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Functional Fitting -New Family of Schemes 
for Integration of Stiff O.D.E.* 

By Arieh Iserles 

Abstract. Following the ideas of Liniger and Willoughby (although acting along 

different lines), a new family of schemes, derived from the trapezoidal rule, is de- 

veloped, which enables the fitting of the scheme to arbitrary sets of equations. 

1. Introduction. The optimality of the trapezoidal rule, in terms of maximal 
order (among the multistep methods with constant coefficients) and minimal trunca- 
tion error when applied to stiff ordinary differential equation (0. D. E) systems, proved 
by Dahlquist [1], is a well-known fact. Its simplicity and cheapness of maintenance 
do not need any additional proof. In spite of this, the trapezoidal rule (T. R.) has some 
serious disadvantages which influence the numerical solution: 

a. The poor performance on the "transient" segments of the solution (a disad- 
vantage common to almost all methods for stiff 0. D. E.). 

b. The overestimation of rapidly decaying components of the solution and the 
consequent lack of L-stability. 

c. Oscillations of the solution, introduced by the alternating sign of the character- 
istic function, when applied to linear equations. 

d. The low order. 
In the present paper an attempt is made to overcome these disadvantages and to 

show that schemes derived from T. R. can be quite efficient, in spite of the basic 

deficiencies of the original scheme. 

2. The Functional Fitting. Liniger and Willoughby [2] introduced the con- 

cept of exponential fitting and suggested three new A-stable schemes. These schemes 
are accurate for one or two particular and previously chosen scalar linear equations. In 

spite of several critical deficiencies of these schemes-lowering of the order or compu- 
tation of the second derivative (and, consequently, also its Jacobian matrix af'/ax), in- 
sufficiency of the fitting to only one or two exponentials and the arbitrariness in the 
selection of the parameters-the basic idea of Liniger and Willoughby is remarkably 
deep, and it can lead us to far better results. To sum up this idea in a sentence, we can 
assume that in the solution of stiff 0. D. E, the fitting to decaying functions which 
approximate the foreseen behavior of the solution is more important than the order, 
i.e. the fitting to polynomials. 

Extrapolation, either polynomial (Romberg) or rational (Bulrisch-St6er) is a typi- 
cal situation in which a numerical facility is applied to increase the order of the solution. 
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FUNCTIONAL FITTING 113 

Nevertheless, as stated above, this is of little help when we deal with stiff O.D.E. More- 

over, the extrapolation often destroys many of the stability properties. 
This property of the extrapolation schemes is not intrinsic, and one can hope to 

obtain new extrapolation techniques which will be more appropriate for stiff systems. 
In this paper we shall try to show that this hope is fully justified. 

In other words, at every stage of extrapolation we have a set of extrapolants, 
which are simply approximations to the solution. The extrapolated value is obtained by 

some "averaging" of the extrapolants, either in a linear or in some nonlinear mode. The 

goal of the conventional "averaging" is to increase the order of the solution, or, antici- 

pating the nomenclature used later in this paper, to fit the scheme to polynomials of 

order greater than the original order of the scheme. This goal must be changed when 

we solve stiff 0. D. E., because polynomial behavior is highly uncharacteristic of the 

behavior of the solution of stiff systems, which usually decay asymptotically. Solving 

stiff systems, we must "average" the extrapolants in another mode, fitting the scheme to 

decaying functions which approximate the foreseen behavior of the solution. 

Let us introduce a number of notations: 
For a set of different and increasingly ordered integers {l 5,,. 1 . ,l Im }we de- 

note by x(i) the solution of 

(2-1) x=f(tx), x(to)=xOEEN, 

obtained in tn + = tn + h, by li consecutive applications of the T. R. scheme: 

(2-2) Xnkl= X(l) + h ( )+ xy) 
(2-2) ~Xn + klli Xn + ((k - 1)/ 1i) 2 1, (n +(k-l )/li n + k/li) 

with the step length h/li. 
Let us assume we have a set of scalar ordinary differential problems 

(2-3) j(i) = f(i)(t, z(G)), z(U)(tn) = 1, 1 ? j ? M, 

such that limt_.>x z(i)(t) = 0 for every i. We denote by zi; the solution of (2-3) for j 
in tn+ 1 = tn + h, obtained by li consecutive applications of the T. R. scheme with the 

step length h/li . m 
Finally, let us denote by {fcokm) } the set of all permutations of {1, 2, ... 

