
MATHEMATICS OF COMPUTATION, VOLUME 31, NUMBER 137

JANUARY 1977, PAGES 163-179

Some Stable Methods for Calculating Inertia
and Solving Symmetric Linear Systems

By James R. Bunch* and Linda Kaufman**

Abstract. Several decompositions ofsymmetric matrices for calculating inertia and

solving systems of linear equations are discussed. New partial pivoting strategies for

decomposing symmetric matrices are introduced and analyzed.

1. Introduction. In [5] Bunch and Parlett present an algorithm, called the diagonal

pivoting method, for calculating the inertia of real symmetric or complex Hermitian
matrices, and for solving systems of linear equations when the matrix is real symmetric,
complex symmetric, or complex Hermitian. Using a pivoting strategy comparable to
complete pivoting for Gaussian elimination, Bunch [2] shows that the diagonal pivot-
ing method with this complete pivoting strategy is nearly as stable as Gaussian elimina-
tion with complete pivoting. (The bound on element growth is 3nf (n), cf. v/nf (n),,
where

f(n) = (f k1/(k 1)) < 1.8n(l/4)lgn;

the cost of stability is at least n3/12 but no more than n3/6 comparisons, cf. n3/3
comparisons, while requiring n3/6, cf. n3/3, multiplications and additions.)

In [3] Bunch discusses various partial pivoting strategies for the diagonal pivot-

ing method which require only 0(n2) comparisons instead of 0(n3), although these
increase element growth. In this paper we shall present and analyze several good

partial pivoting algorithms for the diagonal pivoting method.
In Section 2 we shall show that the diagonal pivoting method can be modified

so that only n2 comparisons are needed but element growth-is now bounded by
(2.57)n-1 (cf. 2n-r for Gaussian elimination with partial pivoting). Thus, the diagonal
pivoting method can solve an n x n nonsingular symmetric system of linear equations
with n3/6 multiplications, n3/6 additions, ?n2 comparisons, and n2/2 storage while
Gaussian elimination with partial pivoting requires n3/3 multiplications, n3/3 additions,
n2/2 comparisons, and n2 storage.

In Section 3 other variations of the algorithm are presented and analyzed. In
Section 4 the situation for symmetric band matrices is discussed. We are unable to
give an algorithm which preserves the band structure for every bandwidth 2m + 1.

Received February 25, 1975, revised March 23, 1976.
AMS (MOS) subject classifications (1970). Primary 65F05, 65F30, 15A21, 15A57, 15A63.
*Partial support was provided by NSF Grant MCS75-06510.

**Partial support was provided by NSF Grant MCS75-23333.
Current address (L. Kaufman): Bell Laboratories, Murray Hill, New Jersey.

Copyright) 1977 American Mathematical Society

163

164 J. R. BUNCH AND LINDA KAUFMAN

However, we are able to give good algorithms for the important special cases when m

= 1 and m = 2 (tridiagonal and five-diagonal).

We have included an appendix for those who are unfamiliar with the diagonal
pivoting method. In the following sections we shall assume familiarity with the con-

cepts in the appendix.

2. A Partial Pivoting Strategy. In this section we describe and analyze a partial
pivoting strategy for transforming an n x n symmetric indefinite matrix A by stable

congruences into a block diagonal matrix D, where each block is of order 1 or 2. As
in Bunch and Parlett's [5] complete pivoting strategy, the algorithm generates a se-

quence of matrices A(k) of order k according to the formula

A(k-s) = B - CE-lCt,

where A(k) or a symmetric permutation of A(k), PkA(k)Pk, is partitioned as

-E Ct

where E is an s x s nonsingular matrix, C is a (k - s) x s matrix, and B is a (k - s) x

(k - s) matrix and s is either 1 or 2. If E is s x s, we say that an s x s pivot has been
used. (For convenience, we shall still denote PkA(k)Pt as A(k).)

Bunch and Parlett's pivoting strategy may be considered analogous to Gaussian
elimination with complete pivoting. Unfortunately, there is no stable scheme exactly
analogous to Gaussian elimination with partial pivoting; one cannot construct an algo-
rithm for which there is a bound on the element growth of the sequence A(k) when at

each stage only one column of A(k) is examined (see [3]). The method described in
this section guarantees that the element growth in A(k) is bounded while searching
for the largest element in at most two columns in each A(k). For future reference we
call the strategy Algorithm A.

In Algorithm A, the matrix A(k-s) is determined as follows:
(1) Determine X(k), the absolute value of the largest off-diagonal element in

absolute value in the first column of A(k), i.e.

X(k) = max IA~I.k)
2 < i <k

If X(k) = 0, decrease k by 1 and return to 1. Let r be the least integer such that

IArk) - X(k)

(2) If IAkI > ,XA(k) where 0 < o < 1, perform a 1 x 1 pivot to obtain
A(k-1), decrease k by 1 and return to (1). We will show that a good value for o is

(1 +?/17)/8.
(3) Determine a(k), the absolute value of the largest off-diagonal element in ab-

solute value in the rth column of A(k), i.e.

a(k) = max IA (k)r

mV~r

CALCULATING INERTIA 165

(Recall that Arn is the largest off-diagonal element in the first column.)
(4) If alX(k) < 1A(kl)ja(k), then perform a 1 x 1 pivot to obtain A(k-1), de-

crease k by 1, and return to (1). (We need this test to guarantee stability.)
(5) If 1A ,) I ac(k), then interchange the first and rth rows and columns of

A(k), perform a 1 x 1 pivot with the new A(k), decrease k by 1, and return to (1).
(6) Interchange the second and rth rows and columns of A (k) so that IA(k)l =

X(k), perform a 2 x 2 pivot to obtain A(k-2), decrease k by 2 and return to (1). In
order to compute A(k-2), either E-1 can be formed directly (as in [2]) or E- 1Ct

can be formed by Gaussian elimination with partial pivoting. The stability analysis is
the same for each here, but the operation count is slightly higher (in the lower order

terms) for the former and these are the operation counts that we give here.

