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On the Smoothness of Best L2 Approximants 
from Nonlinear Spline Manifolds* 

Rv Charles K. Chui, Philip W. Smith and Joseph D. Ward 

Abstract. Let S k be the nonlinear spline manifold of order k and with n - k interior 
variable knots. We prove that all best L2[0, 1] approximants from Sn to a continuous 
function on [0, 1 ] are also continuous there. We also prove that there exists a C [0, 1] 
function with no C2 [0, 1 ] best L2[?, 11 approximants from Sk 

1. Introduction. In this paper, we consider the problem of best approximation 
of functions in the L2 [0, 1] norm 1111 = 11112 by splines with free knots. Our results 
will obviously go through to approximation by Chebyshev splines (cf. [5, p. 516]). 
Lett O=tl =* * * tt <tk+l 6 * n<tn +l = * = tn+k= 1 with 

tI+k > t1 for = 1, ... , n, and let Ni k(t, *) denote the normalized B-splines with the 
knot sequence t (cf. [1]). We also denote by Sk the space of all splines of order k and 
with n - k interior knots tk + 1' , tn on [0, 1]. Because of the condition ti+k > tk , 

a spline in S* has at worst jump discontinuities (when k interior knots coalesce). It is 
clear (cf. [1]) that any spline s in S* can be written as 

n 
sQ )= E AiNik(t, *, 

i=l1 

where A1, . . , An are suitable constants. Let 

d2(f, S*) = inf { 11f-s1I: s S* } 

be the distance from a function f to S* in L2 [0, 1], and if s C S* satisfies 1s - fli = 

d2(f, S*), we call s^ a best (L2 [0, 1]) spline approximant of f from S*. In the next 
section we will establish the following result: 

THEOREM 2.3. Let f be a continuous function on [0, 1]. Then all best spline 
L2 [, 1 ] approximants to f from S* are also continuous on [0, 1]. 

We remark that the above result also holds for Lp [0, 1], 1 < p < 00, by essen- 
tially using the same proof as the L2 [0, 1] case. Schumaker [7] has proved that every 
continuous function on [0, 1] has a best (uniform) approximant from S* which is also 
continuous. Later in [8], he has also proved that if f C C1 [0, 1 ] and n > 2, then f 
has a C1 [0, 1] best (uniform) approximant from S*; but on the other hand if n > 3, 
there exists a C' [0, 1 ] function which has no C2 [0, 1 ] best (uniform) approximants 
in Sn All the above-mentioned results of Schumaker are in the uniform norm. In 
order to prove an analogous negative result for L2 [0, 1] we need develop some results 
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in nonlinear approximation theory in Section 3, and will establish the following theorem 
in Section 4: 

THEOREM 4.1. There exists a Co [0, 1] function f which has no C2 [0, 1] best 
L2 [0, 11 approximants from Ski, n > 2k - 2. 

2. Continuous Best Spline Approximants. In this section, we show that every con- 

tinuous function on [0, 1 ] has only continuous best spline approximants in Lp [0, 11, 
1 < p < 0. In order to establish this result we first prove a theorem concerning best 
spline approximants from Sk with knots of multiplicity k. This theorem which will be 

Theorem 2.1 below is of independent interest. As a final application of this theorem, a 
result on discontinuous best spline approximations will be derived. 

Let t be a knot sequence as defined in Section 1 and s(t, *) be a best approximant 
to a function f from Sk in L2 [0, 1]. Let the error be e(t, r) = f(ir) - s(t, r). In ad- 
dition, for a fixed m, 1 6 m < n, we define e(t7, r) = e(t- , r) = lim +e(tmaej) 

where tme = t - e(O, 0, . . .,0 1, . . . , 0) with 1 in the mth component and we 
define e(t+, r) analogously. Finally, we set e(t, r) = lim,-O+e(t, t - e). With this 
notation we have the following: 

THEOREM 2.1. Let s(t, *) be in Sk, f G L2 [0, 1], If- 512 = d2(f, Sk) and tm 

= tm+k Tl. hen if f possesses left and right limits at tm we have 
(i) e(t, tm) (Am-, -Am) > O. 
(ii) e(t, tx,) (Am-, -Am) < 0, 

where 
n 

s(t, r) = AjNjk(t,). 
j=1 

Proof. If s(t, *) satisfies If- S112 =d2(f, S*), then clearly 

0 > aj [e(t,r)I dTj and 0? lL[e(tr-)I2d d 

Computing the derivatives yields 

m j1ln a O[e (t, r)] 2 dr =2 lo (t, r) EAs a Ni,k (t, T) dr. 