m} of length k S m-1, when o(lm)=p. =m) 1 

THEOREM 1. If M = 2m + - m -4 and {{ T } = is 
any solution of the linear algebraic system: P 

m 

(2-4) :(1,m) = 0, 

(M) (kM1) 

(2-5) (km) S f(k-Im)' 2 k m -1, 

m 

(2-6) E2 T (m-1 ,m) 
1=1 1~ 
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m-1 [k ) ( i(t +1 

k= [ ( (k,m) P 

(2-7) (m) 

k=LLL kl ij(k,m) P 
[E( )w] 

1 1j <M - 2m+1 m -4 

then the scheme 

rn-i [(.2 1.x 
gq(X((2 L 

), X(2 ) 

x + 

) 

m-1 pk ) m 

= 
UP 

~~~~~~1 q~n, E [ EW +/, Xks kr)X 

is at least of order 2, and it is fitted to the set {f (i) }M ; i.e. it solves exactly Eqs. 

(2-3) in w + 1 . 
Proof. {X(k) }m~ are solutions obtained by application of the T. R., which is a 

second order scheme. A necessary and sufficient condition for this is that if f(t, x) = 

Lt -L L = 0, 1, 2, and x(tp) = 0 (which may be assumed without loss of generality) 
then X(k)-hL, k-= 1, 2, ... ., m. By the same reasoning, this is the condition which 
ensures that (2-8) is of the second order. But 

g~hL hL, .,hL) =hL, OS L?S2, 

implies 

m-l [mi htm )- m I[(k) ( mh l 

L i (j hkL k1[P1P I 
x 

k1 p=1 1 P WP E-w(km 

This equation must be valid for arbitrary h, and therefore, we can equate the 
coefficients of terms with the same powers of h. This implies immediately (2-4), (2-5) 
and (2-6). Therefore, every scheme (2-8) for which these m equations hold is at least 
of the second order. 

There are (k) permutations of {1, 2, . . ., m } of length k; and therefore, the 
set { orde (kms) e (kmn) } 1 suf }fi-il contains 2(2ft-2) = l + 1l- 4 different com- 

ponents. Equations (24), (2-5) and (2-6) define m of these; and thus, in order to de- 
fine all components it is necessary to add M = 2m +1 - m -4 more linear equations. 
Setting 

g(Z hL, 
Z2 . * * Zmj) = Z(L)(tn+1), 1 ?L 2M, 
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where z(j)(t n+ 1) is the exact solution of z(i) = f (')(t, z(')), z(')(to) = 1, we easily 
derive Eqs. (2-7). Q.E.D. 

Applying similar reasoning, we can prove immediately the two following weaker 
(but more useful) results: 

THEOREM 1A. If M = 2m_ - rnI and {{f (km) }I4 }_ 1 is any solution of 
the linear algebraic system 

m 

E W (k,m)=l1 
p=1 p 

(m) 

(km) , 2 <2 k<m-1, 
p=1 UP 

EfE( (k Zij ) (km) =Z(j)(tn+1) 1 ?<j?M, 
k=1 p=1 iE=- (k,m) / P 

then the scheme 

g (X(1 ) 
x(2),5 . .,,5 X(M)) = E E 

[ km I xqi) 
(2-9) k=1 p=1 P i (k,m) 

p 

Xn+ =g, 

is at least of order 2 and is fitted to the set { f(i) } 1 in tn + 1. 

THEOREM 1B. If M = m - 1 and {q }mL is any solution of the linear algebraic 
system 

m m 
(2-10) E =p 1, E rpzp; = Z( )(tn+i), 1?j?M, 

p=1 p=l 

then the scheme 

gq(Xl), 
(2) (M 

- ?lX(P) (2-1 1) gxq )q2 ), . ... , q )) = ^RxP ) 

p=1 

is at least of order 2 and is fitted to the set { f () }1 in 
The apparent conclusion of the Theorem 1, 1A and 1B is that we can apply an 

extrapolation technique in order to fit the scheme to an arbitrary set of scalar equa- 
tions of type (2-3). 

In the following, we will devote our attention particularly to the scheme (2-11), 
the simplest one. The discussion will be restricted to the exponential fitting only, i.e. 
to fitting to linear equations, both because of the significance of these equations as 

the first approximation to any nonlinear system and of the considerable difficulty in any 
more sophisticated fitting.** 

** The problem of fitting a scheme to nonlinear functions, based on a quite different idea, is 
treated in another paper [4]. 
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The exponentially fitted scheme (2-1 1) has the following elegant form: 
m 

E qp=1, 
p=1 

