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Approximations for Hand Calculators 
Using Small Integer Coefficients 

By Stephen E. Derenzo 

Abstract. Methods are presented for deriving approximations containing small in- 

teger coefficients. This approach is useful for electronic hand calculators and pro- 

grammable calculators, where it is important to minimize the number of keystrokes 

necessary to evaluate the function. For example, the probability P(x) of exceeding 

x standard deviations of either sign (Gaussian probability integral) is approximated by 

(83x + 351)x + 562 
P(x) zEXP -_ 

_ 703/x + 165 

with a relative error less than 0.042% over the range 0 < x < 5.5 (1 > P(x) > 4 X 

10 8). Other examples presented are the functional inverse of P(x); the Klein- 

Nishina cross section for Compton scattering; photoelectric cross sections in H20, 

Bone, Fe, Nal, and Pb; and the pair production cross section in Pb. 

1. Introduction. By the use of suitable approximations most functions can be con- 

veniently evaluated on automatic digital computers [1], [2]. However, these approxi- 
mations (usually polynomials or rational functions) are often inconvenient for hand 
calculators because many keystrokes are required to enter the coefficients. In this paper 

we describe methods for deriving approximations containing small integer coefficients, 
which substantially reduce the number of keystrokes required. This approach is also 

important for programmable calculators, where the stored programs are usually limited to 
a certain number of keystrokes. 

In many cases such approximations can be evaluated as rapidly and will generally 
be as accurate as interpolation from tables, eliminating the need for tables in those cases. 

Although graphical representation permits ready interpolation it has limited accuracy, 

especially when the function spans many decades. 
The method consists of four parts: (1) selecting a suitable form for the approxima- 

tion, (2) fitting the approximation to the function, (3) eliminating unnecessary terms in 

the approximation and (4) determining small integer coefficients that give a fit not sub- 

stantially worse than the best fit of (2). 

2. Method. 
2.1. Selecting a Suitable Fonr. This part of the method rests heavily on the exist- 

ing body of approximation theory [1], [2], but a few comments seem appropriate. (1) 

Many electronic calculators are equipped with >/x, sin x, cos x, tan x, eX, In x, xy, etc., 

keys and these should be considered if the function to be approximated resembles one 

of them. (2) There is much merit however, in the polynomial, which (when arranged 

according to Horner's rule) has a repetitive pattern that lends itself to a rapid keystroke 
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pace. Moreover, electronic calculators can evaluate polynomials as rapidly as the keys 
are depressed but this is not so for the transcendental functions. (3) Asymptotic limits 
are important in the selection of a form. For example, the Klein-Nishina formula (dis- 
cussed in Section 3.3) approaches a constant value at low photon energy E and de- 
creases as E- 1 at large values of E. This suggests a form such as 

a1 ? a2E ? a3E2 
g(E) = 

a4 + a5 E + a6E2 + a E3 

Note that no simple power series can satisfy these limits. 
2.2. Fitting the Approximation to the Function. After a form g(x) has been 

chosen, its (unknown) coefficients al to aN must be selected so that g(x) fits the func- 
tion f (x) to be approximated. The usual criterion is the minimax (or least maximum) 
error criterion, requiring that the largest deviation of Id(x)I be minimized, where 

(1) d (x) = w(x) [g(x) -f (x)] 

and w(x) is a weighting function [3]. Under this criterion, the function d(x) oscil- 
lates about zero with equal positive and negative excursions. For rational approximating 
forms Chebyshev's Theorem gives the minimum number of excursions that are necessary 
and sufficient for a best approximation [2]. 

