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A Discrete Least Squares Method 

By Peter H. Sammon* 

Abstract. We consider a discrete least squares approximation to the solution of a 
two-point boundary value problem for a 2mth order elliptic operator. We describe 

the approximation space of piecewise polynomials and devise a Gaussian quadrature 

rule that is suitable for replacing the integrals in the usual least squares method. 

We then show that if the quadrature rule is of sufficient accuracy, the optimal or- 

der of convergence is obtained. 

1. Introduction. Let a < b. We shall consider a scheme for finding an approxi- 
mate solution to the following uniformly strongly elliptic boundary value problem: 

m 
(11) Lu(x) = E (-_ )rDr(ars(x)Dsu(x)) = f(x) on (a, b), 

r,s=O 

JVu(a) = u(b) = O for O < s < m - 1, 

where we require that ars(x) = asr(x) for 0 < r, s < m. For simplicity, we shall assume 
that the coefficient functions belong to C' [a, b] . We shall also assume that L has a 
trivial null space so that unique solutions are guaranteed. 

The approximate solution will be found by a discretized least squares method 
that utilizes a Gaussian quadrature rule for integral evaluation. The Gaussian rule will 
be studied because it provides a high degree of precision in general situations, at mini- 
mal computational expense. We will describe the method and show which Gaussian 
quadrature rules achieve the optimal order of accuracy when used with approximation 
spaces of piecewise polynomials. 

We refer the reader to Ciarlet and Raviart [2] for a thorough description of the 
discretized Galerkin method in Rd. 

2. Preliminaries. We let Wr(a, b), r a nonnegative integer, denote the usual L2- 
based Sobolev spaces on (a, b) and 

W~m(a, b) = {g E Wm(a, b): Vg(a) = Vg(b) = O for O < s < m - 1}. 

We also let Vr(a, b) Wr(a, b) n Wg (a, b) and note that Wr(a, b) (or Vr(a, b)) can 
be normed by 

1 r, (ab) = (f E fb * )(x)l dx) 

We shall suppress the (a, b) in the notation in what follows. 
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We note that our assumptions on L give us the following regularity result. If r is 

a nonnegative integer, then there is a constant C = C(r) > 0 so that 

(2.1) (1/C)IgIIr+2m < IILgI1r < CI9gIIr+2m for all g E Vr+2m. 

We now introduce some notation which will aid us in our description of the ap- 

proximation space Sh. If A is the partition on [a, b] given by 

A: a = xO <xl < . 
<XN <XN+ = b 

and n is a positive integer, we let P'(A) denote the set of functions on [a, b] whose 

restriction to each open subinterval of A is a polynomial of degree (n - 1). If r is a 

nonnegative integer, we let 

We assume II = ( 
r 

Xfi+i 
Ds( .)(x)12 

dX)./ 

(a - o1, == E Exi 
We assume that Sh satisfies the following conditions: 

(1) Sh C Pn(A) n Cz [a, b] WWm where n > 2m, z > 2m - 1 and A = Xi}fo. 

(2) We have that 

(2.2) inf 119 - XII2m < Ghn-2m 1g1n for allg E Vn, 
xeSh 

where h = max {(xi+ 1 - xi): 0 < i < N} and C is independent of g and h. 

We note that C is allowed to depend on an upper bound a for the mesh ratio, 

given by (h/min {(xi+ 1 - xi): 0 < i < N}). 

In the future, C will denote a generic positive constant that depends on L and all 

of the parameters that have been mentioned, except h. 

Later we will need the following fact. If 0 < r < s < n - 1 and X E Pn(A), then 

IIXIIsA < Chr-sIIXIIrA 

Thus, we have inverse properties in Sh. We also have 

PROPOSITION 2.1. If n - 2m > 2m, 0 < r < n - 2m and v E Wr, then 

(2.3) inf liv - LxIIo < ChrIl1VIr. 
xeSh 

Proof. Estimates of (2.3) can be obtained for r = 0 and r = n - 2m using (2.1) 

and (2.2). The result then follows by interpolation. u 

3. The Least Squares Method. For the sake of comparison, we include the fol- 

lowing easily proven estimates. If A: V2m Sh is defined as the projection orfto Sh 

in the IIL( * )IIo norm (see (2.1)), then Ag, where g C V2m, is characterized by 

b(Ag, X) L(Ag) Lxdx = Lg Lx dx = b(g, X) for all X C Sh 

and, with r = min(n, 2n - 4m), satisfies the following estimates: 
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4. Gaussian Quadrature. Let K > 0 and fix some interval (xi, xi+1) in A. Let 

}K- 1 be the roots of the Kth Legendre polynomial on (xi, xi+ 1). These are the 

Gaussian quadrature nodes in (xi, xi+ O). It is well known that there exist (unique) 

weights w11 > 0 , < j < K, which give a quadrature sum on (xi, xi+ 1) that is precise 

for polynomials of degree (2K - 1). 

