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Odd Perfect Numbers Not Divisible by 3
Are Divisible by at Least Ten Distinct Primes

By Masao Kishore

Abstract. Hagis and McDaniel have shown that the largest prime factor of an
odd perfect number N is at least 100111, and Pomerance has shown that the second
largest prime factor is at least 139. Using these facts together with the method we
develop, we show that if 3 fN, N is divisible by at least ten distinct primes.

1. Introduction. A positive integer N is called perfect if o(V) = 2N, o(N) being
the sum of positive divisors of N. No odd perfect (OP) numbers are known; however,
it has been proved that if N is OP and w(N) denotes the number of distinct prime
factors of N, then w(N) = 5 by Sylvester (1888), Dickson (1913) and Kanold (1949);
w(N) = 6 by Gradstein (1925), Kiihnel (1949) and Weber (1951); «w(N) = 7 by
Pomerance (1972, [1]) and Robbins (1972); w(N) = 8 by Hagis (1975, [3]); and that
if N is OP and 34N, then w(N) = 8 by Sylvester (1888), and w(V) = 9 by Kanold
(1949, [6]). Also, it has been proved that if Nis OP, then N > 102°° by Buxton and
Elmore (1976, [5]), the largest prime factor of N > 100110 by Hagis and McDaniel
(1975, [4]), and the second largest prime factor of N = 139 by Pomerance (1975,
(2D.

In this paper we prove

THEOREM. If N is OP and 34 N, w(N) > 10

2. Preliminary results. Throughout this paper let

N= f] ;'
i=1

where pl <p, <:---<p, are odd primes and a,, . . . , a, are positive integers. We
call p, a component of N and write V), (N) for a;.

Euler proved that if NV is OP, then for some j, p;=aq;=1 (4) and for i #j,
a; =0 (2). p; is called the special prime denoted by II.

LEMMA 1. Suppose N is OP, 3 4 N, and p® is a component of N. If p =2 (3),
thenp #1, and if p =1 (3), then a £ 2 (3).

Proof. If p =2 (3) and p = II, then o(p?) = 0 (3) because a is odd, while if p
=1 (3) and 2 = 2 (3), then o(p®) = 0 (3), both of which contradict the fact that 34
N. QE.D.

From Euler’s Theorem and Lemma 1 we have

COROLLARY 1. Suppose N is OP, 3 4 N, and p® is a component of N. Ifp =
1@ andp=1@Q3),thena=1,4,6,9,10,12,...;ifp=1(4) and p =2 (3),
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thena=12,4,6,8,10,12,...;ifp# 1 (4)and p=1 (3), thena = 4, 6, 10, 12,
ifpF1@)andp=23),thena=2,4,6,8,10,12, ... .
We are interested in finding p?i’s for which

r
[ =2, where Sp*) = o(p®)/p°.
i=1
Since the accuracy of the computer is limited, we use the inequality

r .
1) 0.693147180 <log 2 = 3" log S(p?’) < 0.693147181.
i=1
With nine-digit figures we have sufficient accuracy, and with log we can easily control
computational errors involved.

Suppose N is OP, 34 NV, and p? is a component of N. We define

a(p) = minimum {b|b > 1 is an allowable power of p as determined

by Corollary 1 and p®*! > 10%}
and

[10° log S(@*)] 107°  if a < a(p),
[109 log [713——1]10-9 if a > a(p),

where [ ] is the greatest integer function.

Lp") =

We note that if p and g are odd primes with p < g, then for any positive integers
a and b

S < 75 < L <S@Y),

and so L(g%) < L(p®).
LEMMA 2. Suppose
4 a
= n p;
i=1
is OPand 34 N. Then
r b
() S, <Y Lp;)<T,
i=1

where S, = 0.693147180 — r 107, T, = 0.693147181 + r 107°, b, = q, if a, <
a(p,), and b; = a(p;) if a; = a(p;).
Proof. Since N is OP, (1) holds. Suppose p? is a component of N. If a < a(p),
then
llog S(»*) — L(p*)| < 107°.
If a = a(p), then

107 > log ;”_—1 - L") > log S(p*) — L(p*®))

at+1l — > 1
>log L, —1og B~ =1 (1— >=— .
nga+l —pe 08 5 = 0g petl '=Zl ety

1

— —10~°
> - Z (pa+1)z_pa+1_1> 1077,
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and so
[log S(p®) — L(p*®))| < 107°.
Hence,
4 a; r b.
®3) 2 log S(p;") = 3~ Lip;H|<r 1079,
i=1 i=1

and (2) follows from (1) and (3). Q.E.D.
We also need the following lemmas, which were proved in [1, pp. 269—-271]:
LeEMMA 3. If q is a prime for which q — 1 is a power of 2, N is OP, and if p°
is a component of N, then

Vea+ 1) ifp=1(),
Vq(o(p")) = Vq(p + 1)+ Vq(a +1) ifp=-1(q)andp =11,
0 otherwise.

LEMMA 4. If N is OP, p® is a component of N, and if q is a prime and q®la + 1,
then N is divisible by at least b distinct primes = 1 (q) other than p.

LEMMA 5. If nis OP, 17° is a component of N, and if 17° 411 + 1, then N is
divisible by at least two primes = 1 (17).

3. Proof of the Theorem. In this section, we shall prove that if 3 4 N and
w(N) = 9, then N is not OP.
LEMMA 6. If Nis OP, 34 N, and if w(N) =9, then
P, =5, P =7, p3=11, p,=13,ps <19, pe <23, p, <53,
pg =139 and pgy > 100110.

