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The Szekeres Multidimensional Continued Fraction 

By T. W. Cusick 

Abstract. In his paper "Multidimensional continued fractions" (Ann. Univ. Sci. Buda- 

pest. Ebtvbs Sect. Math., v. 13, 1970, pp. 113-140), G. Szekeres introduced a new 

higher dimensional analogue of the ordinary continued fraction expansion of a single 

real number. The Szekeres algorithm associates with each k-tuple (&1 . . . I &dk) of real 

numbers (satisfying 0 < ai < 1) a sequence bI, b2, . . . of positive integers; this sequence is 

called a continued k-fraction, and for k = 1 it is just the sequence of partial quotients of 

the ordinary continued fraction for C,. A simple recursive procedure applied to b 

b2,. ... produces a sequence a(n) = (A) . (k) 1,2 . A0)>0and 
~~~~~~~.~~n1n An /Bn) (n= ''"'. An 

0an 

Bn > U are integers) of simultaneous rational approximations to (l.... Xk) and a 

sequence c(n) = (CnO, Cnl. * * * X Cnk) (n = 1, 2, . . . ) of integer (k + 1)-tuples such 

that the linear combination cnO + cnl1&1 + * * * + cnkckk approximates zero. Szekeres 

conjectured, on the basis of extensive computations, that the sequence a(l), a(2), .... 

contains all of the "best" simultaneous rational approximations to ( 1 . & . . adk) and 

that the sequence c(1), c(2), . . . contains all of the "best" approximations to zero 

by the linear form x0 + x1a, + * * * + xncan. For the special case k = 2 and a, 
02 _ 1, '2 = 0 -1 (where 0 = 2 cos(2Tr/7) is the positive root of x3 + x2 -2x- 

1 = 0), Szekeres further conjectured that the 2-fraction bl, b2, ... is "almost periodic" 

in a precisely defined sense. In this paper the Szekeres conjectures concerning best 

approximations to zero by the linear form x0 + x1(02 - 1) + x2(0 - 1) and concern- 

ing almost periodicity for the 2-fraction of (02 _ 1, 0 - 1) are proved. The method 

used can be applied to other pairs of cubic irrationals al1 1&2 

1. Introduction. The ordinary continued fraction expansion of a real irrational 
number a gives a very satisfactory solution to the problem of finding closest rational 

approximations to a. In particular, if we suppose 0 < a < 1, so that we can write the 
continued fraction for ai as 

(1.1) a = [a1, a2, ... 

where the a 's are positive integers; and if we say P/Q is a "best" rational approximation 
to a when IQa - PI < Iqa - pI for all rationals p/q with 0 < q < Q, then the sequence 
of convergents Pn/qn = [a1, . . . , an] for the expansion (1.1) is precisely the sequence 
of best approximations to a. Furthermore, if we say P/Q is a "good" rational approxi- 
mation to a when IQa - PI < I/Q, then the sequence (r'n+ 1 + + 

(1 S r < an+2; n = 0, 1, 2, .. .) of intermediate convergents contains the sequence 

of good approximations to a. (Proofs of these well-known facts can be found, for 
instance, in Lang [6, Chapter I].) 
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These ideas have two natural extensions to higher dimensions, where we consider 
k > 1 different irrational numbers ... I ak First, we have the notion of simulta- 
neous rational approximations P1/Q, . PkJQ to al, .. k In this situation we 
say that we have a "best" approximation if 

max IQai -Pil < max Iqai - pi 
I<i k 1Ii k 

for all rational k-tuples p1/q, . , pk/q with 0 < q < Q, and we say that we have a 
"good" approximation if 

max Q1 IkIQaZ - P I < 1. 
1 ?i k 

Second, we have the notion of approximations to zero by the linear form co + cl al + 
* * * + Ckak, where co, cl, .. .,Ck are integers. In this situation we say that we have 
a "best" approximation if 

lIo + c1l + + Cka+kl < Ido + dlal + + dkakl 

for all integer (k + 1)-tuples do0 dl, . . . , dk with maxl<i<kIdil < maxl<Kiklcil, and 