Unfortunately, the minimax criterion does not lend itself to the minimization code 
used in this work [4], as the code assumes that the function to be minimized is locally 
quadratic in the coefficients ai. It was found, however that the code could minimize D 
given by: 

M 
(2) D = / d(xi)4, 

j=1 

where the base points x; were chosen with sufficient density that d(x) was a reasonable 
representation of d(x). Moreover, the resulting deviations d(x1) oscillated about zero 
with very nearly equal positive and negative excursions and had the necessary minimum 
number of excursions for a best fit (see Figure 1 and [5] ). Thus, while the best fit 
coefficients given in Section 3 may not be unique, no other values can yield a significant- 
ly better fit [6]. 

In the event that the deviations d(x) are larger then the required accuracy, it is 
necessary to go back and improve the form of the approximation. This usually means 
increasing the number of terms and consequently increasing the number of coefficients. 

2.3. Eliminating Unnecessary Terms. As a rule, we started with a form that con- 
tained a sufficient number of terms to give a good fit. Then the computer code set 
each coefficient in turn to zero while all others were varied to minimize D. If the best 
of these fits was acceptable, the related coefficient was set permanently to zero and the 
process was automatically repeated to try to eliminate other terms. Although this pro- 
cedure usually resulted in the elimination of the highest order terms, it was applied 
equally to all coefficients. 

2.4. Determining Small Integer Coefficients. The methods described in this sec- 
tion assume that the approximation remains numerically unchanged when all coefficients 
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are multiplied by a common factor. For example, this assumption is valid for power 
series (provided they are divided by a single coefficient) and more generally for the 
rational approximations, but not for expansions in transcendental functions. 

We now define a scale factor b1 that is allowed to take on the integer values 1, 2, 
3, .... Renaming the best fit coefficients a to aN so that the coefficient closest to 
zero is al, the scaled best fit coefficient values are given by: 

bi =ai b1l/a, and 1bil>bl. 
Clearly, in the limit of large integer values of b1 it is possible to round all the 

other coefficients to their nearest integer values and still remain very close to the best 
fit approximations. This suggests a straightforward integer search algorithm that con- 
sists Of tabulating D (and the deviations d(x )) for b1 = 1, 2, 3, . . . where in each 
case the best fit values of b2 to bN are rounded to the nearest integer. Usually, the 
resulting values of D are far from monotonic; and it is possible to stop the search at a 
downward fluctuation in D that corresponds to an acceptable fit. 

The above search method was not used in this paper because, for a given b1, the 
integer values of b2 to bN closest to the best fit are usually not the best integer values 
(i.e., those that result in the lowest value of D). 

By searching the space of b2 to bN it is often possible to find a set of integer 
values that result in a lower value of D, because the variation in each coefficient from 
its best fit value has been nearly compensated by the variations in the other coefficients. 

As an example of the need for such a search, consider Eq. (10) of Section 3.2. 
The best fit coefficients are (b1 1), b2 = 260.40 . . ., b3 = 503.60 . . ., b4= 
134.16 . .. ., b5 = 543.36 . . . (D = 0.412) and varying these coefficients by less than 
0.15% to their nearest integer values b2 = 260, b3 = 504, b4 = 134, b5 = 543 yields a 
rather poor fit (D = 6.8). A complete search of the integer space of b2 to b5 for the 
lowest value of D results in coefficients that are far from their best fit values: b2 = 

280, b3 = 572, b4 = 144, b5 = 603 but D = 0.520, not much larger than the best fit 
value. 

Unfortunately, a straightforward search over a wide range of integer coefficient 
values requires calculating D an unacceptably large number of times (typically 107). 
Moreover, it is not obvious from the values of D how far each coefficient should be 

stepped. 
A more efficient algorithm was therefore devised that restricted the search (as 

much as possible) to the volume V' within which D < D' where D' is the lowest value 
of D yet achieved during the integer coefficient search. The appendix is an example of 
this algorthim as used in this work to search V' and determine the best integer values 
of b2 to bN for each successive integer value bi. Although it only covers the case N= 

4, it is clear from its structure how it may be modified to handle any other value of N. 
It is hoped that the way in which it was written is self-explanatory. 