Step (4) of the algorithm deserves an explanation. The step was designed to
screen out a pathological case with 2 x 2 pivoting when the largest off-diagonal element
in absolute value of the rth column was larger than that of the first column, i.e. when
a(k) > X(k). In this case, step (4) is equivalent to:

scaling the first row and column of A(k) so that the
absolute value of the largest element in the first column
of A(k) is equal to U(k) and repeating
steps (1) and (2) on the scaled matrix.

In the absence of roundoff error, the reduced matrix A(k-s) generated by Algorithm
A and the one generated by using explicit scaling would be the same. If a 2 x 2
pivot had been performed when the test in step (4) dictated the use of a 1 x 1 pivot,
then the element growth of A(k2) could not be bounded a priori. Whenever X(k) >

a(k), the test in step (4) cannot be passed and one proceeds with step (5).
Note that whenever a 2 x 2 pivot is used, after permuting A(k), we have A(kl)k2)

< oI2JA kl)12 < IA~k)12; thus a 2 x 2 block in D corresponds to a positive-negative
pair of eigenvalues. This means that if A is positive definite then D will be diagonal.

We shall now analyze Algorithm A. Let g = max1< J1IAijl and p1(k) -

maxl AIjjk1A' for each reduced matrix A(k) that exists. (If A(k) uses a 2 x 2
piYot then A(k-1) does not exist.) Note that both X(k) and a(k) are less than or equal
to A

If a 1 x 1 pivot is used, after permuting A(k), we have

A k1)=Aik)1 - A -A()l 1A (k),1/
ij 1+1,1+1 j+1, I 11A

so that by step (2) of Algorithm A,

(2.1) A(k-1) < P(k) + X(k)/1 < P(k)(l ? 1/a);

by step (4),

(2.2) p(k-1) < p(k) + X(k)2/A(kl) < P(k) + u(k)/cx < P(k)(1 + 1/ae);

and by step (5),

(2.3) P(k-1) < p(k) + U(k)/cx < P (k)(I + 1/as).

166 J. R. BUNCH AND LINDA KAUFMAN

If a 2 x 2 pivot is used, after permuting A(k), we have
(2.4)

(.k-2) = A(k)
ii +2j+2

i+2,1 22 i+2221 A)(+2 1 ? (A() 2A(k) -A(k) A2 1 2]

[(A (k)A (k)/A (k) -A (k))A (k)

Since IA)(kI)(k) < a\(k) by step (4) and IA~k) I < cx(k) by step (5),

IA(k?)I JA~k) < a2X(k)2

which implies that

IA? k)A ()/A1A() - A k)i > X(k)(1 - a2) or

(2.5) 1 /X(k)A ()IA (k) - A k)1 < 1I/(X(k)(1 - aC2)).

Equations (2.4) and (2.5) together imply that

(X(k)au(k) + u(k)X(k))X(k) + (u(kk)1A(k)l + X(k)2)u(k)

X(k)(1-2)

Since (k) IA (k)I < aX(k)2

p(k-2) <6 (k) + (aa(k) + G(k) + ox(k) + (k))I(l -2)

(2.6)
< 4(k)(1 + 2(1 + a)/(1 - a2)) = k(k)(1 + 2/(1 -a)).

By (2.1), (2.2), (2.3), and (2.6),

max 11(k) S max{(l + 1/a)n,-k (1 + 2/(1 - a))(n-k)12},.
k

The growth is minimized when (1 + 1/a)2 = (1 + 2/(1 - a)), i.e. when a =

(1 + \/17)/8 0.6404, in which case maxk'g(k) <g(2.57)n1.

As noted above, Algorithm A is equivalent to one which scales the first row and
column of A(k) at each step so that the maximum norm of the first and second col-
umns of A(k) are equal. If the scaling had been done explicitly, then the algorithm
would determine a permutation matrix P. a lower triangular matrix M, and a block
diagonal matrix D such that PAPt = MDMt, where IMAjI < max (1/a, 1/(1 - oa)) and

<2i (2 .5 7)n -1 ,u.

Algorithm A creates the same matrix P. but a unit lower triangular matrix M
and a block diagonal matrix D such that PAPt = MDMt, where M = MS and D =

S1DS1, where S is a diagonal matrix given by

1 if (IA() I > aOX(k)) or (WAk)l > au(k)) or (X(k) > a(k)),

Skk =

in (nn(a(k*)/ IA (*)I, u(k)/x(k)) otherwise,

i.e. ISkkI > 1. The bound on the elemental growth of D is that of D.
The operation count is detailed in the following flowchart of Algorithm A. The

words comps, mults, adds and divs indicate the number of comparisons, multiplications,

CALCULATING INERTIA 167

additions and divisions for each step of the algorithm.

