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High Order Fast Laplace Solvers for the 
Dirichlet Problem on General Regions 

By Victor Pereyra*, Wlodzimierz Proskurowski and Olof Widlund** 

Abstract. Highly accurate finite difference schemes are developed for Laplace's equa- 
tion with the Dirichlet boundary condition on general bounded regions in R . A 
second order accurate scheme is combined with a deferred correction or Richardson 
extrapolation method to increase the accuracy. The Dirichlet condition is approximated 
by a method suggested by Heinz-Otto Kreiss. A convergence proof of his, previously 
not published, is given which shows that, for the interval size h, one of the methods has 

an accuracy of at least O(h 55) in L2. The linear systems of algebraic equations are 
solved by a capacitance matrix method. The results of our numerical experiments show 
that highly accurate solutions are obtained with only a slight additional use of computer 
time when compared to the results obtained by second order accurate methods. 

1. Introduction. It is the purpose of this paper to develop some highly accu- 
rate finite difference methods for the Dirichlet problem for a general bounded region 
E2 in Rn. The most accurate of these has an L error of order at most h5 5, see 
Section 4. Our basic schemes use the standard (2n + 1)-point formula for the interior 
mesh points and are therefore only second order accurate. The increased accuracy is 
achieved by two steps of a deferred correction or Richardson extrapolation procedure. 
We also discuss the computer implementation of these methods in some detail. 

The use of deferred correction and Richardson extrapolation methods is justified 
by finding asymptotic expansions of the error. Wasow [20] has shown that no useful 
expansions of this kind exist if the boundary condition is approximated to a low order 
of accuracy. An obvious remedy for this problem, already mentioned by Wasow, is to 
use higher order interpolation or extrapolation formulas at any irregular mesh point, 
i.e. a mesh point in the open set E? which fails to have all its next neighbors in the 
closure of Q2. Volkov [19] proposed the use of high order one-dimensional Lagrange 
polynomials for this purpose. Because of the change of sign of the interpolation co- 
efficients the matrix representing the difference scheme will then, in general, not be of 
positive type. The standard convergence proof based on a discrete maximum princi- 
ple, (see Forsythe and Wasow [71) will therefore generally not apply. But by allowing 
the use of values of the mesh functions many mesh lengths away from the boundary, 
Volkov succeeded in designing schemes with diagonally dominant matrices. His 
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schemes may however lead to an unacceptably small mesh size even for very simple 

geometries. 
Numerical experiments (see Pereyra [13] and the last section of this paper) clear- 

ly demonstrate the need for higher order accuracy at the irregular mesh points if im- 

proved solutions through Richardson extrapolation or deferred correction methods are 

required. In his 1966 paper, Pereyra also reported on successful numerical experiments 

with methods based on Lagrange interpolation in one variable and employing only mesh 

points close to the boundary. At that time no convergence proof was known for such 

methods. 
In June of 1968, Kreiss announced an interesting result on the convergence of 

methods of this type. His result was never published. His schemes are constructed as 

sums of difference approximations of one-dimensional problems. At the interior mesh 

points each of these problems is discretized by a three-point formula while at the ir- 

regular mesh points this basic formula is combined with high order Lagrange extrapo- 

lation. For a detailed description see Section 2. Kreiss found a method of proof 

which provides an alternative to the classical technique previously mentioned. His 

method depends heavily on the special structure just described. 
We learned about his results from several conversations and his unpublished notes 

which were kindly made available to us. Our interest in these methods was recently 

renewed when we realized that the capacitance matrix, or imbedding, method devel- 

oped by Proskurowski and Widlund [18] could be adapted for the difference schemes 

considered by Kreiss. 
In this paper, we describe Kreiss' schemes, give detailed proofs of convergence 

and existence of error expansions and discuss their implementation. We have exclu- 

sively used a deferred correction method in our numerical experiments rather than 

Richardson extrapolation. Our reason is that the deferred correction method, especial- 

ly for problems in several dimensions, has often proved less costly; see Pereyra [13] 

and also Section 5 of this paper. One advantage is that, in contrast to Richardson 

extrapolation, deferred correction methods require only one mesh size. The capaci- 

tance matrix method allows us to solve the same system of linear equations repeated- 

ly at an expense which decreases considerably once the first problem has been solved. 