we say that we have a "good" approximation if 

Ico + cloa + * + ckakl max Ic1ik < 1. 
I < iK k 

It is. natural to ask whether there exists any algorithm by which the best and 
good approximations in these higher dimensional situations could be computed in a 
reasonably simple way. Such an algorithm would be a very satisfactory "multidimen- 
sional continued fraction". 

Many attempts have been made to find such a multidimensional continued frac- 
tion. References to relevant papers before 1936 are given in the book of Koksma [5, 
pp. 50-51], and later work is covered in the compilation of reviews by LeVeque [7, 
pp. 193-201]. None of these proposed algorithms is very successful. For many of 
them, there is not even a proof that the algorithm will supply infinitely many good 
approximations; this is so even if we do not require such a proof in general, but only 
for given nontrivial examples. There is an algorithm of Minkowski [8] which does 
supply infinitely many good approximations to zero for any linear form xo + xala. + 
x2oa2 in which 1, 'l ?2 form a basis for a real cubic field. However, even for these 
special linear forms the Minkowski algorithm is quite cumbersome to use. 

This paper is concerned with a multidimensional continued fraction algorithm 
introduced in a 1970 paper of Szekeres [9]. The Szekeres algorithm associates with 
each k-tuple (a1, .... , ak) of real numbers, normalized so that 0 < ai1 < 1 and 
al > ?Z2 > ... > ak , a sequence b1, b2, . .. of positive integers; this sequence is 
called a continued k-fraction (or, for short, k-fraction), and for k = 1 it turns out that 
the 1-fraction is just the sequence of partial quotients of the ordinary continued frac- 
tion for a,1. 

A complete description of the Szekeres algorithm is given in Section 2 of this 
paper. Here we only remark that a simple recursive procedure applied to the integers 
in the k-fraction b1, b2, . . . produces a sequence a(n) = (A)/B . . ., Ak) 
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(n = 1, 2, . . .; A") > 0 and Bn > 0 are integers) of simultaneous rational approxima- 

tions to (a1, . . . , ak) and a sequence c(n) = (cn~0 e1nl * I * cnk) (n = 1, 2, . *. ) of 
integer (k + 1)-tuples such that the linear combination enO + cen ll + * + enkak 
approximates zero. 

Szekeres conjectured, on the basis of extensive computation of the results obtained 
when his algorithm was applied to various specific examples, that the sequence a(l), 
a(2), . . . contains all of the best simultaneous rational approximations to (a1, . . . , ak) 

and that the sequence c(l), c(2), . . . contains all of the best approximations to zero of 
the linear form x0 + xi al + * * * + Xnan. He did not prove this conjecture for any k- 
fraction with k > 1. 

Let 0 = 2 cos(27r/7) denote the positive root of x3 + X2 - 2x - 1 = 0. Szekeres 
conjectured that the digits b,, b2, . . . of the 2-fraction for the pair (02 1, 0 - 1) are 
all equal to either 1 or 2, and that the digits of this 2-fraction are "almost periodic" in 
a precisely defined sense (which is explained in Section 2 of this paper). According to 
computations carried out by Sved, a student of Szekeres, these conjectures are valid for 
the first 100,000 digits of the 2-fraction for (02 - 1, 0 - 1) [9, p. 138]. 

In this paper the above conjectures about the 2-fraction for (02 - 1, 0 - 1) are 
proved. We also prove that the Szekeres algorithm does provide all of the best approxi- 
mations to zero by the linear form x0 + x1(02 - 1) + x2(0 - 1). The proofs depend 
on some earlier work of mine [2], [3] which applies to any basis 1, a1, ?a2 of a real 
cubic field (in fact, this work was later extended to apply to bases of any real algebraic 