Flowchart of operation count for computing A(k-s), s - 1 or 2

Find X. Comps = k - 2

IA I ? ax" Comps, imults = I

Yes No

Find a. Cornps,= k - 2

X,.,.'1 ovu? Conips, mults = I

Yes No

Interchange, uIAl 11 ? cN2? (Comps = mults '2)

Yes No (Note aX is already known)

Use l x I Use 2 x 2

Interchange
Calculate Mults: 2
determinant: Adds: I

Calculate Calcuiate (Mults = 4(k - 2)
Multipliers: Divs k - I multipliers: .Divs = 3

t t Adds = 2(k- 2)

Form A (k I): Mults, Adds = Form (k - iMutkAdds =
k(k - 1)/ 2 A (k2)-{ I us)(k - 2)

k: = k - I k: = k- 2

The comparison count is much less for Algorithm A than for the complete
pivoting scheme, and in practice this fact has had a much larger impact than originally
anticipated, sometimes cutting the execution time by about 40%. In the complete
pivoting scheme, at each stage of the algorithm the largest element in the current sub-
matrix is determined and the comparison count is bounded by n3/6 and n2/2 + n/3
(see [2]), while in Algorithm A at most two columns are searched and the compari-
son count is at most n2 - 1.

The table given below gives upper bounds for the number of operations and
storage space required for solving Ax = b by Algorithm A, Gaussian elimination with
partial pivoting and Aasen's tridiagonal algorithm [1]. in the table the decomposition
phase for Aasen includes only the reduction to tridiagonal form. The LU decomposi-
tion of the tridiagonal matrix is included in the solution phase.

3. Variations of the Algorithm.
3.1 Estimating 1(k). For small n, we can construct examples for which the ele-

ment growth bound of (2.57)'-1g for Algorithm A of Section 2 is attained. How-
ever, we have been unable to construct an example for arbitrary n which reaches
(2.57)n"1 . Furthermore, as with Gaussian elimination with partial pivoting, large
growth does not seem to occur in practice. Nevertheless, one would like to have a
quick method for obtaining an estimate of 1(k) so that whenever the element growth

168 J. R. BUNCH AND LINDA KAUFMAN

Multiplications and Divisions Additions Comparisons Storage EGlreomweth

Algorithm A
n3 3n 2 7 n3 n2 7 2n- decomposition n + + - n n+- +?-n n2 -1 n2+ -n 2.57n1