Our combination of a deferred correction and an imbedding method is quite 

convenient from a programming point of view. We have also developed a new, practi- 

cal way of calculating the required difference approximations to the terms of the 

expansion of the truncation error. This method resolves a long-standing problem in 

the theoretical justification for the use of more than one deferred correction step for 

boundary value problems of this type. The imbedding of the region in a rectangle 

allows us to use certain programs previously developed to perform deferred corrections 

for problems on rectangular regions. 
In the last section, we report on numerical experiments carried out on a CDC 

7600 computer at the Lawrence Berkeley Laboratory. They show that very high 

accuracy is obtained for problems with sufficiently smooth solutions. For problems 

which fail to have sufficiently many bounded derivatives the corrections do not spoil 

the accuracy of the solution. We believe that our method can be developed further 
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into highly efficient and reliable numerical software. We note that fast Laplace solvers 
are used increasingly to enhance the convergence when solving more general problems, 
see for example, Bartels and Daniel [1] , Concus and Golub [4], [5], Jameson [9], 
O'Leary [10], Martin [11 ], [12] and Widlund [21 ]. 

Acknowledgements. Thanks are due foremost to Heinz-Otto Kreiss for a number 
of conversations and for copies of his notes. Thanks are also due to Ole Hald and 

Vidar Thomde who read a draft of this paper and made helpful comments,and to Paul 

Concus and Gene Golub for their interest and their hospitality in Berkeley and Stan- 

ford where a main part of our work was done. 

2. Kreiss' Method for Poisson's Equation. We will consider a family of finite 

difference schemes for the Dirichlet problem for Poisson's equation, 

n 
-Au - - E (a/axi)2u = f(x), x E Q. 

(2.1) 

u(x) = g(x), x E a2, 

where the region E2 is an open, bounded subset of the n-dimensional, real, Euclidean 

space Rn with the boundary a2. We will make no detailed assumptions on the 
smoothness of a2 and the data f and g but assume only that they are sufficiently 
smooth. As is well known, the problem (2.1) then has a unique, sufficiently smooth 
solution. 

A uniform mesh Rn is introduced by 

Rn = {x E Rn Ix= nh, n= 0, ?1, ?2, ... } 

where h > 0 is the mesh size. The position of the origin of our mesh is, of course, 
arbitrary. We could also have chosen different uniform mesh sizes in the different 
coordinate directions without affecting the theory or practice of the methods except 
in some very minor ways. 

The set of mesh points of interest to us is 2h = E2 n Rn. There are no equa- 
tions for points on a2. The difference equations are constructed as a sum of approxi- 

mations of one-dimensional problems corresponding to the operators -(a/axi)2, j = 1, 
. . ., n. They are specified by defining a linear equation for each x E Q2h Let the 
vector ei be the unit vector in the direction of the positive ith coordinate axis. A 
mesh point x E 2h is called regular if all its closest neighbors x ? he1, i = 1, . .. n, 
belong to 2h' For a regular mesh point, we simply use the standard centered differ- 
ence approximation of each of the second derivatives. This results in the equation 

n 
2nuh(x) - E (u(x + hei) + uh(x - hei)) = h2f(x). 

i=1 

This formula is combined with polynomial extrapolation of a fixed degree k for 
the remaining, irregular, mesh points of 2h' Let us thus suppose that x E 2h but 

that x + hei (4 Eh and that x - hei, . . . x -(k- 1)hei E Q2h This last condition 
can always be satisfied for a smooth U2 if h is chosen small enough. Denote by xi 
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the intersection of the boundary a2 and the segment between x and x + hei and by 
s - h the distance between x* and x + he . Thus 0 < s < 1. A provisional value of 
uh(x + hei) is now defined by the Lagrange interpolation formula, 

k 
(2.2) Z cjuh(x - (I - 1)hei) = u(x.*)= g(x*). 

j=O 
The coefficients ctj depends only on s and are given by the formula 

k 
01j I I (S - 1/ ) 

l=O;I*j 

The value of Uh at the point x + he1 is now eliminated by combing (2.2) with the 
standard three-point formula for the point x. The resulting matrix, which corresponds 
to the approximation of -(a/axi)2 along a mesh line parallel to ei, thus typically has 
the form 

(2.3) 

(2+a,/4), H +a,/a%)5 a,?t a. . .XklatO 

-1 2 -1 *-- 

0 -1 2 ... 