number field [4] ). This naturally raises the question whether results analogous to those 
proved here (for the basis 1, 02 - 1, 0 - 1 of the cubic field generated by 0) are valid 
for any basis 1, a1, a?2 of a real cubic field. We do not go into this question in this 
paper. 

2. The Szekeres Algorithm. For the convenience of the reader, I give a brief 
explanation of the Szekeres algorithm in this section. Proofs are not given, but instead 
reference is made to the original paper of Szekeres [9] when necessary. The notation 
is mostly taken from [9]. 

The continued k-fraction, which we denote by [bl, b2, . . . ], is a sequence (finite 
or infinite) of positive integers bi which we associate with a k-tuple (a, . . . , ak) of 
real numbers via a certain algorithm. For simplicity in defining the algorithm, we re- 
quire that 

(2.1) > al > a2 > ...> ak > 0 

and that 1, a1, . . . , ak are linearly independent over the rationals. 
We define integers sm by 

(2.2) Sm = bi +- - -+ bm (m = 1525. . . ) 

and we define e(n) for each integer n > 1 by 

(2.3) e(n) = 1 if n = sm for some m, e(n) = 0 otherwise. 

Thus, the sequence b1, b2, . . . is determined if we know the sequence e(1), e(2)5 . . . 
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In particular, if bl, b2, . . . , bN is a finite sequence, then e(n) = 0 for all n > SN. We 

shall define the k-fraction [bl, b2, . . . I for the given k-tuple (a1, . . . , ak) by giving 

a procedure for determining the sequence e(1), e(2)5 .... 
First, we define a sequence of sets {A(n, j): 0 < j < k} (n = 0, 1, 2, . . . ) of 

k + 1 integer k-tuples 

A(n, f) = (AM1)(n, ), . , A(k)(n, j)) (0 < j < k) 

and a sequence of positive integer (k + 1)-tuples 

(B(n, O), B(n, 1), ..., B(n, k)) (n = O. 1, 2 ...) 

as follows. We define 

0, OS j<i<k, 

(2.4) A1 <(Oj) 1 < j<k 

and 

(2.5) B(0, f) - A(?)(0, f) = 1 (O < j < k). 

Now we suppose that for some n > 0, we have already defined e(n + 1), A(n, j) and 

B(n, j) for each j, 0 < j < k. We also suppose that we have been given an integer ,u(n), 

1 < ,u(n) < k (the rule by which the integer ,(n) is chosen is another part of the al- 

gorithm, and is given below). Then we define 

(2.6) A(')(n + 1, 0) = (1 - e(n + l))A(')(n, 0) + e(n + 1)A(0)(n, ,u(n)), 

(2.6a) A(')(n + 1, ,u(n)) = A(')(n, 0) + A0) (n, ,u(n)), 

(2.6b) A(')(n + 1,)=-A(0)(n, j) for I < j<k, j =i(n),O<i<k, 

(2.6c) B(n + 1, ) = A(?)(n + 1, j) for O < j < k. 

Proceeding in this way, we define A(n, j) and B(n, j) (O < j < k) inductively for 

n=0, 1,2,.... 

We call the k-tuple a(n) defined by 

a(n) = (A (')(n, ,u(n - Il))/B(n, ,u(n - 1)), . ... , A(k)(n,, ,u(n- l))/B(n, ,u(n - 1))) 

(n = 1, 2, ...) 

the nth approximation fraction for the k-fraction of (a1, . . .a, kr); we use the abbrevi- 

ated notation 

(2.7) a(n) = A(n,j p(n - 1))IB(n, p(n - 1)) 

in this and other similar situations. For example, we define 

(2.8) Pn = A(sn 0), Qn = B(sn 0) (n = 1, 2, . .. 

and we say that Pn/Qn is the nth principal approximation fraction for the k-fraction 

[bl, b2, ... I of (a1, ... , a*k). We define the finite k-fraction [bl, . . ., bnj by 

(2.9) [bl * . ., bn] = Pn/Qn = a(sn-1) 
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(the second equality follows from (2.6), (2.7), (2.8) and the fact that e(sn) = 1 (from 
(2.3))), so the definition of the principal approximation fractions is analogous to that of 
the (principal) convergents Pn/qn = [al, . . ., an] for the ordinary continued fraction 
expansion (1.1). 

Szekeres [9, Theorem 4, p. 127 and Theorem 8, p. 130] proved that 

(2.10) lim A(')(sn, O)/B(sn, 0) = ai for each i, 1 ? i ? k. 
n-+oo 