6 4 3 6 4 6 2 2
: decomposition n3 _ n3 J n3 _ n2 2 n n _ n | n2 5

solution phase n2 + 2n n ? n2 +2 2
~~~~~,2 

2 

Total - + n2 ++ - n - + 2n 
6 4 3 6 4 3P n- 2 2 

Gaussian 
elimination 3 3 2 2 
decomposition 6 - n n6 n - n 2 2 2 n 2 

solution phase n2 + - n 0 n22 2n 

n3 n 3 n2 5 n Total n + n2 - ' 6 n n _-n n2 + 2n 3 3 3 2 6 2 2 

Aasen 
n3 2 49 n3 2~ 25 n2 3ni n2 n n1 decomposition - + 2nsi- c b m e - t - 4et i 6 6 6 6 2 2 2 2 

n2 l solution phase [6 + 4n n2s+ 2n n m - t 
2 2 

Total + 3n2 - 2n_ n_ n -- 2 un 6 6 6 6 2 2 2 2 __ 

is excessive, a switch can be made to the slower executing complete pivoting scheme 
of Bunch and Parlett [5], for which the element growth is bounded by 

V\Anf(n)c(co)h(n, o() where f(n) = H w n / (k1 x/2 w grows slowly ike 

n (l /4)log(n) , and 

c(o)h(n, a) < 3 )Vn i for e = (1 ? 217)/8. 

Businger [6] has presented an inexpensive algorithm for monitoring the growth 
in Gaussian elimination with partial pivoting. Because of the symmetry of our decom- 
position, Businger's idea is very satisfying when applied to Algorithm A. 

According to (2.1), (2.2), and (2.3) when a 1 x 1 pivot is used to find A~k1), 

- <(k- I) < M(k) + g(k) 

where 

w X(k)I/( if A(k-1) is formed at step (2), 
((k) = 

a(k)In if A (kc1) is formed at steps (4) or (5). 

According to (2.6), when a 2 x 2 pivot is used to find A(k2), 

1(k-2) 1 (k) ? 
g(k) 

? 
g(k-I), 

where f3(k) = f3(k-1) = a(k)/(l - a). Therefore 

j=k+l 

Thus only the n2/2 comparisons to determine ji, and k divisions and k additions are 
needed to determine a decent estimate to 



CALCULATING INERTIA 169 

We suggest that whenever p1(k) > 13nji the complete pivoting strategy of Bunch 

and Parlett [5] should be used. 
3.2 Accumulating Inner Products: Algorithm B. In [4] a reformulation of 

Algorithm A is described which permits the accumulation of inner products in multi- 

ple precision and which would probably be more suitable for electronic hand calcula- 

tors. The method, called Algorithm B, relates to Algorithm A in the same way that 

the Crout-Doolittle algorithm for solving a system of equations with a general matrix 

relates to Gaussian elimination with partial pivoting; see [10]. Algorithm B was 

motivated by Aasen's [1] description of Parlett and Reid's [9] algorithm. 

3.3. Other Strategies. Other partial pivoting strategies, similar to Algorithm A, 

can be formulated, including Algorithms C and D given below. 
In Algorithm C, A(k-s) is determined as follows: 

(1) Determine p (k) = IA(k)I = max ?i<k IA Ik)I and permute the first and pth 
pp 

rows and columns of A(k) so that IA(k) I = -(k) 

(2) Determine X(k) = IA(k) I = max2<i~kIAI. 
(3) If UX(k) , use A(k) as a 1 x 1 pivot to obtain A(k-1), decrement k 

by 1, and return to (1). As before, a good value for a is (1 + V/17)/8. 

(4) Determine a(k) = max2 ?Am k ;m.rIA$,1 
(5 fOX(k)2 A 2<mak) Ak)m as 

r 
(5) If at^A~k) < JA(k)J(k), use A(k) as a I x 1 pivot to obtain A(k-1), decre- 

ment k by 1, and return to (1). 
(6) Interchange the second and rth rows and columns of A(k) so that IA(2k)I = 

X(k) and perform a 2 x 2 pivot to obtain A(k-2), decrement k by 2 and return to 

(1). 
Because the maximum element of a positive-definite matrix is on the diagonal, 

when Algorithm C is applied to a positive-definite matrix A, one obtains the decompo- 

sition PAPt = MDMt with MIl < 1. For some applications this is very desirable. 

Unfortunately, on most problems, Algorithm C is more costly than Algorithm A be- 

cause at each stage the diagonal is searched and extra interchanges might be required. 

In Algorithm A between n2/2 + O(n) and n2 + O(n) comparisons are needed to 

determine the pivot strategy while in Algorithm C between 3n2/4 + O(n) and 3n2/2 

+ O(n) comparisons are needed to determine the pivot strategy. The bound on ele- 

ment growth in A(k) for Algorithm C is the same as for Algorithm A. When solving 

a system of equations with A, Algorithm C will probably give a smaller error than 

Algorithm A. 

In Algorithm D, A(k-s) is determined as follows: 

(1) Determine X(k) = IA (k) I= max2<,i~klA ~k) 1. 

(2) If IA?k)I > aX(k), use A (k) as a 1 x 1 pivot to obtain A(k ), decrement 

k by 1, and return to (1). Below we shall show that a good value of oa is about 

0.525. 
(3) Determine a (k) = max2m6kjAmk), 1. 
(4) If a I(k) ? IA(kl)I(k), then use A (k) as a 1 x 1 pivot to obtain A(k-1), 

decrement k by 1, and return to (1). 
(5) Interchange the second and rth rows and columns of A(k) so that IA kl) = 

X(k), perform a 2 x 2 pivot to obtain A(k-2), decrement k by 2 and return to (1). 



170 J. R. BUNCH AND LINDA KAUFMAN 

Whenever a 1 x 1 pivot is used in Algorithm D, no interchanges are performed, 
which means less bookkeeping, fewer references to memory in general, and fewer 
opportunities to interfere with the structure of the system. In particular, the algo- 

rithm is quite amenable to tridiagonal systems. 
The disadvantage of Algorithm D is a larger bound in the element growth in 

the matrix. As in Section 2, let ,1(k) = maxl ?,jAlIj)I As in Algorithm A, 

whenever a 1 x 1 pivot is used, ,U(k-1) I ,(k)(1 ? 1/a). When a 2 x 2 pivot is 

used, after permuting A(k), 

l(kl) (Ak2) I < (kl) IU(k) < aX>(k ), 

so 

IA( k)A k2)/AI?) -A1) I > X(k)(I - a), 

which is a slightly smaller bound than in Algorithm A. Because jA k2) < a(k) and 

A (k)I(k) < aX(k), Eq. (2.4) implies 

P(k-2) 6 [1 + (3 + a)/(1 - a)]p(k) 

Thus 

p(k) < max{(1 + 1/a)nfk, [1 + (3 + a)/(1 -a)I(nfk)/2}ii 

which is minimized when (1 + 1/a)2 = 1 + (3 + a)/(1 - a). This occurs when a is 