This procedure permits a complete search for the smallest integer coefficients that 
result in an acceptable fit, subject to the condition that all subspaces of b1 to bN have 
a single minimum value of D. It can search a deep, narrow valley while avoiding regions 
too far from the valley to be fruitful. The examples below required typically 104 to 
106 evaluations of D, depending on the number of coefficients. 
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3. Examples. The examples that follow were chosen largely on the basis of their 

usefulness to physicists and engineers. No claim is made that the approximating forms 

are the best that could be chosen, only that no smaller integer coefficients can be used 

in those forms to give a significantly better fit. In each example the approximation 

with integer coefficients has deviations that are within a factor of two of those that 

result from using the best fit coefficients. (For details of how the fits were performed 

and for additional graphs of the deviation functions d(x), see [5] .) 

In our experience an integer coefficient fit that approaches the best fit involves 

fewer keystrokes than a fit using smaller integers but one or two additional terms. 

The approximations make considerable use of polynomial forms and these have 

been arranged according to Horner's rule to minimize the number of keystrokes and the 

need for intermediate storage. 
3.1. Gaussian Probability Integral. The probability P(x) of exceeding x standard 

deviations of either sign is given by: 

(3) P(x) = V2/ir f 
- eX/2 dx, x > 0. 

Approximation 1: 

- EXPF- (83x + 351)x + 5621 
(4) P(x) EXP 703/x + 165 J 

Error: (P1 (x) - P(x))IP(x)I < 0.042%. 

Range: 0 < x < 5.5 (1 > P(x) > 3.8 x 10-8). 

Approx. number of keystrokes = 26. 

Approximating form: 

(5) ln [P1 (x)] = _ ((bix + b2)x + b3)x 
III~r1~x~jb4x 

? 
b 

Best fit values [7]: (b1 1), b2 = 4.20075 ? 0.00020, b3 = 6.72175 + 

0.00083, b4 = 1.988778 ? 0.000075, b5 = 8.39964 ? 0.00036. In Figure 1 we com- 

pare the deviation functions d(x) for the best fit and integer approximations. 

Approximation 2: 

(6) P2(X) = /2/ir (i) EXP( - x2/2 - 0.94/X2). 

Error: I(P2(x) - P(x))IP(x)l < 0.040%. 

Range: x > 5.5 (P(x) < 3.8 x 10-8). 

Approx. number of keystrokes = 20. 

3.2. Inverse of the Gaussian Probability Integral. Defining P(x) by Eq. (3): 

Approximation 1: 

11- / ((4y + lOO)y + 205)y2 
(7) 1 ((2y + 56)y + 192)y + 131 

where y-- ln(P). 
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6x10-4 I 

- - - Best fit coefficients 
4 x 10-4 - Integer coefficients 

_ 0 

-4xO 4 

-6 x104 , I , I , 
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x 
FIGURE 1 

Solid curve-relative deviation between approximation P1 (x) with integer coefficients 
(Eq. (4)) and the Gaussian probability P(x) of exceeding xc standard deviations of either 
sign (Eq. (3)). Dashed curve-same but with best filt coefficients (Eq. (5)). 

Error: 1x1 - xl < 1.3 x i0-4. 
Range: l>P(x)>2 x 10-7(0<x<5.2). 
Approx. number of keystrokes = 38. 
Approximation 2: 

? 28O)y ? 572)y 
(8)~ 

~ ~ (y +l44)y?+603 

where y = - ln(P). 
Error: 1x2 - xl < 4 x 10-4. 
Range: 2 x 10-7>P> 1011l2 (5.2<x <22.6). 
Approx. number of keystrokes = 30. 
Approximating forms: 

/((2bly + b2)y ? b3)y2 
(9) =1 ((bly ?b4)y ?b5)y ?6 

with best fit coefficients [7] (b1 1), b2 = 48.8740 + 0.0024, b3 = 95.976 ? 