(2-12) m lp + Ojh/2 \ _ 

P=1 lp - O)jh/2 lp=e , 1S m- 

when the set (2-3) is 

(i) = (j z()(t ) =t1, Re 4(j) <, 1 <Inm - 1, 

and h = tn + 1 -tn- 
The scheme (2-1 1) resembles the familiar linear (Romberg) extrapolation scheme. 

The following lemma shows the connection between the two approaches: 

LEMMA 2. If F(01 ... ' Om-_) is the space of .solutions of (2-12) and Fo = 

lim0 o; <jiml- F(1O 5 5 Om -i), if aP') = (a('), .. . , a(')) are the coefficients 

of the Ith order odd-power linear extrapolation, then 

Fo = 1 5(1 7q2, * 
.. 

* , 7m) ? 77p=1 n Sp lal) a(2) . ... , am-) 

Proof. Let 

Qk = ( < )2 5 1 < k < m, It I < 211, 

If we denote 1 = lk' s = 7/21k, then Qk = ((1 + s)/(1 - s))' and for IsI < 1: 

Qk = [(1 + S) (1 + S + S2 + - - )]I = (1 + 2s + 2s2 + 2s3 + 2s4)l + O(s5) 

= 1 + 21s + 212S2 + 32l(2l2 + i)s3 +212(12 + 2)s4 + 0(S5) 

= 1 +7~~72 + 3+I +2-4+0C ) I 
2 6 ( 

+ 
12 ) 24 ( 12) ( 

Now, if we define 

Pk 3 (Q- Qk) and S (Qj - e ), 

then 

Pk 02(2 1)( + t) + 0() 1 < k <m , 

and 

S-= 12 (1 + )+(t2). 
12 
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It is easy to observe that fitting to xc = tx, x(O) = 1, is equivalent to 
m m 

E 77k 1 E Pkk =S. 
k=1 k=1 

Therefore, when 7ttends to zero we obtain 

E 1 _k 

or 

I l (k1 ) k1M 

k=1~ ~~ =11 

But zm=1 Ek = 1, and therefore Em lqk k = 0. This equation is independent of 7; 
and therefore, if all the 0, tend to zero, Eq. (2-12) has the form 

(2-13) m 1k 1 X 2 7 k = ? 

k=1 k=1 
12 

Let e(k) be the error of the T. R. scheme in the solution of the equation x = 

3t2, x(O) = 0, using 1k equal substeps of length hilk in [0, h]. Then, according to the 
well-known Euler-Maclaurin formula (Ralston, [3, p. 133]), e(k) - h3/l . 

Applying any odd-power extrapolation of T. R., the error due to h3 vanishes. 
Therefore, 

ml 
- 0. Z -- kl)=O 

k=1 12 

Moreover, every extrapolation is order preserving (in fact-order increasing); and thus, 
EM a(') = 1 and (2-13) holds. 

If t E fn: ET li = 1 } n Sp {a(l , . . .,a(m1)}, then there exists X = 

(X1, * * , > 1) such that 
m -1 m -1 

Xi a(i) and Xi = I 

i=1 i=1 and so (2-13) holds for t and t E Fo 
The vectors a(), . .. , a(M - 1) are linearly independent, because the m by m - 1 

matrix [a(l), . . . , a(m-l )] is triangular with nonvanishing diagonal elements (if the 
highest-index coefficient of certain extrapolation vanishes, then this extrapolation does 
not depend on the highest-order extrapolant; therefore, it must be of lower degree, 
which contradicts the improvement of the order). Therefore, these vectors span the 
whole space of solutions of Em= lk/l = 1; and so, 

Fo =7Z: E j = A n Sp{a(1),a 2), ... ,a(m1)}. Q.E.D. 

It is evident from Lemma 2 that application of the scheme (2-1 1) to nonstiff sys- 
tems resembles the conventional (Romberg) extrapolation technique. The user of the 
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0. D. E. solving programme usually either does not know or is not interested in such 

"technicalities" like stiffness, and he wants a universal 0. D. E. solver. The consequence 

of Lemma 2, that is the scheme (2-1 1) adjusts itself to both stiff and nonstiff systems, 

is important from this point of view. 
Stability Analysis. The scheme (2-1 1) is obviously A-stable, because if we make 

an attempt to solve the scalar equation x = Xx, fitting of the scheme to this particular 

equation itself is nothing but natural. 
Let us consider the less trivial problem: given some particular choice of param- 

eters for the scheme (2-1 1) and given the multidimensional differential equation 

= Ax, x(O) = x0EEN, 

when all the real parts of the eigenvalue of A are negative, if we proceed from to = 0 

