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A Computational Technique for Evaluating L(1, X) 
and the Class Number of a Real Quadratic Field 

By H. C. Williams and J. Broere 

Abstract. A description is given of a method for estimating L(1, X) to sufficient 

accuracy to determine the class number of a real quadratic field. This algorithm 

was implemented on an IBM/370-158 computer and the class number, regulator, 

and value of L(1, X) were obtained for each real quadratic field Q(vIDU) (D 

2, 3, . . ., 149999). Several tables, summarizing various results of these compu- 

tations, are also presented. 

1. Introduction. Recently Hendy [2] has calculated on a Burroughs B6700 
computer the class numbers and number of genera for all the real quadratic fields 
Q( D/), with 103 < D < 105 and D squarefree. The method he used to do this is a 

modification of Ince's [3] technique of counting periods. In this paper we describe 
an entirely different computational procedure for determining the class number of 

Q(0/D) via its Dirichlet function L(1, X). This algorithm was implemented on an 
IBM/370-158 computer and used to determine all the class numbers in the range 2 < 

D < 1.5 x I05. 
Our method is based upon the formula 

h = -VL(1, X)/2R, 

where h is the class number, R is the regulator and A is the discriminant of Q( D-). 
The Dirichlet series L(s, X) = '- 1 X(n)n-S has x(n) = (A In) (the Kronecker Symbol). 
It should be remarked here that 

D5 D--1(mod 4), 

14D, D 2, 3 (mod 4), 

and R = log c, where c (> 1) is the fundamental unit of Q(Vib). 
In the next section we describe a means of evaluating R and in the third section 

a method of estimating L(1, X) to sufficient accuracy to determine the integer h. 
Finally, we give some results of our computations in Section 4. 

2. Evaluation of the Regulator. The regulator can be evaluated by using the 

continued fraction algorithm. Put QO = 1, PO = 0, qo = [D] * A_1 = B_ 2 = 1, 

A-2= B1 = 0, and define 

Pn + =nQn -Pn Qn+l = (-n 1l)Qn5 n+1 = K(Pn+1 +Nr)lQn+l ] 
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Let r be the least nonnegative integer such that Qr+ 1 = 4, and let s be the least non- 
negative integer such that Qs+ 1 = 1 (s + 1 is the period length of the continued 
fraction for V\D). It is well known that such a value of s always exists; and that if r 
exists, then r < s/2. With these definitions of r and s and D * 5 we have 

(Ar + IBr)/2 if r exists, 

As + V5 Bs otherwise. 

A faster and more convenient way to calculate the regulator, however, can be 
obtained by first using the following modification of the continued fraction algorithm 
to evaluate the P's and Q's. We put Q1 = D, Ro = 0 and use the formulas 

Pn += t[11 -Rn, Qn+l = Qn-l + qn(Pn -Pn+) 

qn+ l = [(Pn+ 1 + [X] )/Qn+ I I 

R n+ = remainder on dividing Pn+I + [VX] by Qn+l* 

We can then avoid calculating the A's and B's by using a multiplicative formu- 
lation (see Smith [5]) wherein 

(-1 )n +'1(An - DBn ) = ( (Pi + -)/D Q i) 

Since A' - DB' = 4(-1)r+ 1, we get 

r+ 1 

i=1 

Now during the development of the P's and Q's there must be an integer k 
such that Qk = Qk+ 1 or an integer j such that Pi = Pj+ 1. If k exists, then s + 1= 
2k + 1; if i exists, s + 1 = 21; also, r + 1 S k, j. Using these facts to determine k 
or j, we can cut the calculation of As + ViDBs in half by using the symmetry prop- 
erties of the P's and Q's and the fact that A2 - DB2 = (-1)s+ 1. We have 