... 2 -1 0 

*-- -1 2 -1 

lk/aO ' a3/ao, (-1 +a2/ao), (2?+/%a), 

Here ot . ?are the Lagrange interpolation coefficients related to a second inter- 
section between the boundary and the mesh line. If the mesh line in question inter- 
sects aQ in several points, the matrix representing the difference approximation of 
-(a/axi)2 along this line will be a direct sum of several matrices of the form (2.3). 
The matrix Ai which corresponds to the entire approximation of -(a/ax )2 is the 
direct sum of the matrices introduced for the individual mesh lines parallel to the 
vector ei. Finally, the matrix A, which represents the approximation of the entire 
problem (2.1), is the sum of PTl. PL where Pi is a suitable permutation matrix. 

We note that if some irregular mesh point x is very close to the boundary, i.e. 
some s is quite close to one, the ratio cl/ o will become very large. This will give 
the matrix a very large diagonal element, and the coefficient multiplying g(x*) in the 
right-hand side will be of the same order of magnitude. In practice, we will therefore 
always scale the rows of the matrix A, making the diagonal elements equal to 2n. 

3. Stability of the Finite Difference Methods. As we saw in Section 2 the 
matrix A which corresponds to the full difference approximation of problem (2.1) 
has the form 

n 
A = E P[A1P1, 

1=1 
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where the Pi are suitable permutation matrices and the Ai are direct sums of matrices 

of the form (2.3). The original problem (2.1) has a bounded inverse in L2. The 
analogous result is that the spectral norm of the inverse of A is bounded by const x 

h-2. To establish this result we will study the symmetric part of A. In this section 
we will use the Euclidean vector norm and the spectral matrix norm exclusively. 

LEMMA 1. Let the symmetric part of a matrix A satisfy 

(A +?AT)/2 > 8I, 6 > 0. 
Then A is nonsingular and IA-1 I ? 1/ . 

Proof Let Ax = b. Then 

8xTx ? XT(A + ATx/2 = (xTb + bTx)/2 < lb I * Ixl. 

Thus lxl < lAxl/8 which proves the lemma. 
LEMMA 2. Let A = o P[TA1P1 where the Pi are permutation matrices. If 

(A?i + AbI2 > 8I, 

then 

(A +AT)/2 > nbL 

The proof follows from an elementary variational argument. The proof of the 
next lemma is equally easy. 

LEMMA 3. Let the matrix Ai be the direct sum of certain matrices Bij. If 

(Bj + BT?)/2 > 5I for all I, 
then 

(Ai+ AT)12>SI. 

We are now ready to apply these lemmas. Specifically we will study matrices 
of the form (2.3). For technical reasons we will assume that all these matrices have 
an order of at least 2k - 1. This condition can again be satisfied for any smooth 
M if the mesh size h is chosen small enough. We will reduce the study of the matrix 

(2.3) to a simpler case which corresponds to imposing a Neumann condition at one 

endpoint. 
LEMMA 4. Denote by B the matrix defined by formula (2.3). Let B2 be a 

matrix of the form 

/1 -1 

-1 2 -1 

B2= 

-1 2 -1 

\k o/o . I 
. 
,3/a, (- 1 ? a2/O) (2 + a?/ao) 
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and let B1 be a matrix of the same form generated by a', . . , 4. Suppose further 
that the orders of the matrices B1, B2 and B, denoted by n1, n2 and m, respectively, 

satisfy the conditions 

n1 > k, n2 > k, m = n? + n2 - 1. 

If 

(B1 + BT)/2 > SI and (B2 + BT)/2 > 51, 

then 

(B + BT)12 > 5L 

Proof. Denote by B1 the matrix obtained from B1 by reversing the order of 
its rows and columns. The proof follows from the identity 

XT(B + BT)X12 = uT(- + B[T)u/2 ? VT(B2 + B2T)v/2, 

where uT = (xi, . . . x) and vT = (xn. xm). This identity can be verified 

straightforwardly. Hence, by our assumption, 

XT(B + BT)X12 > 6(uTu + vTv). 

To conclude the proof we only note that uTu + vTv > xTx. 

We will next use the LDLT factorization of S = (B2 + BT)/2 to verify that S 
is positive definite and also give a lower bound for its eigenvalues. We will write S 

as a block matrix 

(sll sfT\ 

(3.1) S= j, 

S21 S22 2 

where s21 = (0, 0.., ? ?20 * *, a3/2ao, - 1 + a2/2a%) and S22 = 2 + aI%1.o 
Its block factorization takes the form 

( 1 1 ?) )(Lf KU) 

where 

1 /-1 1b\ 

-1 1/ 

is bidiagonal, 
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1 = L = (0, . . , X ? I2%0' (Ok + ? ik-)I2%, 