Proof. By [4] py > 100110, and by [2] pg = 139. Others follow from

571117192329 139100111

461016 18 22 28 138 100110< 2,

571113232931 139 100111 _

5711131729 31 139 100111 _
461012 1628 30138 100110 ’

and
57111317 1959 139 100111

461012 16 18 58 138 100110 < 2 QED.

LEMMA 7. ps = 17 in Lemma 6.
Proof. Suppose ps = 19. Then p = 23, p; = 29 and pg = 139 because

57111319 2331139100111

4610121822 30138 100110

<2

and
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571113192329 149 100111

461012 18 22 28 148 100110 < *

Hence
a a a a a a a a a
N=517211"313419"5237629"7139 8p.°.

Since

57 2413 19 23 29 139 100111

46 s(11 2 18 22 28 138 100110 ~ 2
and

5711 19 23 29 139 100111

25 10 51375 23 25 138 100110 < 2

ay#2and a, # 1. Also,a,, a,, ag, ag # 2 by Corollary 1. Since every odd prime
factor of o(pai) is a factor of N, a,, ag, a; # 2 and a,, a, # 4 because 31j0(5?),
7110(5%), 2801 |0(7%), 791 0(23%) and 67]06(29%). Hence for 1 <i <2, a; > 6 and
for 3 <i<8,aq; > 4. Then N is not OP because

S(V) > fI S(;)>2. QED.
i=1

LemMa 8. 17°5| T + 1 and I1 > 100110 in Lemma 6.

Proof. Suppose 17°5 £ I + 1. Since p, # £1 (17) for 1 <i <7, pg = py =
1 (17) by Lemma 5. If 172|o(p;7) forj = 8 or 9, then by Lemma 3, 17%1g; + 1,
and by Lemma 4 NV would be divisible by at least two primes = 1 (17) other than p;.
Hence 172 + o(p; 7). Since 174’0(p ) for 1 <i <7, we conclude that as =2,
17la(p88) and 17|0(p99) Then pg = o(17%) = 307, and for j = 8,9,4; = 16, p; #
1, 5»{’0(p]’) and so for some 1 <1 7,5 | o(p; ’) By Lemma 3 and Corol]ary L, p;
=11, 31, or 41, and 0(p4) Io(p ?) because 5 la; + 1; however, 3221 | o(11%), 17351 |
0(31%), 579281 |a(4l4) and none of these primes = 1 (17). Hence p; # 11, 31, 41,
a contradiction, and 17 s I+ 1.

Ifa; 24,1122 17% — 1 = 167041, while ifag =2,11 = pg > 100110 be-
cause pg = 307. Q.E.D.

LEMMA 9. If34N, w(N) = 9, and if pg > 1000, N is not OP.

Proof. Suppose N is OP. Then by Lemma 2

9 ,
Se <3 L(p;") < Ts.

i=1
b.
If a; <a(p;), b; = a;, and so every prime factor of o(p;’) is a factor of N except
when p; = II. Hence if

7 7 b.
M= n pi> < n O(P,- l)) >
i=1 i=1:b;<a(p;)
we have .
@ (i) =7,
) w(i) =8, or

(6) w(M) = 9.
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Suppose (4) holds. Since pg > 1000 and py > 100110,

7 b 1009 . 100111 b
9 Sg <ZL(p ) + log € 7008 T 1°¢ Too110  2d ’;L(p,.)<r7.

Suppose (5) holds, and let p be the prime factor of M other than p;, 1 <i < 7. Then

100111
100110,

i
if 1000 < p < 100110, S, < " L(p,¥) + L(p?) + log
i=1

if p > 100110, S <Z L(p;") + log }ggz+L(p”) and

®
7

> L) + Lp?) < T,

where b < a(p) is an allowable power of p. Suppose (6) holds. Then the two prime
factors of M other than p;, 1 <i <7, are pg and py, and

9 b,
©) pg > 1000, pg >100110 and Sy < Y L(p;") < Ts.

i=1
Computer was used to find l'[,_1 p, ! satisfying
(A) (4) and (7),
(B) (5) and (8), or
(C) (6) and (9),

with the following results:
512710118139178236996  512710118139178)36994
512710118139178234296,  512710118139176236296
512710118136178236296 o 510710118139178236296,
In every case pg = 3011 because
S8(51971911813617623429430011) > 2.
Then N is not OP because pg > I1 > 176 — 1 and

<2 QE.D.

LEMMA 10. If 34N, w(N) =9, and if pg < 1000, N is not OP.
Proof. Suppose N is OP. Then by Lemma 2

2 b
Se< Y Lp;) < Ty.

i=1

8 7 b.
M= (Z pi) ( [1 oo > ;
i=1 i=1;b;<a(p;)

If

then
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(10) wM) =8, or
ary wM) = 9.
Suppose (10) holds. Then

100111

1001100 2d

8 .
pg <1000, S, <3 L(p)’) + log
i=1

(12)
8 4
2 L) <Ts.
i=1

Suppose (11) holds. Then the prime factor of M other than p;, 1 <i<8,is pgy, and

13 ~ (ol
(13) Pg <1000, pg>100110 and Sy < 3 L(p'H < T,.
i=1

Computer was used to find H?zlpfi satisfying
(A) (10) and (12), o1
(B) (11) and (13),

with the following results:

512710118139178196476233%,  5127101181391781964762332,
5127101121391781964363314,  527101181391781963169534,
52710112139178196316557%, or 527101121391781963165572.
Then N is not OP because in every case pg =1 >2 - 178 — 1 and S(V) < 2. Q.ED.
Lemmas 9 and 10 prove our theorem.
Computer (PDP 11 at the University of Toledo) program run time for Lemmas
9 and 10 was three minutes.

I would like to thank Professor J. Chidambaraswamy for his help in preparing
this paper. Also, I would like to thank the referee who suggested the use of [2],
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