As + ? Bs = (Pk+ + +V) [ (Pi + V )/QQi when s + 1 = 2k + 1 

or 

As + vBs = Q[n (Pi + )/Qi when s + 1= 2; 

hence, 
r+ 1 

log 2 + E log(Pj + \IY)/Qi when r exists, 
i= 1 

R = loge = log (Pk+I + 15) + 2 E log(Pi + Vff)/Qi when r does not exist 
i= 1 and s + 1= 2k + 1, 

log Qj + 2 E log(Pi + -vli)/Qi when r does not exist 

i=1 and s?1 = 2j. 
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3. Estimation of L(1, X). In order to estimate L(1, X) we make use of a device 
used by Barrucand [1] . We first note that L(s, X) satisfies the functional equation 

L(1 - s, X) - A-s+?h r(s/2) L (s, X) P'((1 - s)/2) Ls ) 
where A = 7r/A. Putting A = a43, we get 

c-s+Y12r(s/2)L(s X) = ls-V2 r((1 - s)/2)L(I - s, X). 
If we let 

2 
B(x)= X X(n)e x 

n=l 

and use the method of [1], we obtain the functional equation 

a B (a2x )2 X= -lB p2 IX) 

Hence, 

-sL(s, X)r(s/2) = fB(a2x)xs12- dx 

= f B(ot2x)xsl2-t dx + P/ f B(2/x)x(S-3)12 dx 

= f7X(n, r eXnx xas12-1 dx + v17- Z x(n) X(s-3)12e-2fn2/x dx. 
n=1 x()n=1 

If we puta=f3=VA,s= 1, 

E(x) = f et/tdt, erfc(x) = 2 j et dt, 

we get 
00 0 

L(1, X)= X)(A2) + E (X(n)/n) erfc(n NA). 
n=1 n=1 

Let 
I m 2)+ m 

C(m) - - F X(n)E(An2) ? E (X(n)/n)erfc(nV), 
/i n=1 n=1 

00 ~~~~~~~~~00 
T(m)- = X(n)E(An2) ? 2 (X(n)/n)erfc(nv'i) 

NI'- n=m +l n=m+ 1 

Since we wish to approximate L(1, X) by the partial sum C(m), we want to be able 
to determine m such that the remainder T(m) is small enough that the integer h can 
be determined unequivocally. Now if x > 0, 

O < erfc(x) < - ex and O < E(x) < e-x/x; 
xv/W 

thus, since I x(n)l s 1, we get 

____2-An 2 A312 2 
IT(m)I< - e-An /n2 < 4 e-At2/t2 dt < e-Am /m3 

n=m+1 7 m tTh 

If we let h* = NVAC(m)/2R, then 
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___ ~~~A2 A 2 
Ih -h* I< 2R IT(m)l < 

3 e-Am 
2Rm3 

Since h is an integer and 2'-A Ih, where t is the number of distinct prime factors 
of A and 

1 if all prime divisors of D are congruent to 1, 2 (mod 4), 

2 otherwise, 

we must find m such that A2e-Am /m3< 2tX-R. When this is done, h is the unique 
integer, which is divisible by 2t-, in the interval [h* - 2t-A-1 h* + 2tX ]. 

If we put c = JTm and l = log(-//2t-XR), we must find c such that c2 + 

3logc>l. If I> I and A <107, then I <c <2; thus,c = I + c, c< and logc> 
C - C2/2. If I < 1, then 2 < c < 1 and c = 1 - c > 1 - 2E2 > e-26; hence, logc > 

2(c - 1). If we use these results, we see that we may put m = [cV/\/N] + 1, where 

6- 27-2, 1>1, 

c = 

3 ,15?-3 1<1. 

For A < 6 x 105 it is rarely necessary to go beyond 500 terms in the series 
C(m) in order to evaluate h. 

4. Results of the Computations. The program which evaluated C(m) and then 
h, was written, using double precision, in FORTRAN. A special subroutine to evaluate 
E(x) in double precision was written in assembler language, and the FORTRAN func- 
tion DERFC was used to evaluate erfc(x). In about seven hours of CPU time the 
computer calculated the class numbers of Q(Vb) for all squarefree D such that 1 < 
D < 1 .5 x 105 . These class numbers for 103 A D < 105 probably agree entirely with 
those in Hendy's table since the number of D, between these limits, having a given h 
agree in the two tables. Once h had been calculated for Q(VIY-), the value of L(1, X) 
was calculated more precisely by using L(1, X) = 2Rh/1V. 