(?)k + 12+ %/2%, -1 + (otk + + ?0/2%) 

and 

d = s22 -11 = 2 + ?t11% 4(tkl2ozo)2+ + -Zk + + { / )/2()2 

+ (-1 + (ozk + + ?t2)2 

By using the fact that oz + ? *+ 0 1, we find that 

(3.2) d = 1I% - {c4 + (tk + cxk-1) + + (tk? + ? * * 2 }/40 

Computer results show that the rational function d is strictly positive for 0 ? s ? 1 
and all 1 ? k ? 6. For k = 7 and 8 it changes sign in the interval. These results 
can of course also be verified by a tedious paper and pencil calculation. We note that 
d goes to positive infinity when s approaches 1 while the components of s21 and 1 
remain bounded. We are now ready to establish a lower bound for the eigenvalues of 
S. 

LEMMA 5. Let dmin denote the minimum of the function d(s) defined by 
formula (3.2). Then there exists a strictly positive constant C, independent of the 
mesh size h and the region Q2, such that 

S > 1I, 
where 

6 = Cdminh2/(diameter(p))2. 

Proof By using the notations previously introduced in this section, we find 

XTSX = XTLDL TX > min (din in, 1) IL TX 12. 

Since d = I for s = O, XTSX > dnin IL Tx 12. To obtain a lower bound for ILTxI we 
will compute an upper bound for IL-Tyl. Partitioning the vector so that yT = (7T, 

Yn) we find 

y TL-1 = ((T T-yl)L1 , Ynb) 

Therefore, if we use the fact that 1 has a uniformly bounded norm, we find 

ILTy12 S ILAIYI ? .* 111)2 +?y2 ?C(IL-112 + I)1y12. 

The norm of L-1 equals the square root of the reciprocal of the smallest eigenvalue of 
L 1LT1. Now the matrix 

-1 2) 

has an order m < diam (~2)Ih. As is easily checked, the smallest eigenvalue of L1 1Lf 
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equals 4 sin2(7r/2(2m + 1)) corresponding to an eigenvector with the components 
cos (Xr(j - 1/2)/(2m + 1)), j = 1, . . . , m. This concludes the proof. 

By combining our five lemmas and the results from our computation of dmin, 
we obtain, what essentially is Kreiss' result, 

THEOREM 1. For k < 6 there exist constants Ck, independent of h, such that, 

1A-1 I < Ck(diam(Q))2 x h-2. 

4. Convergence and Asymptotic Expansions of the Error. In this section, we 
will prove the convergence of the schemes introduced in Section 2 and simultaneously 
establish asymptotic expansions for the error. We will concentrate on the case k = 6, 
which is the most accurate of the schemes known to be stable. We will assume through- 
out that the solution u(x) is sufficiently smooth. We make the Ansatz, 

(4.1) uh(x) = u(x) + h2e"1)(x) + h4e(2)(x) + rh(x). 

The functions e(1)(x) and e (2)(x) will be chosen as solutions of Poisson's equation in 
a way which will make the remainder rhl(x) a term of higher order. 

Asymptotic expansions of this form are basic for the justification of Richard- 
son extrapolation and deferred correction methods. They also easily enable us to 
give estimates for the rate at which difference quotients of the solution of the dis- 
crete problem uh(x) converge to the corresponding derivatives of the solution u(x). 

Let us denote by h2Lh the difference operator which has the matrix representa- 
tion A, see Sections 2 and 3. The linear system of equations therefore has the form 

(4.2) h 2Lhuh = F". 

A component of the right-hand side F*, which corresponds to a regular mesh point, 
has the form h2f(x) whereas a component, corresponding to an irregular mesh point, 
is a sum of h2f(x) and terms of the form g(xi*)/o0(si). Here %o(si), 0 < si < 1, is a 
Lagrange polynomial coefficient introduced in Section 2. To derive equations for the 
error functions e(1)(x) and e(2)(x), we substitute the expression (4.1) into Eq. 
(4.2) and expand the truncation error in the customary way. We first ignore the 

contributions from the interpolation formulas used for the irregular mesh points. By 
setting the fourth and sixth order terms of the resulting expressions equal to zero, we 
obtain the Poisson equations 

n 
-\e(') = (1/12) E (a/axi)4u 

i=l 

and 
n n 

- -e(2) = (1/360) E (313Xi)6u + (1/12)E (a/aXi)4e(1). 
i-1 i=1 

Because of the high order accuracy with which the boundary condition is approximated, 
it is appropriate to equip these equations with zero Dirichlet boundary conditions 

e(0)(x) = 0, e(2)(x) = 0, x C Ma. 
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The functions e(1)(x) and e(2)(x) are, by a standard result on elliptic equations, 
sufficiently smooth functions. 