with constant positive step h, is lim>jIl x(t)II = 0. Let us call a scheme for which this 

limit actually exists an MA-stable (abbreviation for Matricial A-stable) scheme. 

LEMMA 3. Suppose we have an MA-stable scheme and x(i) is the solution ob- 

tained at tn +1 = tn + h by li consecutive applications of this scheme with the step 

length h/li, 1 i < m. Then the scheme x +1 = Ti 1 , i 7il = 1, 7li c R, 

V1 Si<m, isMA-stable if rid >0, 1 i<m. 

Proof. The scheme is MA-stable if and only if lxn+ ll < I1xn 1I for every n. Then, 

for every i, 1 6 i 6 m, IIx(i)II < IIXnII. But if li > 0, 1 6 i 6 m, then 

11Xn+lII =|| Iiix tlI j 
1 E< 77InxI 11 < 

= n 11 

that is, the condition qi > 0, 1 6 i < m, is sufficient for the MA-stability of (2-1 1). 

Q.E.D. 
LEMMA 4. The scheme xn = 71x(l) + (1- 77)x(2), where X(1) and x(2) are 

solutions obtained by the application of T.R. with one step and two half-steps re- 

spectively, is MA-stable if and only if l E [0,1 ]. 

Proof. The trapezoidal rule is MA-stable, and therefore by Lemma 3 if 71 E 

[0, 1] then the scheme xn+ = 71X(1) + (1 - 7)X(2) is MA-stable. 

On the other hand, let us assume that the above scheme is MA-stable. In order 

to prove the necessity of 7 E [0, 1] it is sufficient to check the behavior of the scheme 

for the systems x = Dx, x(0) = x0, where D is diagonal and Re DU < 0, i = 1, 2, ... . 

n. This is equivalent to considering the scalar systems x = Xx, x(0) = xo for arbitrary 

X, Re X < 0, (in general, X is not the parameter to which the scheme is fitted). Without 

loss of generality we may assume xn = 1, and then 

x(l ) =22 --hX x 4 - h_ 

If we denote z(g) = (2 + ji)/(2 - j), then 

Xn+i = 7lz(hXA) + (1- l) (3z(hX) + 2 

The mapping z(g) is a Mobius transformation of the complex left half-plane onto 
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the closed unit circle. Therefore, for particular g there exist R and 0, 0 < R ? 1 and 

o ? 0 < 2ir, such that z(g) = ReiO. The mapping xn + 1 = xn + 1 (z) is analytic for 

Izi < 1, and obviously is not constant; therefore, its absolute value attains its maximum 

on Iz = 1. But 

1x 12 = 2R2 +(1 -,q)2 
81R4 + 108 cos OR3 +(36cos20 + 18)R2 + 12 cosOR + 1 
R4 + 12 cosOR3 +(36cos20 + 18)R2 + 108 cosOR +81 

9 cos OR 5 + (48 + 12 COS20)R 4+ (I 14 cos 0 + 4 cos30)R 3 +(48 +R COS2 O)R2 + 9 cos OR 

R4+12cosOR3+(36cos20+18)R2+108cosOR+81 

and if R = 1, then 

where 

24 + 33 cos 0 + 6 cos20 + cos30 (- cos 0)3 > 0 

25 + 30 cosO + 9 cos2 0 (5+3cos0)2 

Therefore, Ixn + 1 12 < 1 implies Q7(71 - 1) < 0; thus 77(77 - 1) < 0 and 71 e [0, 1]. 

Q.E.D. 

Lemma 3 supplied a sufficient condition for MA-stability. This condition had 

been proved to be necessary for the simplest case, but for more complicated cases it is 

possible to obtain schemes which are MA-stable despite the appearance of negative coef- 

ficients. 

The necessary conditions for MA-stability of the scheme (2-1 1) for arbitrary 

(11 , ..,m) are complicated, and the author has not yet succeeded in developing such 

general criteria. What has been found is that the problem can be reduced to the follow- 

ing problem in complex function theory. 

If 

-k(t) = )l/ 1 <k<m, 

and 
m m 

a(t) = E nkok(t), Z k 1, 
k=1 k=1 

what are the conditions for max- .<t<cc Iu(t)I < 1. 

Furthermore, even if we obtain a set of complicated conditions on (qj, * * m) 
which are necessary for MA-stability, the main problem will be still open: what are the 

(m - 2)-tuples of scalar linear equations to which we can fit the scheme (2-11) to 

achieve MA-stability? This problem has been solved here only for the simplest case: 