This, of course, is the desired analogue of the fact that limnoo Pn/ql = a for the ordi- 
nary continued fraction (1.1). 

Here we interrupt our discussion of the k-fraction briefly in order to point out 
how the case k = 1 essentially reduces to the ordinary continued fraction for a,1. Since 
k = 1, the integer gA(n) must always be 1. Hence, (2.6) and (2.6a) give (putting 
A(')(n, f) = A(n, j)) 

A(n + 1,0) = (1 - e(n + 1))A(n, 0) + e(n + 1)A(n, 1), 

A(n + 1, 1) = A(n, O) + A(n, 1), 

and (2.5) and (2.6c) give similar recursions for B(n, j). Using these recursions and (2.3), 
we successively deduce (putting Pn = Pn since here Pn is a 1-tuple) 

A(sn -1, 1) =PPn, 

A (sn + iS O) = Pn (O S i < bn + 0 ) 

(2.11) A(Sn ?i, 1)=(i+ )pn +?Pn- (O <i <bn+1). 

It follows at once that Pn + I= bn + I Pn + Pn - 1, and a similar argument gives the same 
recursion for Qn. Hence we see that the approximation fractions Pn/Qn are simply the 
convergents Pn/qn of the ordinary continued fraction [bI, b2, . .. I; in view of (2.9) 
and (2.10), this shows that the digits b1, b2, . . . of the 1-fraction for a1 are simply 
the partial quotients of the ordinary continued fraction for a,1. Furthermore, the 
approximation fractions A(sn + i - 1)/B(sn + i - 1) (1 < i < bn + 1) are simply the 
intermediate convergents of the continued fraction for a1 (this follows from (2.11)). 

Now we continue the description of the k-fraction algorithm. We define a se- 
quence of sets {'Yn;:O < j < k} (n =0, 1, 2, .. .) of k + 1 positive real numbers as 
follows. We define 

(2.12) 'Yo0=1-a 1 5 'y?=a1-aj+I (1 < jS<k- 1), 'Ook =ak 

Note it follows from (2.1) that yOj > 0 for each j. Now we suppose that for some 
n > 0 we have already defined 'Ynj for each j, 0 < j < k, and that we know the integer 
,I(n) (1 ? IA(n) < k) mentioned above. Then we define 

0 if YnO >'Y,~) (2.13) e(n + 1) = 

1 if ^yn0 <'^n,M(n), 

and we put 

(2.14) yn+l,o (1 - 2e(n + l))('y0no -Yn4(n)) 
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(2.14a) 'Yn+ 1,M4(n) = e(n + 0)Yn0 + (1 - 6(n + 107n A (n) 

(2.14b) Yn + 1,j = nj for 1 < j < k, j = p(n). 

Since we have assumed that 1, al ..., ak are linearly independent over the rationals, 
it follows from (2.12) to (2.14b) that for each n > 0 and each j, 0< j < k, 

(2.15) nj =CnjO + cni1l1a + + enikak 

for some unique integers enjO1, e,1 . . . ., enik' 
Szekeres [9, p. 128] proved that 

(2.16) lim'ynj =O forOS j < k 
fl-+ 00 

(the case j = 0 of (2.16) is valid only if the k-fraction [bI, b2, . . . ] is not finite, but 
this is true here because we have assumed 1, a1, . . . , k are linearly independent). 
Thus, the linear combinations of a1, ... , ak given in (2.15) provide some solutions to 
the problem of finding approximations to zero by the linear form x0 + xla1 + * * * + 
Xkak. 

In order to complete the description of the k-fraction, we need only describe how 
the integer p(n) is determined. We first define a partial ordering of k-tuples as follows: 
Let x = (x1. * * * , xk), Y = (Y1, Y ? -, Yk) and suppose that Ixi()l > IXi(2)I > * * * > 

and lY1(l)I > lY1(2)I > * > lyi(k)l for suitable permutations of the indices 
1, 2, . .. , k. We write x _ y if lxi(,)I = IYj(r)I for 1 < r < k and x < y if there exists 
an s, 1 < s < k, such that Ixi(s)l < IYI(s)I and Ixi(r)l = IYj(r)l for 1 < r < s. Next we 
define 

(2.17) V(n, ) = A(n j) A(n, ) (I<j<k;n = O 1, 2, ..). B(n, j) B(n , 0) 

The integer g(n) (1 < g(n) < k) is defined to be the largest integer h such that for 
every j, 1 j < k, we have 

(2.18) V(n, j) < V(n, h) or V(n, j) V(n, h). 

In particular, it follows from (2.4) that always 

(2.19) /i(O) = k. 

This completes the description of the k-fraction algorithm. To find the k-fraction 