We now derive a difference equation for the remainder term rh(x). This equa- 
tion has the form h2Lhrh = Gh. It is easy to show that a component of Gh, corre- 

sponding to a regular mesh point, is of the form, 

n n 
h8 (1/20160) (alaxi)8u + (1/360) (alaxi)6e(i) 

n 
+?(1/12) Z(a/ax )4e(2)? + 0(h ?) 

i=1 

A component of Gh, corresponding to an irregular mesh point is the sum of a term 

of this form and of one or more seventh order error terms of the Lagrange interpola- 
tion formulas (2.2). The latter terms are multiplied by factors l /ao(si) which grow as 

const/(1 - si) when si > 1. It can, however, be shown, by a straightforward calcula- 
tion, that this increasing factor l/ao(si) is fully compensated by a decreasing factor in 

the error bound for Lagrange interpolation, see Isaacson and Keller [8, p. 190]. 

These components of Gh are therefore uniformly 0(h7) for all sufficiently smooth 
solutions u(x). 

We are now ready to use Theorem 1 to obtain a bound for rl(x). It is natural 
to work with the norm, 

r112 
= 

(XE hnlrh(x)12) 

1/2 

for which the estimate of Theorem 1 still holds. We first estimate IJGh"12. The 

components of Gh are 0(h8) for the regular mesh points and 0(h7) for the irregular 
mesh points. Since there are only of the order On-i) irregular points, JIG hl2 = 

O(h7 .5). We use Theorem 1 to establish 
THEOREM 2. Let uh(x) be the solution of the finite difference scheme with k 

= 6 and let u(x) be the sufficiently smooth solution of the differential equation (2.1). 

Then there exist two sufficiently smooth functions e(1 )(x) and e(2)(x) such that 

u h(x) = u(x) + h2e(1)(x) + h4e(2)(x) + rh(x), x hF 

where the L2 norm of r h(X) is O(h 55). 

Similar results hold for smaller values of k. We expect that Theorem 2 is not 

sharp. We conjecture that the remainder term should be of the form 

rh(x) = h6e(3)(x) + 0(h7) 

in the maximum norm. We are led to this conjecture by results, previously established 

by Bramble and Hubbard [2], for the operators of strictly positive type which result 

when k = 1 and 2. If the estimate of Theorem 2 can be sharpened in this way, we 

would be justified in applying Richardson extrapolation three times to obtain a 

seventh order accurate method. 
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5. Methods of Increasing the Accuracy. Richardson extrapolation and deferred 
correction methods are available to improve the second order accuracy of the basic 
solution uh(x). We will again concentrate on the case k = 6. We will first discuss 
the Richardson extrapolation method which is simpler both conceptually and in terms 
of its implementation. 

The solution is first found on a basic mesh Qho and then for a sequence of re- 
fined meshes 2hi, where hi = ho/ri, 1 < r, < r2 < . . . . It is very important that 
the sequence {r1} grows slowly for multidimensional problems since the number of 
variables grows rapidly. The improved solution is obtained only on the intersection 
of the meshes Uhi. If we require the improved solution at all points of 9h and use 
two extrapolation steps, the number of mesh points on the finest mesh will be at 
least about nine (twenty seven) times larger in two (three) dimensions. Core storage 
can therefore easily be exhausted and less advantage can also be taken of the savings 
which often can be realized when direct methods are used to solve linear systems re- 
peatedly. 

If enough terms of an asymptotic error expansion, in even powers of h, exist, 
we obtain improved solutions ul by the recursion formula, 

= (uj - (r u )/(I - (rIri)2) 

with u?? the restriction of uhi to the intersection of the meshes Sh.. The error 
ul - u will be of the order hg'+2. A useful a posteriori error bound, 

- u t(ui - ul_)/(l - (r,+XIrs)2), 

can also be computed, for details see Bulirsch and Stoer [3]. 
By using Theorem 2, we can easily show that two steps of Richardson extrapo- 

lation will give an accuracy of the order h5 5 if we use the scheme with k = 6. 
The deferred correction method requires only one mesh. The method has been 

discussed in detail in a number of papers, see for example Pereyra [13] -[17]. Here, 
approximations of the leading terms of the local truncation error of the discrete oper- 
ator h2Lh are computed and a corrected solution is then found by solving an additional 

system of linear equations with the same matrix A as before. Further corrections may 
be obtained in a similar way. 