approximately 0.525, giving a bound of (2.92)n-1p, which is larger than in Algorithm 
A. 

4.1 Band Matrices. Many of the problems in numerical linear algebra with sym- 

metric indefinite matrices involve band matrices. A band matrix A is said to have 
bandwidth m if Aij = 0 for ii - j > m. When A is band, one would like to use an 
algorithm, like Gaussian elimination with partial pivoting, which takes advantage of 

the band structure of the matrix to increase the efficiency of the algorithm. 
Unfortunately, except for m = 1 and m = 2, none of the algorithms outlined 

in Sections 2 and 3 guarantee the preservation of the band structure of the matrix. 

The row and column interchanges used to guarantee stability destroy the band struc- 

ture of the system. 
Algorithm D does the least damage of all the algorithms A-D, since interchanges 

only occur when a 2 x 2 pivot is used, and hence only in this case is the bandwidth 
increased. Let mk be the bandwidth of the matrix A(k) generated by Algorithm D. 
When a 1 x 1 pivot is used, 

n mk - I if mk > m, 

Ink otherwise. 

When a 2 x 2 pivot is used, mk-2 = max (mk - 2, m, j + m - 2) where the jth and 
2nd columns are interchanged before the creation of A(k2). Since m ? ik, one is 
assured that 



CALCULATING INERTIA 171 

mk-2 < mk + m - 2 and mk < m + - (m - 2). 

For m > 2, one must concede that the band structure might be ruined. 
In Section 4.2 we discuss the tridiagonal case (m = 1) and in Section 4.3 we 

present an algorithm for the five-diagonal case (m = 2). 
4.2 Tridiagonal Matrices. Let T be a symmetric tridiagonal matrix, i.e. T4, = 

o for i - Il> 1. Of the many algorithms that have been proposed to solve Tx = b, 
Gaussian elimination with partial pivoting has proved the least time-consuming. How- 
ever, Gaussian elimination with partial pivoting does not preserve symmetry. In [3] 
Bunch has proposed a symmetry preserving algorithm which can be used to determine 
the inertia of T as well as solve a system of equations. Like those given in Sections 2 
and 3, the algorithm finds the MDMt decomposition of (1.1) by generating a sequence 
of tridiagonal matrices T(k) of order k. We show the first step which is typical: 

Let a be a fixed number such that 0 < a < 1. 
(1) If IT111 > o IT21I2, then use a 1 x 1 pivot to generate T(n 1). 
(2) If IT1 I < oaIT21 12, then use a 2 x 2 pivot to generate TO-2). 
Bunch [3] shows that the bound on element growth is minimized when o = 

(A/5 - 1)/(2i) where pu = max1 <i jn I Tkj . With this value of a, 

max I T.(k) I < 
(3 + u5 

I <ij~k if 7I~~2 

Table 4.2 gives the operation counts and storage requirements for Bunch's al- 
gorithm [3] and Gaussian elimination with partial pivoting. When storage is crucial, 
Bunch's algorithm [3] is preferable to Gaussian elimination with partial pivoting. 

TABLE 4.1. Operation Count: Tridiagonal Case 
Gaussian 

Bunch's Elimination 
Original Modified with Partial 
Algorithm [31 Algorithm Pivoting 

Decomposition Solving Decomposition Solving Decomposition Solving 
Only 7T = b Only 7T = b Only 7T = b 

7 1 17 3 7 1 
Multiplications -n + -p , n - 2P ? 2 P 7n 3n |7 

Additions n 4n -p n 4n -p 2n 5n 

Comparisons 2 n + 
1p 

5n + 
1 P 2n + 

5P 
2n 

1 
I 

P n n 

Storage 3n 4 3n 5 6n 
Required 

(p represents the number of 1 x 1 pivots) 

Bunch's algorithm entails examining the whole matrix to compute Ai before 
determining a. When the whole matrix cannot fit in main storage or when it is not 
necessary to obtain the complete decomposition, searching through the whole matrix 



172 J. R. BUNCH AND LINDA KAUFMAN 

beforehand can be expensive. This problem can be remedied by changing the test 
in step (1) to: 

(1) If max(1A21 11 !A221, 1A321) x lA11> aA1, then use a 1 x I pivot. 
Here a is simply ((J5 - 1)/2). 

The bound on element growth with this modification is the same, but the de- 
composition now requires 4n + p multiplications and 3n/2 + 3p/2 comparisons. 

Bunch's original algorithm can be modified slightly to obtain an operation count 
closer to that of Gaussian elimination when solving linear equations. The modification 
involves realizing that one need not construct the MDMt decomposition explicitly but 
only that part of the decomposition which is useful in solving linear equations. 

To solve Ax = b, one solves Mc = b for c, Dy = c for y and Mtx = y for x. 
Let us assume that the first block of D is 2 x 2 and hence one may write 

Y2 = (fC2 - c1)/6 and y1 = (c2 - D22y2)/D21 , 

where ( = D1 1/D2 1 and 6 = D223 - D21* The quantities ( and 6 are also needed in 
the decomposition phase since M31 = - T32 /6 and M32 = f3M3 . To decrease the 
operation count we suggest saving (3 in place of D1 1 and storing 6 separately. 

The computation requirements for this modified algorithm is given in the second 
column of Table 4.1. 

4.3 Five-Diagonal Matrices. In this section we consider two methods for a 
symmetric indefinite five-diagonal matrix F, i.e. Fi% = 0 for Ii - i I > 2. Such a matrix 
arises during the solution of partial differential equations with periodic boundary con- 
ditions. As in the case of tridiagonal matrices, Gaussian elimination with partial 
pivoting is still the least time-consuming stable algorithm for solving Fx = b, but it 
destroys symmetry. In this section we describe two symmetry-preserving algorithms, 
E and F, which, for an irreducible matrix F, determine matrices P, M, and D such 
that 

(4.1) PFPt = MDMt 

as in (1.1). Here Mij = 0 for i > 1 + 3. With decomposition (4.1) one can solve 