0.015 ,b4 = 27.4283 + 0.0016, b5 = 91.446 + 0.012, b6 = 61.231 ? 0.025, and 

% 

(10) = /((2bly + b2)y ? b3)y 
2 (bly + b4)Y +b 

with best fit coefficients [7] (b1 1), b2 = 260.403 ? 0.016, b3 = 503.60 + 0.62, 

b4= 134.1596 + 0.0087, b5 = 543.36 ? 0.37. 
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K = K = 

Material Z 0.6Z/A 0.9964Z Density 

(cm2/gm) (barns/atom) (gm/cm ) 

H2_ 0.3330 1 

Al 13 0.2891 12.95 2.692 

Si 14 0.2991 13.95 2.4 

Fe 26 0.2793 25.90 7.86 

Ge 32 0.2645 31.88 5.4 

NaI 0.2563 3.67 

W 74 0.2415 73.7 19.3 

Pb 82 0.2375 81.7 11.35 

U 92 0.2319 91.7 18.7 

TABLE I. K values for the Klein-Nishina approximation (Eq. (12)) 

3.3. Klein-Nishina Formula. The Klein-Nishina formula describes the narrow 
beam attenuation of photons by Compton scattering on free electrons [8]. Its exact 

expression is given by: 

(11I f 27r r2 [( + 9) at + 8)a + 2 + (ae + 2)a - 2 1n(1 + 2 ] 

+ 2 + 2a 

where oz = E/mec2 and r0 is the classical electron radius (2.8179 x 10-13cm). Al- 
though this expression may be evaluated directly, approximately 60 keystrokes are re- 
quired. 

Approximation: 

(12) (E+8)+- 
(12 a ((E + 54)E + 134)E + 24 

E is the photon energy in MeV 
K = 0.6000 Z/A (cm2/gm) 

K = 0.9964 Z (barns/atom) 
K = 0.9964 (barns/electron) 
Error: a(a- UKN)IUKNI < 0.56%. 

Range: 0 < E < 100 MeV. 
Approx. number of keystrokes = 31, using the K values given in Table I. 
Approximating form: 

(13) K 
(E + bl)E + b2 

((E + b3)E + b4)E + b5 

Best fit coefficients [7]: K = 0.9667 ? 0.0020 barns/electron, b1 = 23.718 ? 0.098, 

b2 = 13.186 ? 0.050, b3 = 45.62 ? 0.22, b4 =108.08 ? 0.64, b5 = 19.206 ? 0.097. 
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Errord 

Energy 
Material Density range Photoelectric cross section e1 e Approx. No. 

(g/cm ) (MeV) (cm /gm) C() (cm /gm) Keystrokes 

H20 1 > 0.01 (((X/7+35)X-97)X+196)X/107 1.1 1x1O05 23 

Compact 6 5 
bone X 2 > 0.01 ((20X-31)X+52)X/10 2.7 1.54l 18 

Fe 7.87 > 0.01 (((-X/23+22)X-i1)Xt25)X/105 2.9 2x105 24 

NaI 3.67 > 0.0332 (((-X+107)X+62)X+82)x/7x1o 2.8 2xO0 23 

Pb 11.35 0.0159-0.088b ((-X/26+8)X+32)X /104 1.4 0 19 

Pb 11.35 > 0.088a (((-X+52)X+93)X+42)X/104 1.4 1xlO_5 21 

aabove K edge. 

bbetween Li and K edges. 

X - 1/E in units MeV-1 

dError is the greater of e1 and e2 

TABLE II. Photoelectric cross sections 
3.4. Photoelectric Cross Sections in H20, Bone, Fe, Nal, and Pb. It is well 

known that the photoelectric cross sections may be approximated by expansions in in- 
verse powers of the photon energy [9], and we have used the same form for our 
approximations (Table II). Each of these approximations was fit to typically 25 data 
points from [9]. The deviations d(x1) were not smooth functions of x1 because the 
data are partially based on experimental measurements. Moreover, as stated in [9] these 
cross sections have not been established with accuracies much better than 5%. 