We will describe the variant of the method which we have used in our experi- 
ments. In the first step we take into account only the first truncation error terms, re- 
sulting from the approximation of (a/axi)2, i = 1, .. . , n, by the three-point approxi- 
mations. We know from Section 4 that these leading terms are 

(5.1) h4(1/12)(a/axd)4u, i = 1, . . . ,n. 

We attempt to approximate them to within 0(h6) by using centered five-point differ- 
ences of the second order accurate solution uh. For a periodic problem this procedure 
is very simple, but for a region with a boundary special one-sided differentiation formu- 
las must be used for the mesh points which are within 2h of the boundary along a 
mesh line. One-sided formulas can introduce additional error terms for the corrected 
solution through the special contributions to the truncation error at the points where 
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these formulas are employed. An additional correction step may be justified by an 
asymptotic error expansion of the corrected solution, but note that an unfortunate 
choice of one-sided differentiation formulas would lead to difficulties very similar 
to those already discussed by Wasow [20]. 

This problem can be avoided in a systematic way. Let x be the irregular mesh 
point introduced in our discussion in Section 2. We will use high order Lagrange ex- 
trapolation, employing only values of the mesh function uh at x, x - hei, . . ., to 
obtain provisional values of uh at x + hei and x + 2hei. The same centered five- 
point differentiation formula can then be used for all points in ?h, see further dis- 
cussion in Section 6. The expansion of the truncation error which is due to the use 
of the five-point approximation of the fourth derivative (a/axi)4 will have the same 
leading terms and differ only in a higher order term. The order of this higher order 
term will of course depend on the degree of the Lagrange extrapolation polynomial. 

The Lagrange polynomial coefficients are the same at every point since we use values 
at mesh points only. The approximation of the expressions (5.1) are added to the 
original data FT and the linear system of equations is solved a second time. 

In a second correction step 

(5.2) h4(l/12)(a/axi)4u + h6(1/360)(alaxi)6U, i= 1, . . . , 

is approximated by a centered seven-point formula with an error which is 0(h8) 
for a sufficiently smooth function. We thus use the once corrected solution and 

high order extrapolated values thereof in a way very similar to the previous step 
to obtain a new right-hand side and a second corrected solution, see further 
discussion in Section 6. 

Our error bounds for the deferred correction method are rather weak. When we 
estimate the truncation error due to the discretization of the expression (5.1), we 
find that the three first terms of the expansion given in Theorem 2 give a contribu- 
tion of the order h6. Since the operator h2Lh has an inverse bounded by const h2, 

they contribute a term of the order h4 to the error of the corrected solution. In 
contrast the undivided differences of the remainder term of rh create difficulties. 
Since undivided difference operators are bounded, independently of h, the contribu- 
tions of rh to the truncation error and the error of the corrected solution are bounded 
by h5.5 and h3,5, respectively. In order to prove a result as strong as that for the 
Richardson extrapolation method this loss of two powers of h must be eliminated. 
This would be achieved if we were able to give as sharp a bound for the norm of the 

second order divided differences of the solution as for the norm of the solution itself. 

The analogue of this desired estimate holds for second order elliptic equations on re- 

gions with sufficiently smooth boundaries. We have not been able to obtain this re- 

sult in the discrete case. A modification of the argument of Section 3 leads to an im- 

proved bound for divided differences of the first order. This proves that at most one 
power of h can be lost in each correction step. For numerical evidence see Section 7. 

6. The Capacitance Matrix Method. All our experiments have been carried out 

for regions in the plane and we will therefore confine our discussion to that case. We 
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have used a modification of the capacitance, or imbedding, method which was devel- 
oped by Proskurowski and Widlund [18] to solve our linear systems of equations. 
We refer to that paper for a detailed discussion of the method. Here we will confine 
ourselves to a few brief remarks on the method concentrating on the changes required 
by the deferred correction algorithm. 

A main part of any capacitance matrix program is a fast Poisson solver on a 
region for which separation of the variables can be applied. Our subroutine, SOLVE, 
implements a Fourier-Toeplitz method on an infinite parallel strip with periodic 
boundary conditions in one direction, see Proskurowski and Widlund [18, Section 6] 
and Fischer, Golub, Hald, Leiva and Widlund [6]. Our region 2 is imbedded in a 
rectangular subset of this strip. The fast solver requires of the order mn log2n opera- 
tions for the exact solution of the five-point discrete Poisson equation. Here n, the 
number of mesh points across the strip, is preferably a power of two and m is the 
number of mesh points used along the strip. We will see below that it is convenient 
to place the region 2 inside a centered subset, of size (m - 6) x (n - 6), of the set 
of m x n mesh points which is used by SOLVE. 