A large table, listing for each of the 91189 Q(ViiY), the regulator, the class number, 
and the value of L(1, x) has been deposited in the UMT file. In this section we pre- 
sent some excerpts from that table. In Table 1 we give each value of h which occurs 
in the large table, the frequency f (h) with which this h occurs, and the least value of 
D such that h is the class number for Q(VIJ). 

Denote by R(d) the regulator of Q(V/d) and by L(1, X6) the value of L(1, X) 
when x(n) = (6 In). In Table 2 we give those values of D and R(D) where R(D) 
attains a new maximum: 

R(D) > R(d) for all 2 < d < D. 

In his examination of Littlewood's bounds on L(1, X), Shanks [4] considered 
the function 

00 

L, (1) = E (46 Im)m-1. 
m=1 
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TABLE 1 

h f (h) least D ii _ (i ) least D 

1 20574 2 2 26427 10 
3 2677 79 4 18573 82 
5 943 401 6 3453 235 
7 462 577 8 6898 226 
9 311 1129 10 1237 1111 

11 176 1297 12 2434 730 
13 124 4759 14 563 15N1 
15 115 9871 16 1970 2305 
17 62 7054 18 385 4954 
19 48 15409 20 788 3601 
21 43 7057 22 163 4762 
23 20 23593 24 838 9634 
25 30 24859 26 110 13321 
27 20 8761 28 3241 5626 
29 16 49281 30 113 11665 
31 4 97753 32 397 15130 
33 11 55339 34 47 19882 
35 8 25601 36 165 18226 
37 7 24337 38 33 19334 
39 6 41614 40 179 16899 
41 1 55966 42 30 47959 
43 3 14401 44 82 11026 
45 7 32401 46 14 49321 
47 1 78401 I 48 92 21610 
49 1 70969 50 8 54769 
51 1 69697 52 28 23410 
53 1 69694 54 8 49834 
55 1 106537 56 38 39999 
57 2 41617 58 7 27226 
60 18 78745 61 1 126499 
62 3 68179 63 1 57601 
64 23 71290 l 66 3 87271 
68 12 53362 70 5 56011 
72 11 45511 714 1 j 38026 
76 7 93619 78 1 1 136159 
80 3 94546 84 3 77779 
86 2 110926 87 2 90001 
88 3 56170 94 2 99226 
96 4 50626 100 2 131770 

108 1 140626 110 1 125434 
116 1 116554 

Here we have 

)h ~L(1, x6 ) 6 1 (mod 8), 
L_6(1) = 3L(1, X6)/2, 6 5 (mod 8), 

L( 1,X6), otherwise. 

In Table 3 we give the values of D, L_D(l) (also the "Upper Littlewood Index" ULI 
[4] ) such that 

L_D(l) > L_,(1) for all 2 S 6 < D. 

This gives us an extension of Shanks' table of Hichamps [4, Table 61. 



892 H. C. WILLIAMS AND J. BROERE 

TABLE 2 

D R(D) D R(D) 

2 0.88137359 9619 239.95274415 
3 1.31695790 I 255.84851576 
6 2.29243167 10651 270.87206891 
7 2.76865038 12919 283.224482085 

11 2.99322285 13126 298.64260332 
14 3.4t0008441 15031 303.73613093 
19 5.82893697 16699 306.31406366 
22 5.97634447 16879 318.45171155 
31 8.01961269 17494 335.65693960 
43 8.84850928 17614 336.7J823980 
46 10.79281810 18379 367.19773204 
67 11.48949306 21319 392.01026227 
94 15.27100210 23566 397.85610155 