The author wishes to thank Professor Giacomo Della Riccia from the Ben-Gurion Univer- 
sity and Professor Itzhak Katzenelson from the Hebrew University for their generous help in his 
fruitless efforts to solve this problem. 
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LEMMA 5. Exponential fitting of T.R. by the extrapolation of the solutions ob- 

tained by one step and two half-steps respectively, for real negative argument X of the 

fitted equation x = Xx, is MA-stable if and only if 

(i 2 +X /4 +X\2 (2-1 5) X( l (H) = 2 
+ ? < e A 

+X X(2 )(p) (h = 1) 

i.e. i <- 4.798 .... 
Proof. Let us fit 

X()=n(1)(X) + (I -q)X(2)(X) = 2 X+ (I -a ( a e; 

and then 

77 (4 
X 

))/( -) (4 ) ' X < ?. 

It is easily verified that 

2+X (4+X) <0 forX<0; 

thus the necessary and sufficient condition of Lemma 4, 0 < q < 1, implies immediately 

(2-15). Q.E.D. 
The stability conditions for the scheme 

xn+l = 7xl X ( + 772Xn~l + l+(1 - 12)Xn+l 

for the sequence (11, 12,13) = (1, 2, 3), have been compiled by a computer. If we fit 

to the arguments pu and P2 (h = 1), it has been proved that if max {/i, P2 } > 

- 5.03025, then one of the coefficients ll, % or 1 - ql - is outside the unit inter- 

val. On the other hand, if, say, ill <-5.03025 and P2 E (I, 1(11)], when p'Y1) ? 

-5.03025 is a certain critical value, then all the coefficients are inside the unit interval 

and the scheme is MA-stable. These critical values are listed below: 

I1 8( ) 

- 6 -5.99999 
-10 -5.86986 
-50 -5.09467 

-100 -5.04999 
-200 -5.03025 

TABLE 1. Critical values for fitting arguments 

3. The Matricial Functional Fitting. The functional fitting, described in the pre- 

vious chapter, has three deficiencies: 
a. It is necessary to solve a linear algebraic system in every step, in order to com- 

pute the values of the parameters. 
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b. If we want to fit a scheme to a considerable number of functions, we must 
perform an unnecessarily large number of function evaluations. 

c. The selection of the functions to be fitted is not natural, and we must intro- 
duce additional assumptions in order to define the selection properly. 

Here we follow the well-known mathematical rule: if you want to remove de- 
ficiencies you must introduce other deficiencies. We define a scheme which can be 
applied to a narrower set of problems and which needs more computation. On the 
other hand the selection of parameters is quite natural; we need less subdivisions of the 
steps and the scheme is MA-stable: 

Let x$l+)' and x 2) be defined as in the previous chapter. We define 

(3-1 ) xn + 1 = PXn1) + (I-_p) X(2+) 

when P is an N by N matrix, x E EN. 
Let be the N matrix equation 

(3-2) Z = F(t, Z), Z(tn) = 

whose solution is known. 
LEMMA 6. Let Z1)l and Z(2 ) be the solutions of (3-2) by one step and two n+1 n+1 

half-steps, respectively, of the trapezoidal rule, and let Z1)l - Z(2) be nonsingular n+1 n+1 
and 

33) (Z Zn +) 1) (Znl1) -1 -Z(2) 1)-1. 

Then the scheme 

Xn+1=PX(il) + (I- _ ) X(2 + 

is at least of second order and is fitted to (3-2). 
Proof. Similar to the proof of Theorem lB. 
The most natural choice of (3-2) is 

(3-4) Z = AZ, Z(tn) = I, 

when A is a negative-definite matrix. In this case 

E = Z`' - Z2) =- h 3A3/ 16 
n+1 n+1 

(I + hAI2)(I + hA/4)2 

If {f }{fN 1 are the eigenvalues of hA, XA < 0, V i, and {vi }N the corresponding eigen- 
vectors, then it is trivial to show that {v. }N are also the eigenvectors of E, with the 
eigenvalues 

- x?/16 
pIi= -0 VI<i<N, 

(1 + Xi/2)(I + Xi/4)2 

and the conditions of Lemma 6 hold. 