An extended system of linear equations with a matrix A = B + UZT is solved. 
The matrix B corresponds to the five-point formula on the strip while A contains our 
matrix A, see Sections 2 and 3, as a principal minor. The matrices U and Z are 
sparse and have p columns where p is the number of irregular mesh points. The ma- 
trix U is chosen so that Uv, v any p-vector, is an extension by zero of the corre- 
sponding mesh function v defined only on the set of irregular mesh points. The ma- 
trix ZT is thus a compact representation of the matrix A - B from which zero rows 
have been eliminated. A change of the approximation of the boundary condition in- 
volves a change of the matrix Z. The right-hand side FT of our original system of 
equations is extended, in an arbitrary way, to the complement of Sh. The matrix 
A is constructed in such a way that the restriction of the solution of the extended 

system to the set Qh is the solution of our original system of equations. 

There are two main parts of our capacitance matrix program. We execute the 
first one only once for a particular choice of h (a mesh size), k (a member of our fam- 
ily of difference schemes) and a region Q. In this first part a p x p nonsymmetric 
dense capacitance matrix C is computed at an expense of one call of the subroutine 
SOLVE and of the order p2 additional operations. A solution for a specific set of 
data, which is accomplished in the second part, requires essentially only two calls of 
the subroutine SOLVE and the solution of a capacitance matrix system of equations 
of the form CAu = g. In our implementation the capacitance matrix C is very well 
conditioned and this equation can therefore be solved accurately by a conjugate gradi- 
ent method at an expense of the order p2 operations. We have however chosen to 
use Gaussian elimination. The matrix C is factored only once, at an expense of the 
order p3 operations, and the factors are then stored and used for any additional set 
of data. Any subsequent problem therefore requires only of the order (mn log2n + p2) 

operations. The method is numerically very stable and the linear system of equations 
is solved very accurately. 
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Two rectangular arrays of the dimension m x n are used to store the data and 
the solution. The first array initially contains the original data F*, arbitrarily extend- 
ed to the complement of ?h. The second order accurate solution uh is computed 
and stored in the second array. This solution is then extended to certain exterior 
points by extrapolation in the xi -direction, see Section 5. A first contribution to 
the modified right-hand side of the equation is then computed by using a five-point 
numerical differentiation formula on all mesh lines parallel with the xi -axis. The 
resulting mesh function is added to Fh, the content of the first array. This process 
is now repeated in the other direction. We thus extrapolate uh(x) in the x2-direction 
to the appropriate exterior mesh points and use a differentiation formula in the x2- 

direction to obtain the final contribution to the new right-hand side. We note that 
we can simplify the programming by using the numerical differentiation formula over 
the entire rectangular region since the restriction of the solution on the strip to the 
set Sh is independent of the values of the data outside ?h. The second part of the 
capacitance matrix solver is now used, with the new right-hand side, to produce a 
fourth order accurate solution. It is stored in the second array which also serves as 
work space during this part of the calculation. The final corrected solution is com- 
puted similarly. The original data Fh is read into the first array and approximations 
to the expressions in formula (5.2) are added. In this step seven-point differentia- 
tion formulas are used. We note that since we placed Sh inside a rectangle, leaving 
three extra mesh lines on all sides, we can carry out all the necessary extrapolations 
while using only the storage locations provided for in the second m x n array. This 
admittedly introduces an additional constraint on the choice of mesh size for certain 
nonconvex regions but this aspect of the implementation of our method can of 
course easily be changed. The extrapolation and numerical differentiation steps are 
very straightforward and require very little computer time; see Section 7. 

7. Numerical Experiments. A FORTRAN program incorporating the ideas of 
this paper was prepared and run in single precision (between 14 and 15 decimal digits) 
on a CDC 7600 computer at the Lawrence Berkeley Laboratory using a RUN 76 com- 
piler. We report on experiments using second and sixth order Lagrange interpolation 
formulas, k = 2 and 6, for the irregular mesh points, see Section 2. In all our experi- 
ments the region was a circle of radius one centered at the origin and the mesh size 
was h = 1/23. There were 1653 mesh points of which 128 were irregular and the re- 
gion was imbedded in a 64 x 64 mesh. 