109 16.69360526 23599 4C0.38847076 
139 18.85975147 25939 415.06367196 
151 21.96346336 26959 423.40328648 
199 24.20550214 27934 433.05457646 
211 27.04530804 28414 447.08037149 
214 27.96084155 31606 456.89547593 
331 36.25638320 32839 458.83193172 
379 37.79233938 32971 502.24984001 
526 46.57116319 34654 508.58627196 
571 47.33886269 38119 525.24115870 
631 52.93846995 42046 532.11987985 
739 53.63256141 42571 538.69114448 
751 57.94214806 43726 550.86782494 
886 58.00204637 46006 585.68371690 
919 64.36292549 48799 619.57038850 
991 68.80184250 53299 645.02269054 

1291 69.42731847 55819 646.58791328 
1366 77.50745983 56611 647.63115251 
1699 77.68763324 58774 649.84304001 
1726 91.48344937 60811 653.01948610 
1999 91.88716165 61051 700.82741506 
2011 100.53300453 67846 725 32530214 
2311 110.30316856 72934 737.97224426 
2326 111.22886783 76651 754.29325713 
2566 114.05602902 78094 795.25078126 
2671 119.59493590 78439 813.56346791 
3019 127.49681351 82471 817.86184239 
3259 132.12648968 84991 822.16136682 
3691 137.398241-37 85999 826.11841497 
3931 147.25726673 87151 841.01248095 
4174 153.01734303 90931 867.19521570 
4846 162.46487523 98011 867.76246000 
4951 166.65898164 100291 879.44151133 
5119 172.50838882 102859 894.92275682 
6211 174.49073086 104311 907.83373877 
6379 175.31521179 106591 922.69477242 
6406 188.37917309 111094 971.04549162 
6451 196.13099779 122719 982.46753897 
7606 215.68131176 132694 985.17025244 
8254 221.19253648 133519 1029.90983807 
8779 231.75791826 139591 1063.76t482684 
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TABLE 3 

-D (1) ULI D L-D (1) ULI 

2 0.62322524 0.4780 2146 2.31103546 0.5888 
3 0.76034600 0.4690 2479 2.31375725 0.5853 
6 0.93588131 0.4544 2599 2.34972306 0.5931 
7 1.04645488 0.4881 3826 2.45090149 0.6074 

10 1.15008652 0.4947 5014 2.45196600 0.6003 
19 1.33724985 0.5122 5251 2.47339296 0.6044 
31 1.44036496 0.5142 7459 2.53759015 0.6108 
34 1.45715183 0.5140 8551 2.54931771 0.6102 
46 1.59131421 0.5410 9454 2.57982512 0.6150 

79 1.71299181 0.5495 10651 2.62463570 0.6227 
106 1.74607012 0.5446 13666 2.67064271 0.6275 

151 1.78736130 0.5404 18379 2.70856368 0.6293 
211 1.86187579 0.5479 22234 2.76477214 0.6380 
214 1.91136378 0.5619 32971 2.76601001 0.6295 

274 1.91926263 0.5538 39274 2.77587028 0.6279 

331 1.99283105 0.5673 45046 2.79115252 0.6285 
394 2.06430094 0.5806 48799 2.80469210 0.6299 
631 2.10744721 0.5748 61051 2.83638181 0.63124 
751 2.11433901 0.5706 62386 2.84175734 0.6332 
919 2.12313701 0.5662 74299 2.85281091 0.6321 

991 2.18556256 0.5803 78439 2.904806139 0.6425 
1054 2.24501069 0.5940 8L4319 2.91010275 0.6423 
1486 2.26360155 0.5878 111094 2.91336081 0.6376 

1654 2.27963311 0.5886 127906 2.93902278 0.6406 

No further information was found to add to Shanks' table of Lochamps [4, 

Table 4]. There is no value of D in the interval 2 x 103 < D < 1.5 x 105 for which 

L-D() < L3g98(1) = 0.33494376. 

That is, D = 398 is. such a strong Lochamp that it cannot be beaten for D < 1.5 x 

105. In that respect, it is similar to the imaginary quadratic field with the notorious 

D = -163; see [4, Table 3]. 
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