Fx = b with less storage than Gaussian elimination with partial pivoting but with a 
slightly higher operation count. 

The algorithms follow the ideas used in Sections 2 and 3 and generate a se- 
quence of five-diagonal matrices F(k) of order k. They were designed so that the 
bound on the element growth of F(k) is independent of k and the operation count 
is kept low. 

Both algorithms have the same bound on element growth. The bound on the 
operation count for Algorithm E is slightly higher than that of Algorithm F, but in 
Algorithm E the probability of attaining the bound is less. 

The first step of each algorithm is typical. 
Algorithm E. (1) If lF211 > 1F311 ,then let a = max(1F211, F32, 1 F421). 

(a) If aIF1 II > alIF21 12, generate F(n-1) using a 1 x 1 pivot. 
(b) If IF221 > a, then interchange the first and second rows and columns of F 

and perform a 1 x 1 pivot on the new F to generate F(n- l). 



CALCULATING INERTIA 173 

TABLE 4.2. Operation Count: Five-Diagonal Matrices 

Algorithm E Algorithm F Gaussian Elimination 
with Partial Pivoting 

Decomposition Solving Decomposition Solving Decomposition Solving 
Only Fx = b Only Fx =b Only Fx = b 

Multiplications 23 2 + 
1 39 - 1 23 P 

9 
l| IOn 17n ? 

2i o 2 2 
n 

-2P 2 -2 2 - P 

Additions 11I 1 .25 -3p 11 r 1 25 11 3 8ln 

Comparisons 2 (n + p) 5(n + p) 3(n + p) 3(n + p) 2n 2n 

Storage 4n Sn 4n Sn 8n 9n 

(c) Use a 2 x 2 pivot to generate F 
(2) If IF2 1 1 < IF3 1 1, then let a = max2 <i< 5 IFi3 I 

(a) If a[IF1 1 > aIF31 12, then perform a 1 x 1 pivot to generate F(n-1) 
(b) Interchange the second and third rows and columns of F and perform a 

2 x 2 pivot step to generate F<n-2). 
Algorithm F. (1) If 1F211 > IF31 1, then 

(a) if IF1 1l > aIF21 I, then generate F(n-1) using a 1 x 1 pivot. 
(b) Let a = max(1F21 1, 1F32 1, IF42 I)- 

If IF2 21 > a, then interchange the first and second rows and columns of F 
and perform a 1 x 1 pivot on the new F. 

(c) If aIF1 1 I > aF2 112, generate F(n-1) using a 1 x 1 pivot. 
(d) Use a 2 x 2 pivot to generate F(n-2). 

(2) If IF2 11 < IF3 1I then do the same as (2) in Algorithm E. 
Step (lb) in each algorithm was included to ensure that the bound on iF2 kI) 

would be independent of k. In Algorithm F step (la) was included so that the bound 
on IFF<k)I would be independent of k. 

The bound on element growth for each algorithm is minimized for a = 0.52542 
(see [4]), and then IF.(k)I < 23.88 max1 < IF1 1I. 

The operation count for each algorithm is largest when rows and columns are 
interchanged. The bound on the operation count is slightly higher for Algorithm E 
since more checking is done before the algorithm concedes that one must interchange 
rows and columns before performing a 1 x 1 pivot. But because of the extra checks, 
the bound will not be attained as often as it would be in Algorithm F. 

In Table 4.2, p is the number of 1 x 1 pivots. If storage is crucial, Algorithm 
E or F should be used rather than Gaussian elimination with partial pivoting. 

For Algorithm F, the bounds on the multiplication, addition, and comparison 
count cannot all be attained simultaneously. The bounds on multiplications and addi- 
tions are attained only if all 1 x 1 pivots are done in (lb) and all the 2 x 2's in (2b). 
In this case at most 5(n + p)/2 comparisons can be done. The bound on the compari- 
son count is attained only if all 1 x 1 pivots are done in (Ic) and all the 2 x 2's in 
(Id). In this case 9n - 2p additions and 15n - p multiplications are needed to solve 
a system of equations. 



174 J. R. BUNCH AND LINDA KAUFMAN 

Appendix. There are several decompositions of symmetric matrices, e.g. symmet- 

ric triangular factorization (the LDLt decomposition) [101 , the Cholesky decomposi- 
tion [101, the diagonal pivoting decomposition [21, [31, [5], the tridiagonal decompo- 
sition [1], [9] and the orthogonal decomposition [10]; there are analogous decompo- 
sitions of Hermitian matrices. The decomposition used depends on the problem to be 
solved, e.g. solving systems of linear equations, calculating inertia, or finding eigen- 
systems. In the following, we will, in general, discuss the symmetric case only; the 
Hermitian case follows by replacing t (transpose) by * (complex conjugate) throughout. 
(Note that lxi represents absolute value of a real number x in the real symmetric case 
and modulus of a complex number x in the complex symmetric or Hermitian case.) 

When solving systems of linear equations where the coefficient matrix A is non- 
singular and symmetric, we may always neglect the symmetry of A and use Gaussian 
elimination (triangular factorization). This requires n3/3 multiplications, n3/3 addi- 
tions, ?n2/2 comparisons, and n2 + n storage to obtain the triangular factorization of 
a permutation of A, i.e. PA = LU where L is unit lower triangular, U is upper triangu- 
lar, and P is a permutation matrix. Thus, if we want to solve Ax = b, we solve Ly = 

Pb for y and then Ux = y for x, each requiring n2 /2 multiplications and n2 /2 additions. 

Can we take advantage of the symmetry of A to solve Ax = b in n3/6 multipli- 
cations and n3/6 additions? 

If the LU decomposition of A exists when A is symmetric, then U = DLt, where 
D is diagonal, and A = LDLt can be computed with n3/6 multiplications, n3/6 addi- 
tions, and n2/2 storage. However, the LDLt decomposition of A need not exist, e.g. 

[? 1. In fact, the LDLt decomposition of PAPt need not exist for any permutation 
matrix P, e.g. [? 1]. 

But if A is also positive definite or negative definite (xtAx > 0, or xtAx < 0, 