By eOO and e2 we denote the maximum and L2 norms of the error, i.e., 

em, = max luh(x) - u(x)I, 
xQ h 

and 

C2 = ~(1/N) Xh lUh(X) -U(X)12 1/2 

xEQ 9h 

where N is the number of points in ?h. 

In Table 1, we report on the solution of 
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- Au(x) = 2 sin (x1 + x2) 

with boundary values and exact solution equal to u(x) = sin (x1 + x2). This is a 
problem with a very smooth solution and served basically as a test that the program 
and algorithm really worked. We note that we obtain close to full word accuracy. 

The next problem, see Table 2, was 

- Au(x) = 53 sin (2x1 - 7x2) 

with the boundary values and exact solution equal to u(x) = sin (2x1 - 7x2). This 
problem is more difficult than the first since the solution is more oscillatory. We 
tried sixth and second order interpolation at the irregular mesh point. According to 
results of Bramble and Hubbard [2] there is an expansion of the form 

uh(x) = u(x) + h2e(1"(x) + 0(h3) 

when second order interpolation, k = 2, is used. We note that the first correction 
step gives a smaller improvement in the case k = 2 than when k = 6 and that the 

second correction step gives no improvement for k = 2. This experiment thus con- 
firms the observations of Wasow [20], Pereyra [13] and others on the importance of 
the existence of asymptotic error expansions. We also note that the two second order 

methods, obtained before the correction steps, perform equally well. 
A final series of experiments were carried out to study the effects of lack of 

smoothness of the solutions. The problems had the form 

-21(1- lXxI +X2)1-2 if xI +x2 >0, 

0 otherwise, 

with the boundary values and exact solution equal to 

(X1 +x2)' if(XI +X2)>?0 

0 otherwise. 
We tried 1 = 2, 4 and 6. The solution then has a jump discontinuity in derivatives of 
order 1. The results are given in Table 3. The performance of the method with k = 
2, 1 = 6, is consistent with our previous observations. For k = 6 and with 1 = 2, 4 it 
appears as if an 1th order accurate method is obtained for these solutions which have 
a jump in the 1th derivatives. Care must of course be exercised when trying to draw 
such conclusions from our very limited experimental evidence. We feel however that 
our results are encouraging. We note that when the solutions fail to be smooth 
enough the corrections do not destroy the accuracy obtained in the previous steps. 

The total CPU-time for a problem with k = 6 was 10.28 seconds. The first 
part of the capacitance matrix program, see Section 6, computed the second order 
accurate solution uh(x) in 8.77 seconds. The first correction required an additional 
0.66 seconds and the second correction took an additional 0.85 seconds. In the 
correction steps the extrapolation to exterior mesh points and the differentiation steps 
required less than 10% of the time. The execution time could be reduced by optimiz- 
ing our program and by changing to a faster compiler. 
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Correction 0 1 2 

en., k = 6 1.9 X 10-5 1.0 x 10-9 5.6 x 10-12 

e2, k = 6 1.0 x 10-5 5.4 x 10-1o 3.4 x 10-12 

TABLE 1 

L2- and maximum-norm errors for a problem with the solution u(x)= 

sin (x1 + x2). Sixth order interpolation used at the boundary points 

Correction 0 1 2 

en, k = 2 8.8 x 10-3 1.3 x 10-3 1.4 x 10-3 

e2. k = 2 4.7 x 10-3 3.3 x 10-4 3.4 x 10-4 

en, k = 6 9.2 x 10-3 5.3 x 10-5 1.3 x 10-5 

e2, k= 6 4.8 x 10-3 2.8 x 10-5 3.4 x 10-6 

TABLE 2 

L2 - and maximum-norm errors for a problem with the solution u(x)= 

sin (2x1 - 7x2). Second and sixth order interpolations are used 

Correction 0 1 2 

e0, 1=2,k=6 9.9x 10-3 9.9 x 10-3 9.9 x 10-3 

e0, 1=4,k=6 1.2 x 10-3 4.8X10-6 4.8 X 10-6 

e0, 1=6,k=6 7.4 x 10-3 9.4 x 10-7 7.7 x 1O-8 

en, l = 6, k = 2 6.7 x 10-3 1.5 X 10-3 1.5 X 10-3 

TABLE 3 

Maximum-norm error for a problem with the solution u(x) = (x1 + X2)', if 

(X1 + X2) > 0, U(X) = 0 otherwise. Sixth and second order interpolations are used. 
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