

p 1 (q1Fj), p 1 (q2F2), 

and if (p IP)3 = 1, 

p-1 (q3F3), p 1 (q6F6), 

where qi is some prime divisor of Ri (qi > B). In this case we have p > 1 + B2F1F3 
= 2.5 x 1028 > 1.2 x 1023. Since F3 and F6 are both primes, there are four 
possibilities for p modulo K (= F1F2F3F6 > 6.48 x 1020) when (PI P)3 # 1. These 
are given by 

) P-N (mod F3), p -N- 1 (mod F3), 

p=N (mod F6), P =N (mod F6). 

p-EN (mod F3), S P -N- 1 (mod F3), 

1 (modF6), {P-p-N? 1 (modF6). 

We can obtain positive integers A1A2, A3, A4 such that p =Ai (mod K) for some 
i < 4 (Ai < K). It was shown by machine that Ai + t1K TN for 0 < ti < 186 and 
1 < i < 4; hence, if p is a prime of the second kind and p IN, then 

p > 186 x 6.48 x 1020 = 1.2 x 1023. 

We have M3 > N and M3M > N; it follows that N is prime or N = P1P2' where 
P1 is a prime of the first kind and p2 is a prime of the second kind. We suppose that 
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NV is the product of two primes and deal with the three possible cases. 

Case 1. (P2 1P)3 = 1. We have 

P2 1 (q1F,), P2 1 (q2F2), P2-1 (q3F3), P2-1 (q6F6); 

hence, 

P2 > I + B4K > 4 x 1054 and p1p2 > N. 

Case 2. (P1 P)3 = 1We have 

P1 =1 (q1F1), P2 =1 (qlq2F1F2), P1 1 (q3F3); 

thus, 

P1 > 1 + B2F1F3 > 2.85 x 1028, P2 > 1 + B2F1F2 > 3.45 x 1029. 

We also have 

| p1~--1 (mod F2), P2-N (mod F3), 

p1 ---1 (mod F6), p2 -N (mod F6). 

Hence, we can determine integers r1, r2 such that 

p1 r1 (mod K), P2 r2 (mod K). 

If we use the argument employed in the discussion of N371, we see that for some k 

we must have 

A(k) = (r1 - r2 + KT + kKF2)2 + 4N 

a perfect square, where 

T--(N-r1r2)IK (modF2), ITI < F2, 

p1 =r, + t1K, p2 = r2+ t2K, t-t2 = T + kF2. 

Let H be the set of all primes, which do not divide K and are less than 100. It 

was easily verified by using a sieve process that 

(A (k) I ir) = - 1 for some 7rTE H 

for each k such that 0 < I k I < 3.6 x 104. Thus, since min(pl, P2) > 2.85 x 1028, 

and one of t1, t2 must exceed (Iki - 1/2)F2, we have 

PIP2 > 2.85 x 1028 x 6.48 x 1020 x 1.78 x 107 x 3.6 x 104 N. 

Case 3. (P1 P)3 # 1, P2 IP)3 : 1. We have 

-N- 1-p1p2 (modF3), -N+ I 1- -P2 (mod F6). 

Hence, we can find rl, r2 (different from the preceding rl, r2) such that 

p1 = r, + t1K, P2 = r2 + t2K. 
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Using reasoning similar to the above, we get 

+ 2 T r-'(N - r1r2)/K (mod FIF3), 

where I T I < F 1 F3. We verified that 

A(k) = (r, + r2 + KT + kKF, F3 4N 

cannot be a perfect square for any k such that 0 < k < 8.6 x 104, and we also 
verified that r, + t1K 4N for 0 < t1 < 1040. 

Let 

t +t2 = 2a> (k - 1/2)F1F3 > 2.7 x 1016. 

Since P2 > 3.45 x 1029, it follows that t1 < t2; hence, 

= a - b t2 = a + b, 

where 0 < b < a. 

If b > .999a, then t2 > (1.999)a > 2.698 x 1016 and 

PIP2 > 1040 x 6.48 x 1020 x 2.698 x 1016 x 6.48 x 1020 >N. 

If b < .999a, then 

tl (.00 I)a >1.3 5 x 1013, t2 >a> 1.35 x 1016, 

and PIP2 > N. 
Since N cannot be the product of two or more primes, it must be prime. 
In conclusion, we remark that had we wished to use factors of (N5 - I)/(N - I) 

or (N5 + I )/(N + 1) to prove the primality of N307, we would find with B = 106 

that 

(N5 - I)/(N- 1) = 5.11 *821 *R5, 

(N5 + I )/(N + 1) = 241 *9311 *9851 * 35461 * 151381 * RI o* 

The unfortunate aspect of investigating factors of higher cyclotomic functions of N is the 
very rapid proliferation of possible residue classes to which suspected prime divisors of 

N could belong. For very large N the creation of all the residue classes becomes so 

tedious and the resulting test divisions become so numerous that any advantage obtained 

by knowing a large collection of congruences that a suspected prime divisor must satisfy 
appears to be destroyed. 
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