From a result of de Boor we have 

Ni k(t , r)- [ti+ 1.,.. tj+ k (I _ ~+ 1 -[ .,tjk-1 ]( k+1. 

Furthermore, 

[trl- - kt kI 
at [tr+ 1 ***'tr+ k (I )+ 

m 

0 ifm < r+ 1lor m >r + k 

[tri ; tmi, tm7 tm+;1, tr+kI( -r)+1, otherwise, 

T f re 1(t7) 

Therefore, aNs~ f )/ atm 
= 

j+ 
l (T) - 

0(r). 
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Note that each 0j is a (possibly zero) multiple of a normalized B-spline. Hence, 
the derivative becomes 

at eo e0, T)2 dT = 2 rO e(t, T) Ai? A(0j+ 1 - 0j) }dT 

Evaluating this derivative at tm ,e one obtains 

0 > lim - 2 J1e(tm ,e, ) Ai (0j - drj) dT 

= lim -2 foe(tm er) O)21i (Ai1 -A)} di, 

where we set Ao-0. As e 0 +, 

O or 

fy-- for j m; 

Nj *k/(tj+k* - tf) 
and since s(t, r) is a best approximant to f(T) from Sn* k N. *k(t/+k - t,) is orthog- 
onal to the error. But 

Om (T) = [tm - 6, tm -e, ** tm T*1 k( - *+1-N *(W) 

where Nm ,k is a normalized B-spline determined by the partition { tm - e, tm - e 
tm + 1,* *, tm + k- }and hence, 

foNmk(T)/edT= fti- [tm e tm -e,. . . 
. 

,tm+k. ]( -T)+ = 1/k 

via the Peano kernel theorem. Thus, as e O + all the terms are orthogonal to the 
error but Om, and the mean value of it is 1/k. It follows that 

O 
e- 

lim 
-2fro e(tme, I 6 T (A,- 1 - 

Ai)j 
} dr 

=-2 
= e(t, t-)(Aml AM); 

here we use the left continuity of f. 
Similarly, for tm + k- 1,-e 

0 6lim 2 2oe(tm+k-1,-e, T) (AjI -Ai) O diT 
6 + j= + 

= ke(t, t + _ A -l Am), 

Thus, multiplying both equations by -k/2 yields 

e(t, t-T)(Am-, -Am) > 0, e(t, tm)(Am-, Am) ? 0. 

This completes the proof of the theorem. 
THEOREM 2.2. Suppose that f possesses left and right limits at tm, and that 

s(t, ) is a best L2 [0, 1] approximant to f from Sk. If s is discontinuous at t, then 
either 
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[S(t, tm ), SOt, t+ )] C Vf tm ), f(t+ )] 

or 

[S(t, t+ ), SOt, t-M)] C [f (t+ ), fAt- A - 

Proof. Without loss of generality, we can assume that s(t, tm) = Am-, < 
s(t, t+ ) = Am. From (i) of Theorem 2.1, we conclude that f(tm) - s(t, tm) < 0 or 

f(tm) 6 s(t, tm). Similarly, (ii) implies f(t+) > s(t, t+). 
We can use this result to conclude that a continuous function must have a con- 

tinuous spline best approximant. 
THEOREM 23. Let f be a continuous function on [0, 1]. Then all best spline 

L2 [, 1 ] approximants to f from S* are continuous on [0, 1]. 
The proof is immediate from Theorem 2.2 since a discontinuity in a best L2 [0, 1] 

approximant s forces a discontinuity in f. 

3. Projections onto Nonlinear Manifolds. The goal of this section is to establish 
Theorem 3.3 and its corollary. Roughly speaking, these results guarantee that certain 
elements of well-behaved nonlinear manifolds in a Hilbert space have "many" elements 
projecting onto them via the metric projection. These results will be used in Section 4 
to construct examples of C' functions with no C2 spline best L2 approximations. 