Using these nodes and weights on each subinterval, we can devise a composite 

quadrature sum on [a, b] and thereby define approximations to the quantities 1 II 

and b( , ). For r a nonnegative integer, let 
N K r 12 1/2 

i=O j= 1 s=O D/ 

/N K 
bl( *, * E wiiL( 

- 
)(zij) 

- L( - )(zij) - 
=O j= L 

THEOREM 4.1. (1) If g, and g2 are suitably smooth, then 

(4.1) I(b - b')(gl, g2)I < Ch2KI Ig I2K+2m,AIIg2II2K+2m,A 

(2) If Xl, X2 E Sh and r = 2K - 2(n - 2m) + 2, then 

(4.2) I(b - b')(X1, X2 )I < ChrIIX1 112 m 11 X2112 m 

Proof. To demonstrate part (1), we expand Lgj * Lg2 in a 2K-term Taylor series 

with integral remainder about the left endpoint of each subinterval in A. Then we use 

the precision of the Gaussian rule for polynomials of degree (2K - 1) and an estimate 

of the remainder to obtain (4.1). Part (2) follows from part (1) and inverse proper- 

ties. o 
This result will be used later to choose K. 

5. The Discretized Least Squares Method. We will now use our quadrature sum 

to define an operator related to the operator A mentioned above. 

Let A': Vn _ Sh be defined for each g E Vn as the function in Sh that mini- 

mizes IIL( - -g)IIo Ad over Sh. The next result will show that A' is well defined by 

this procedure and that it is characterized by the equation b'(g - A'g, X) = 0, for all 

X C Sh. 

THEOREM 5.1. If K = n - 2m and h is sufficiently small, then A' is well defined 

and if g C Vn, we have that 

(5.1) Ig - A'9112m < Chn-2m 11911n 

Proof. Fix X C Sh. Then if h is sufficiently small, (2.1) and (4.2) show that 

b'(X, X) = b(X, X) + (b -b)(X, x) > IILXII2 - Ch2LIIXIm > CII XI . 

Similarly, b'(X, X) < CIIXII2m. Thus, b'( - , ) is an inner product on Sh . Hence, A' 

is well defined and is characterized by the equation noted above. 

We now choose the X C Sh at which the infimum in (2.2) is attained. 

We will first show that 
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(5.2) 11 X -A'gii2 -< Cli X -gl2m, A, 

Since b'(g -A'g, x) = 0, Schwarz's inequality (we recall that w > 0) and simple esti- 
mates yield the following: 

CJJX -A' 112m < b'(X -A' , X - A'g b(X -Al g, X - g) 

? [b (X - A g, X - A'g) 1 2 [b'(X - g, X _ 
g)l 11/2 

? CliX - A'gii2m1iX gi2m,A- 

This gives (5.2). 
For each 0 < i < N, we let Eig be the unique polynomial of degree (n - 1) on 

(xi, xi+ 1) that satisfies D2mEig(zij) = D2 mg(Zi1) for 1 < j < K = n - 2m and 

DsEjg(zjj) = Dsg(zil) for 0 < s < 2m - 1. If Eg C Pn(A) is the piecewise polynomial 
on [a, b] made up of the {Eig}l 0, then as in Ciarlet and Raviart [1], one can show 
that 

(5.3) 11g - Eg1r A< Chn-r?19n for 0 < r < n. 