3.5. Pair Production Cross Section in Pb. 
Approximation: 

(14) ~ (cm2 /gm : (X2 + 9)X -1I 
(1)cP gm) ((4x + 55)x - 168)x + 358' 

where x = log, O(E) and E is the photon energy in MeV. 
Error: 1 - upI <8 x 10-4cm2/gm. 

Range: 1.5 MeV < E < 105 MeV. 
Approx. number of keystrokes = 28. 
The approximation op was fit to 26 data points up from 1.5 MeV to 105 MeV 

[9]. The deviations d(x,) were not smooth functions of x, because the data were only 
given to three significant figures. Also, the lower energy data points are quite sparse; 
and the error bound given above is only an estimate. 
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APPENDIX 

EXAMPLE OF INTEGER COEFFICIENT SEARCH PROCEDURE FOR 4 COEFFICIENTS 

Al - 1 
DETERMINE BEST FIT VALUES OF A2,A3,A4 BY MINIMIZING D 

RENAME Al,A2,A3,A4 SO THAT Al IS CLOSEST TO ZERO 

LOOP Bl=1,2,3 . . . . 
B2=A2*Bl/Al 
B3=A3-Bl/Al 
B4-A4*Bl/Al 
D'-D EVALUATED AT Bi, [B21, [B31, B41 

LOOP J2=0,1 
LOOP I2=1,2,3,. 
El-Bl J2 

*E2 = 1B21 + J2 + (-1) I2 
**HOLDING El AND E2 FIXED, DETERMINE BEST FIT VALUES OF E3 AND E4 

BY MINIMIZING D 
EVALUATE D AT El, E2, E3, E4 

***IF D > 1.2 D', EXIT I2 LOOP AND TAKE NEXT J2 

LOOP J3=0,1 
LOOP I3=1,2,3,. 
Fl=El 
F2=E2 J3 
F3 - [E31 + J3 + (-1) *I3 
HOLDING Fl, F2, AND F3 FIXED DETERMINE BEST FIT VALUE OF F4 BY 

MINIMIZING D 
EVALUATE D AT F1, F2, F3, F4 
IF D > 1.2 D', EXIT I3 LOOP AND TAKE NEXT J3 

LOOP J4=0,1 
LOOP I4=1,2,3,.... 
Gl=Fl 
G2=F2 
G3-F3 J4 
G4 - [F4] + J4 + (-1) 4*4 
EVALUATE D AT Gl, G2, G3, G4 

IF D > 1.2 D', EXIT I4 LOOP AND TAKE NEXT J4 
IF D < 1.2 D', PRINT 6UT ALL RELEVENT QUANTITIES FOR THIS FIT 
IF D < D', SET D' = D 

NEXT 14 
NEXT J4 
NEXT I3 
NEXT J3 
NEXT I2 
NEXT J2 

STOP PROCEDURE IF D' IS SUFFICIENTLY SMALL 
NEXT Bl 

*For J2=0, the I2 loop sets E2 to successive values [B21 + 1, [B21 + 2, 
. . . where CB21 is the integer part of B2. For J2 = 1 the I2 loop sets 
E2 to successive values [B2], [B2]-1, [B2J-2,. 

**For efficiency, the starting values E3 and E4 are determined whenever 
possible by a linear extrapolation of previous best fit values of E3 and 
E4 (obtained at this point in the code) as a function of E2. Moreover, 
this minimization can be skipped if the D value associated with El, E2 and 
the extrapolated values of E3 and E4 is less than D'. Similar efficiencies 
are employed for the minimizations in all the other loops. 

***This test assumes that the preceding step has found the true minimum 
rather than a local minimum. If the minimum D is greater than 1.2 D' then 
this value of E2 (and all subsequent values) define a subspace within 
which D > 1.2 D'; and the I2 loop is ended. 
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