respectively, for all x * 0), then the LDLt decomposition of A exists. If A is positive 
definite, then Dii > 0 for each i, and A = LI! where L = LD/2 and D"2 - 

diag {f'D1 1, . . ., VDnn }; this is the Cholesky decomposition. 
If A is real symmetric indefinite (A has at least one positive and one negative 

eigenvalue, i.e. there exist x and y such that xtAx > 0 and ytAy < 0), then these 
methods can fail (and can be unstable in finite precision arithmetic [5, pp. 643-645]). 

Since an n x n real symmetric (or complex Hermitian) matrix A has only real 
eigenvalues [10], let u, v, w be the number of positive, negative, zero eigenvalues, 
respectively. The triple (u, v, w) is called the inertia of A, while s u - v is called 
the signature of A. But n u + v + w is the order of A and r u + v is the rank of 
A. Thus, u = ?2(r + s), v = 2(r - s), and w = n - r. Knowing the order, rank, and 

signature of a real symmetric (or complex Hermitian) matrix A is equivalent to knowing 
the inertia of A. If A is nonsingular, then w = 0 and r = n, so knowing the inertia 
is equivalent to knowing the signature. Note that in the inertia problem we are seek- 
ing only the signs of the eigenvalues, not the eigenvalues themselves, and hence we 
seek some method that would be faster than calculating all the eigenvalues (cf. Cottle 

[71). (If A is complex symmetric, then its eigenvalues are not necessarily real, so we 
do not have the concept of inertia in this case.) 



CALCULATING INERTIA 175 

Suppose A = LDLt, where L is unit lower triangular and D is diagonal. We 
shall show below that u, v, w are equal to the number of positive, negative, and zero 
elements, respectively, on the diagonal of D. Since it requires only n3/6 multiplica- 
tions to compute the LDLt decomposition, this is much less work than calculating the 
eigenvalues. 

The theoretical foundation for calculating inertia is provided by Sylvester's Inertia 
Theorem [8, pp. 371-372]; the inertia of a real symmetric (or complex Hermitian) 
matrix is invariant under nonsingular congruences, i.e. if A is real symmetric (or com- 
plex Hermitian) and S is nonsingular, then A and SASt (SAS*) have the same inertia, 
and hence the same rank and signature. 

The classical method for calculating the inertia of a real symmetric matrix is 
based on Lagrange's method for the reduction of a quadratic form to a diagonal form. 

If A is an n x n matrix and x is an n-vector, then we say that <p(x) xtAx = 

X2nJ 1A jxjx1 is a quadratic form. If A is of rank r, then we say that <p(x) is a qua- 
dratic form of rank r. 

Note that B 1/2(A + At) is symmetric and xtBx = xtAx. Hence, without loss 
of generality, we may assume that A is symmetric. 

Lagrange's method (1759) reduces by nonsingular congruence transformations a 
quadratic form sp(x) = xtAx to a diagonal form ztDz, where D is a diagonal matrix 
with exactly r = rank (A) nonzero elements, i.e. xtAx = ztDz where z = Sx, det S : 0. 
Since A = StDS, by Sylvester's Inertia Theorem, A and D have the same inertia. 

We shall now relate Lagrange's method to Gaussian elimination. If Al 1 : 0, 
then 

n 

(x) = xtAx = E A1ijxix 
ij=1 

n 
=A Axl +?2A2Xlx2 + ?+2A ,X X, + EZA1x~x 

i,j=2 

=All(x ?2 XlX2 ? 2AAy I i?=2 Aj i 

( A1 A1 \2 n Al1AlJ) 
= Al x + 

12 
X2 + ***+ A- X) + E Aj All)iX X 1 1 1 n ~~~~i~j=2 A 1 

Thus, take 

D1= A1 and AX2 + * * + A "n. 

(This is also called the method of completing the square.) 
Note that this is identical to the first step of the LDLt decomposition of A, i.e. 

the symmetric form of Gaussian elimination. Let 

A 
E Ctl 

LC B 

whereE=A1 0, Cis (n-1) x 1 andBis(n-1) x(n-1). ThenA =LALALt, 
where 



176 J. R. BUNCH AND LINDA KAUFMAN 

L1 =k CE I ] and A1 = [' B - CE-1 Ct 

Nowz1 =Ltx and 

B- CE-1Ct = [A Ai 

If A22 -A21/A 1 : 0, we may continue with the process. 

If A11 = 0, but Akk : 0 for some k, then we may interchange the kth and 

first rows and columns and proceed as before. In matrix form, let P be the permuta- 

tion matrix obtained from interchanging the kth and first columns of the n x n iden- 

tity matrix. Then sp(x) = xtAx =xtPtPAPtPx = (Px)t(PAPt)(Px), where Px = 

[Xk, X2, . , Xk1, X1, Xk+1. . . Xn] t and (PAPt) 1 = Akk* 

But, what do we do if Al 1 = = Ann = 0 (or if at some stage of the process 

the diagonal of the remaining submatrix is all zero)? If A 0, then the rank of A is 

zero and we take D-O and z = x. If A # O but Al 1 = =Ann = , then Ars : 

o for some r k s. We can now interchange the rth and first, and the sth and second, 

rows and columns, and then the (2, 1) element of the resulting matrix is nonzero. 

Without loss of generality, we may assume A21 : 0. 

Let y1 = ?12(X, + X2), Y2 = 1/2(Xl - X2), and yi = xi for 3 < i < n, i.e. y 
T7lx, where T = S ?D In-2, S= [1 Il] and In-2 is the identity matrix of order n - 

2. Then xtAx = yt(TtAT)y with (TtAT)1 1 = 2A 1 2 : 0. Thus we may proceed as 

before. 
We shall now show that the above is equivalent to performing a block 2 x 2 

elimination. Let 

A C B ] 
I 

O ] 

det E : 0, and order(E) = order(S). Then 

TtT StES StOt V AT gCs B] 

Lagrange's method is equivalent to choosing S to be of order 2 so that StES = D is 

diagonal. If we use E as a block pivot in A and perform a block decomposition, then 

the reduced matrix is B - CE-1Ct= B - CSD-lStCt. Thus we need not find a 2 x 2 

matrix S which diagonalizes E, but we can perform a block decomposition with the 

2 x 2 submatrix E. If the diagonal of A is null, then there exists a nonsingular prin- 