By expanding IDs(g - Eg)12 (O < s < 2m - 1) in a one-term Taylor series about 
the left endpoint of each subinterval and using (5.3), we find that 

(Ig _ Eg1jm A,) -A(hg-Egii2m.1 A)21 < Ch2(n-2m)+ 1 i1g112 

But by our choice of Eg, iig - Eglim = jig - Egili1 . Thus, by (5.3) and the 
last estimate, we have 

(4g)- Egl'm, < Qh 2(n-2m)+ 1 11g,12 + ig- _Egii2m1 )1 /2 

< Chn-2m 11911n 

We now use another Taylor series expansion, as in the proof of (4.1), to show that 

(l X - Egim, Ai)2 -(li X-Egii2m A )2 1 
(5.5) 

2 (1X-E12 

ch2Kii1X-Ei2 = Ch2K II X-Eln < Ch2 11 X-Eg2 Eg12 Eg . 

Note that inverse properties and the low polynomial degrees proved useful. 
We now can complete the proof. We use (5.2)-(5.5) to find that 

iig - A'gi2 m <? 11 - x112m + Clix -gi12mA 

< Chn-2m 1ii1i + Clix -Egi'mA + CIIEg -gii'mA 

< Chn2"'iilii + Clixn2Egi2 / < -2 0 

We will now prove an L2 error estimate for g - A'g. Note that the hypotheses 
given below demand more continuity than those of the last result. 

THEOREM 5.2. If g e W2n2m, K = n - 2m and h is sufficiently small, then 

(5.6) ig -A gi _ C hmin(n2n 

Proof. Let v e V2m satisfy Lv = (g -A'g)/llg -A'g110. Then for any X G Sh, 
we have that 
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ig - A'g1O = J > - A'g)(x) * Lv(x) dx 

a 
(5.7) 

= b(g- A'g)(x))(v - L )(x)dA + (b - b')(g - A'g X) 

< Cjig-A'gII2nI1V -LxIIo + I(b -b')(g -A'g, x)I. 

Also, if w E V4m solves Lw = v, then IIWII4m < C. 

Using (2.2), (5.1) and inverse properties, one can obtain the following estimate: 

(5.8) jIg -A'12 K+2m, A < C1gI2In-2 m . 

We will need this result later. 
Say 2m > n - 2m. Since V4m C Vn, we can use (2.2) to find a X E Sh that 

satisfies 11w - X112m < Chn-2m . Then (2.1) shows that 

(5.9) 11 -LxII0 < Chn2m. 

Since w E Vn, we can proceed as in the last proof and define a piecewise polynomial 
Ew E pn(A) which satisfies an estimate like (5.3). Then using inverse properties and 

this polynomial, one can easily show that 

(5.10) 1IX112K+2m,A i 11Xiin-l,A <- C. 

Taking this X in (5.7) and using (4.1), (5.1) and (5.8)-(5.10) we obtain the result for 

2m > n - 2m. 

Say 2m < n - 2m. We can use (2.3) to choose a X C Sh that satisfies liv - LXii0 
< Ch2 . We then can construct a piecewise polynomial Ew, of degree (4m - 1) on 

each subinterval of A, so that the 2mth order derivatives of w and Ew match at 2m 

Gaussian points. We have, via the techniques of [1] , that 

(5.11) 11w - EWIr, A< C h4m r for 0 < r < 4m. 

Then using (5.11) and inverse properties, we see that 

(5.12) lIXII4mA < iX - EWI14mA + IIEW - WI4mA + IIWI14mA < C. 

If we take this X in (5.7), we can estimate the first term using (2.3) and (5.1). We can 

use (4.1) and inverse properties to estimate the second term as follows: 

I(b - b')(g - Ag, X)l Ch2n-4m-n+1 +4mjjg-A1 112K+2mA11X114mA 

Then (5.8) and (5.12) complete the proof. o 

Using the techniques of this section, it is possible to estimate IDS(g -A'g)jOIAd for 

0 < s < n. 

We note that to use these methods on (1.1) in practice, one must find the solu- 

tion of the following linear system: 
d N K W X N K f 

E E: E: wjLXr(zejdLXs(zij) )Cr = E E f(zij)L xS(zij)) for I < s < d, 
r=1 i=O i=l / i=O i=l 
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where {Xr}Id is a basis for Sh and A'u = C x, is the discrete least squares ap- 

proximation to the solution of Lu = f. If f E W2n-4m, A'u satisfies the estimates 

given by (5.1) and (5.6). Thus, upon examination of Section 3, we see that if K = n 
- 2m Gaussian nodes are used in each subinterval of A, the discretized least squares 

method obtains the optimal order of accuracy. We refer the reader to Russell and 

Varah [3] for a discussion of the computational merits of the discretized least squares 
method. 
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