We also state and indicate proofs of similar results in more general Banach spaces 
in Theorems 3.1 and 3.2. 

We first introduce some notation which will expedite the presentation. The no- 
tation is the same as found in [3] . X will denote a normed linear space and A a sub- 
set of X. Then we set 

B(x, r) {y e X: lIx - y 11 6 r}, 

(3.1) dist (x, A)--inf { llx - al11: a G A }, 

PA (X) {a A: lIx - all = dist(x, A)}. 
The mapping x - PA (x) is called the metric projection from X to subsets of A. For 
each x C X, the elements of PA (x) are called the best approximants to x from A. A 

point a C A is a local best approximant to x from A if there is a neighborhood U of a 
such that a C PUnA(X). If a is the only element of PunA(X) for some neighborhood 
U of x, then a is called a strict local best approximant to x. Throughout we will use 
0 to denote the zero element of any linear space. If A is a cone with vertex at the 
origin, then S(A) aB(O, 1) n A. 

We will be concerned with approximation from subsets M of X which have the 

following structure (see Braess [2]). 
Definition 3.1. A subset M of X is called a C'-representable manifold (with 

boundary) if for each m C M there is a relative neighborhood U C M of m satisfying 
the following three properties: 

(i) There is a closed convex body C C Rn, a relatively open subset V of C, and 
a homeomorphism g: V o U. (If g1(m) = 0 then g is said to be centered for m.) 

(ii) The map g is continuously Frechet differentiable in V. (The Frechet deriv- 
ative of g at a C Rn is denoted by g'(a).) 
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(iii) Assuming that g is centered for m, there is a continuous map k from U into 

g'(0) * (U>O C) satisfying k(m) = 0 and 

IIu - m - k(u)II = o(IQk(u)II) as u m. 

We define the tangent cone TC(m), m C M, to be the set of vectors 

TC(m) -m + g(0) *(Y o c)t, 

where g is centered for m. (See [3] for a more lengthy discussion.) The normal cone 

N(m) at m C M is defined as 

N(m) = {y: r(m, y) I TC(m)}, 

where r(x, y) {Xy + (1 - X)x: X > O} and r(m, y) I TC(m) means that PTC(m)(y) 

contains m. 
For m, z C M, let p (m, y, z) be the radius of the smallest ball centered on 

r(m, y) which contains m and z in its boundary. (If there is no such ball set p(m, y, z) 
- oo.) The metric radius of curvature, p(m), is defined to be 

p(m)- inf [lim inf {p(m,y, z): z c M}. 
yeN(m) z-+m 

The metric curvature is naturally defined as a(m) = 1/p(m). 

The folding of a set A at a C A, denoted by fld(a), is 

fld(a) sup {to C R1: B(a, t) n A is compact and connected for each t < to }. 

An element m C M is a critical point of y C X if y C N(m). The following lemma 

was proved by Braess in [2]. 
LEMMA 3.1. Each local best approximant to y from M (a Cl-representable mani- 

fold) is a critical point. 
Finally, we state a fundamental result due to Braess [2], which generalizes 

Theorem 3.1 of [6]. 
TiEOREM (NONZERO INDEX THEOREM). Let M be a Cl-representable manifold 

and lety CX. Suppose thatA = {mCM: a?II m-y II? <}iscompact. If ml C 

A is a strict local best approximation to y and m2 C A satisfies IIm2 -y1II < IIm -Y11 

and if B(y, (3) n M has a connected component containing m1 and M2, then there is 

a critical point z C B(y, (3) n M of y which is not a strict local best approximation to 

y from M. 
Although Braess does not quite state the Nonzero Index Theorem as above, it 

is easily seen from [2] that the above theorem is true. 

We will now state and prove several theorems concerning the local behavior of 

the normals. In particular, for manifolds with bounded curvature and folding bounded 

away from zero, the normals from nearby points do not intersect near the manifold. 

More precisely, we have 

THEOREM 3.1. Let M be a C1-representable manifold in X. Suppose that a(m) 

is bounded on compact subsets of M and fld(m) > 0 for all m C M. Then for each 

m C M there is an e > 0 so that for all y C B(m, e) n N(m) 
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(3.2) PM(Y)=m. 