cipal 2 x 2 submatrix unless A 0. 
However, the above decomposition also exists for complex symmetric matrices. 

Hence, given any symmetric matrix A, there exists a permutation matrix P such that 

PAPt = MDMt, where M is unit lower triangular, D is block diagonal with blocks of 

order 1 or 2, and M1+ 1,i = 0 whenever Di+ 0.i : ? 
Let us look at the determinant of such a block of order 2: 

d 
0 Di,i+ 1 =-Di jDil 

If A is real symmetric, then det = -D2 < 0, and if A is complex Hermitian, then 
i+1,'i 



CALCULATING INERTIA 177 

det = -Di+ 1,iDi+ i = -IDi+ 1 J <. 

Hence, by Sylvester's Inertia Theorem, one positive and one negative eigenvalue of A 
is associated with this 2 x 2 block. 

Let p be the number of 1 x 1 blocks in D. Hence there are q = 1?2(n - p) 
blocks of order 2. Let a, b, c be the number of positive, negative, and zero 1 x 1 
blocks. Thus the inertia of A is (a + q, b + q, c), the rank of A is n - c, and the 
signature of A is a - b. 

In finite precision arithmetic on a computer, in order to maintain stability and 
insure a good solution we must prevent large growth in the elements of the reduced 
matrices generated during the decomposition process [5], [10]. Hence, we will want 
to use 2 x 2 pivots whenever the diagonal is small as well as whenever the diagonal is 
null [5], [10]. Our knowledge of the inertia will be preserved as long as the deter- 
minant of each 2 x 2 pivot remains negative when A is real symmetric or complex 
Hermitian. 

Based on the above method, called the diagonal pivoting method, Bunch [2] 
showed that inertia can be calculated and nonsingular real symmetric, complex symmet- 
ric, and complex Hermitian systems of linear equations can be solved by only n3/6 

multiplications, n3/6 additions, and n2/2 storage. The method is almost as stable as 
Gaussian elimination with complete pivoting. The price paid for stability is >n3/12 

but ?n3/6 comparisons. 
Let us consider the first step of the algorithm. Let 

E Ctl A=[ C B%' 
where E is of order s =1 or 2. Let 

O= maxIA1, =m Ail, = Idet E1. 

If s = 1, then v = IEl. Assume v : 0. Then 

rE Ctl 1 0 1E 0 1 rl Ct1E 
[C B1= [J~ L 2In1 [-L A(l')] B 

where A(n-1) = B - CCtIE and In-, is the identity matrix of order n - 1. So, 

max lA.(-') I < AO + to2/l 

Thus large element growth will not occur for a 1 x 1 pivot if v = JEl is large relative 
to PO. 

If E is of order 2 and v : 0, then 

E Ct r I2 0 B CE 0 EI2 E- 

lc B J CE- n_2 Lo A'n2Jl In_ -2 

where A(n-2) = B - CE-1 Ct. SO, 



178 J. R. BUNCH AND LINDA KAUFMAN 

maxIA.7-2)1 < 1 2po(io + ? ,) Ju 

Let a be a fixed number with 0 < a < 1. We shall use a 1 x 1 pivot if A1 > 
apo. If so, we interchange the 1st and kth rows and columns, where A1l = maxilAiij 
= IAkkI. Without loss of generality, we may assume IA1 11 = l. Hence, v = A1 and 
max. .IA'-')I < (1 + 1/cx)pi. 

If j'l < a/uo, where AiO = IArq I for r : q, then interchange the rth and 2nd 
rows and columns and the qth and 1st rows and columns, and use a 2 x 2 pivot. 
Without loss of generality, we may assume 110 = IA21 1. Then, 

V = 1Al1A22 -A21A121 > 1A21 IIA121 - 1Al11 IA221 

= 12 - 1Al11IA221 >iA -u1 >(1 -a 2)2 

and 

maxIAIY-2)1 < [1 + 2/(1 - AO)],11. 

(Note that this holds whether A is real symmetric, complex symmetric, or complex 
Hermitian.) 

Thus, all the elements in all the reduced matrices are bounded by B(o)"', 
where B(o) = max { 1 + 1 /a, [ 1 + 2/(1 _ at)] 1/2} 

Now 

min B(cx) = B(ao,) = (1 + V17)/2 < 2.57, 
O<oe<l 

where ao, = (1 + V17)/8 0.6404. 
Since we must search for the largest element in each reduced matrix, this is a 

complete pivoting strategy analogous to Gaussian elimination with complete pivoting. 
Furthermore, Bunch [2] proves that the element growth in the diagonal pivoting 

method with complete pivoting is bounded by 3nf(n) in comparison with Vnf (n) for 
Gaussian elimination with complete pivoting, where 

f(n) = (kI kl/(k-1)) < 1/8n(14)logn 

Acknowledgement. We would like to thank B. N. Parlett and the referee for 
their helpful suggestions. 

Department of Mathematics 
University of California at San Diego 
La Jolla, California 92093 

Department of Computer Science 
University of Colorado 
Boulder, Colorado 80302 

1. J. 0. AASEN, "On the reduction of a symmetric matrix to tridiagonal form," BIT, v. 11, 
1971, pp. 233-242. MR 44 #6139. 



CALCULATING INERTIA 179 

2. J. R. BUNCH, "Analysis of the diagonal pivoting method," SIAM J. Numer. Anal., v. 8, 
1971, pp. 656-680. MR 45 #1367. 

3. J. R. BUNCH, "Partial pivoting strategies for symmetric matrices," SIAM J. Numer. Anal., 
v. 11, 1974, pp. 521-528. MR 50 #15294. 

4. J. R. BUNCH & L. KAUFMAN, "Some stable methods for calculating inertia and solving 
symmetric linear systems," Univ. of Colorado Tech. Report 63, CU:CS:06375. 

5. J. R. BUNCH & B. N. PARLETT, "Direct methods for solving symmetric indefinite 
systems of linear equations," SIAM J. Numer. Anal., v. 8, 1971, pp. 639-655. MR 46 #4694. 

6. P. A. BUSINGER, "Monitoring the numerical stability of Gaussian elimination," Numer. 
Math., v. 16, 1971, pp. 360-361. 

7. R. W. COTTLE, "Manifestations of the Schur complement," Linear Algebra and Appl., 
v. 8, 1974, pp. 189-211. 

8. L. MIRSKY, An Introduction to Linear Algebra, Clarendon Press, Oxford, 1955. MR 
17, 573. 

9. B. N. PARLETT & J. K. REID, "On the solution of a system of linear equations whose 
matrix is symmetric but not definite," BIT, v. 10, 1970, pp. 386-397. 

10. J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965. 
MR 32 #1 894. 


	Cit r202_c207: 