The solution of (3-4) is known to be e( tn)A. In order to compute an expo- 
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nential of a matrix we must obtain its eigenvalues and eigenvectors, which is an ex- 

tremely laborious task if performed at every step. It seems reasonable to reduce the 

amount of computation and introduce certain rational approximations to the exponen- 

tial of the matrix. In the following we will apply the approximation 

I+k hA +k kh2A2 
(3-5) ehA R(hA) 2 2 

I + k3hA + k4h2A2 

If we substitute (3-5) into the formula (3-3), we obtain 

(I k - (Ik1 2 +Ik3 +k4) hA+ k I-k2 -I1k3 -k4)h2A2+ +I(k2 -k4)h A3) 

P= 16 
h2A2(I+k3hA +k4h2A2) 

The matrix A had been defined to be nonsingular, but it can be ill-conditioned and we 

must take careful precautions in order to avoid any trouble in its numerical inversion. 

If we equate 

k1 = 1 +k3, k2 =k3 +k4 + , 

then the lower order terms in the numerator of P vanish, and we obtain 

(I - 1hA) ((3 + 8k3 + 16k4)I - (k3 + lh)hA) 
P= 

I+ k3hA + k4h2A2 

and 

I + (I + k3)hA + (k3 + k4 + ?h)h2A2 
R(hA) = 

I+k3hA + k4h2A2 

YWe can proceed here in three distinct ways: 
a. To substitute k3 = - 1/2, k4 = 1/12, and then to obtain the two-by-two 

diagonal Pade approximation 

R(hA) = I + hA/2 + h2A2/12 
I-hA/2 + h2A2/12 

and 

p _ 1 I - hA/2 
3 I - hA/2 + h2A2/12 

The Pade approximation is simply a Hermite-type rational interpolation at the 

origin; and therefore, it is extremely accurate for the components of a solution forced 

by the close-to-zero eigenvalues of the linear system. Consequently, this approximation 

is particularly good in the "smooth" segments of the solution, in which the contribution 

of the large (in absolute value) eigenvalues, so-called parasitic roots, is negligible, in other 

words outside the boundary layers. 
b. To interpolate the expression (3-5) for two particular real and negative values 

X1 and X2. That is, 
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eX2 1X ?2 xil -1 -Xi -?x2 e21 e 1e2 %1X2 A e l_1- -2A 

21 

k3 = - 

(e 2 1) 

e 2 _1 -2 -?X t2 e 1l 1X->1 el 1 i X->1 -?X 1 e 2 _1X-2 
x - X 

2 ix 
e 2 2 e1 1 

Xl - 
4 

e 1X1 eX2 IX(e ll 
X (e 2_ 1)- (e -1) 

As a rule, this gives us a better approximation to the exponential curve for nega- 
tive arguments and this approach can be considerably better than the previous one for 
"transient" segments, i.e. the boundary layers. This approach is particularly useful if we 
have any a priori knowledge about the loci of the eigenvalues, especially if they are 
located in two clusters. 

c. To find universal coefficients k3 and k4, which give the "best" approximation 
to the exponential curve in (- oo, 0] for any suitable norm. The natural choice is the 
integral L2 norm with a weight function, giving greater weight to closer-to-the-origin 
arguments. One particular norm is 

11 f 11 etf 2(t)dt} 

Analytical computation with this norm, i.e., finding mink3, k4 Ie - R(t, k3, k4)II, in- 
volves calculus with exponential integrals and is not practical. On the other hand, the 

numerical computation is simple, using Gauss-Laguerre integration. This approach can 
be useful for "transient" segments, when no information about the loci of the eigen- 
values is available. 

When we actually solve a system x = f(t, x), we substitute in the formula for P 
the value of hJ, where J is the Jacobian matrix in tn and apply (3-1). 

It is possible to include in (3-1) larger combinations of x(0's and to fit the scheme 
to more matricial equations. In order to perform this, the solutions of the matricial 
equations must commute. 
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