Before proving this result we remark that this is a generalization of Theorem 3.1 
of [3] which states that u(m) < oo for all m E M implies that PM: X\M - M is a 
surjection. The proof of this theorem is essentially the same as that of Theorem 5.1 in 
[3] and will be omitted. As in the proof of Theorem 5.1, one proceeds by contradiction 
and finally contradicts the bound of u(m) using the Nonzero Index Theorem. 

If M is a C1 -representable manifold for which the kernel of g'(0) is trivial then 
it was shown in [3] that fld(g'(0)) # 0. Thus, we obtain the analog of Theorem 5.2 

of [3] as in the following 
THEOREM 3.2. Suppose M is a Cl-representable manifold such that, for every 

m C M there is a centered parameterization g satisfying g'(Q)b $ 0 for every b C 

S(Ua>0aC). If the curvature is bounded on compact subsets of M, then for each 
m E M there is an e > 0 so that for all y G B(m, e) n N(m), PM(Y) = m. 

We now specialize to the case where X is a Hilbert space. Further, we will assume 
that M is a C2 -representable manifold. That is, we will assume that each m C M has a 
twice continuous Frechet differentiable centered parameterization g. In this case we 
can combine the previous results with those of Chui & Smith [4] to obtain the following 

THEOREM 3.3. Let M be a C2- representable manifold in a Hilbert space such 
that for every m E M there is a centered parameterization g satisfying g'(O)b # 0 for 
all b E 

S(Ua,,>0oC). Then for each m C M there is an e > 0 so that for all y E 

B(m, e) n N(m), PM (y) = m. 
Notice that the proof of this theorem would be trivial if we knew that a(m) was 

bounded on compact subsets of M. Theorem 3.2 of [3] shows that indeed a(m) is 
bounded on compact subsets which yields the result. 

As a corollary to this theorem we obtain a result which is essential in the con- 
struction of counterexamples in the next section. 

COROLLARY 3.4. Let M be a C2-representable manifold as in Theorem 3.3. Let 
D be a dense convex subset of the Hilbert space H. If TC(m) is an affine variety, then 
there exists x E D, x # m, so that PM(x) = m. 

The proof of this corollary begins by noting that N(m) is an affine variety of 
finite codimension. Thus, D n N(m) is dense in N(m). Theorem 3.3 guarantees that 
each m E M has a relatively open subset of N(m) (e.g. N(m) n B(m, e)) projecting 
onto m. Since D n N(m) is dense in N(m), it is easy to see that there is an x E D, 
x $ m, x E N(m) n B(m, e) and this x projects onto m. 

4. Spline Manifolds. In this section we discuss the sharpness of Theorem 2.3. 
In particular, using the results in Section 3 we will show that certain Co [0, 1] func- 
tions have a unique L2 best spline approximant which is in C1 but not in C2. These 
results should be contrasted with those of Schumaker in [8]. 

THEOREM 4.1. There exists a CI [0, 1] function f which has no C2 [0, 1] best 

L2[0, 1 ] approximants from Sk, n > 2k - 2. 

Proof. Let s be a C1 spline which is not twice continuously differentiable in 

Sk \Sk . Then there is an e > 0 so that B(s, e) n Sf C Sk\Sk We will further 
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assume that 
n 

s = s(t*, ) = Za N. kNI(t*, 

and that the map 
n 

g(a, t, ) = Z ojY,,k(t, ) 

is a C2 imbedding into B(s, e) n Sk for (a, t) in a neighborhood of (a*, t*). It is 
easy to see that we may choose (a*, t*) so that the kernel of g' is trivial for all (a, t) 
sufficiently near (a*, t*). Now Corollary 3.4 implies the result. 

We conclude this section with several remarks concerning future research. We 
first note that these results are clearly true for Chebyshev spline functions (cf. [5, 
p. 516]). 

It is not at all clear whether a result similar to Theorem 4.1 in Lp for p # 2 
would be true. This is a difficult problem since it is not possible at present to esti- 
mate the curvature of the spline manifold in Lp, p # 2. In addition, the normals in 
Lp are no longer subspaces. 

Finally, the most important question from the viewpoint of this paper would be 
to decide whether or not there exist Co functions which project onto C[O, 1] but not 
C1 [0, 1] spline functions in Sk. 
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