[b1, b2, . . .1 for (a1, ... a ak) we begin at stage n = 0 with A(O, j) and B(O, j) 
(given by (2.4) and (2.5)), zy0 (given by (2.12)), e(1) (given by (2.13)) and g(O) (given 
by (2.19)). At stage n = m we have determined A(m, j) and B(m, j), 'Y.mj e(m + 1) 
and g(m). This enables us to determine A(m + 1, j) and B(m + 1, j) from (2.6) 
through (2.6c), ym + 1j from (2.14) through (2.14b), e(m + 2) from (2.13) and 
ji(m + 1) from the definition, using (2.17) and (2.18) with n = m + 1. In this way 
we successively determine the digits bi by using (2.3) and the definition (2.2) of si. 

The above method for determining the integer ji(n) is an important feature of the 
Szekeres algorithm. The choice of ji(n) is motivated by geometric considerations (see 



286 T. W. CUSICK 

Szekeres [9, pp. 129-130] ), the idea being that the selection of ji(n) in the way indicated 

should ensure that the algorithm does not stray away from good solutions to the prob- 
lems of simultaneous rational approximations and of linear form approximations to zero. 

In this respect the Szekeres algorithm is specifically designed to try to overcome the 

known defects of various earlier multidimensional continued fractions (see the discus- 

sion in Szekeres [9, pp. 113-117] ). 
We give a further discussion here of the geometrical content of the Szekeres al- 

gorithm in the case k = 2. The facts summarized here will be important for the work 

of Section 4 below. 
Define the straight lines Fni(x1, x2) = 0 in the xl - x2 plane by 

(2.20) Fni(X1, X2) = enjo + ?njixi + cnj2X2 = 0 (n = 0, 1, 2, . .. ; 0 ? 2), 

where the coefficients are given in (2.15). Define the approximation triangle An (n = 

0, 1, 2, . . . ) to be the region in the xl - x2 plane determined by the inequalities 

(2.21) Fni(XlX2)>O O j?2. 

It is clear that An contains the point with coordinates (a1, a2), by (2.15) and the fact 
that 'yni > 0 always. Szekeres [9, p. 126] showed that the vertices of the triangle An 
are just the points with coordinates A(n, j)/B(n, j), 0 < / < 2. It follows from (2.6) 
to (2.6c) that An+ has two vertices in common with An. Further [9, p. 126], the 
new vertex A(n + 1, ji(n))/B(n + 1, ji(n)) of An+ 1 is on the side of An which is the 

line segment from A(n, O)/B(n, 0) to A(n, ii(n))/B(n, ,u(n)). 

Two typical consecutive approximation triangles An and An+, are shown in 
Figure 1. Note that the line Fni(xl, x2) = 0 contains the vertices A(n, j)/B(n, j) for 

0 <j St 2, j i i [9, formula (3.12), p. 122] , and the common vertices are A(n, 1)/B(n, 1) 
and A(n, 2)/B(n, 2) (by (2.6) and (2.6b), since e(n + 1) = 1 and ,u(n) = 1 in 

Figure 1). 

The rule for determining the integer ji(n) can be explained geometrically as 

follows [9, pp. 129-130]: Define the span of the line segment from a point (xl, X2) 
to a point (Y1, Y2) to be max(Jx1 - Y 1, 1x2 - Y2 1). The integer p(n) is chosen so that 
the new vertex A(n + 1, jI(n))/B(n + 1, p(n)) of An+ 1 lies on whichever of the two 
sides of An containing A(n, O)/B(n, 0) has the larger span. (If the spans are equal, we 
compare the size of the remaining projections of the two sides on the coordinate axes, 
as explained in discussing (2.18) above.) The precise definition of the new vertex of 

An+1 is (see [9, formula (5.3), p. 126] or (2.6a) and (2.6c)) 

(2.22) A(n + 1, ji(n)) _ A(n, 0) + A(n, j(n)) 
B(n + 1, ji(n)) B(n, 0) + B(n, p(n)) 

This is a two-dimensional generalization of the process whereby two consecutive Farey 
fractions p/q and ris are "added" to form a new Farey fraction (p + r)/(q + s). 
Szekeres pursues this analogy in [9, Section 5, pp. 126-129], but we require only 

(2.22). 
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Fn 2 P + 1 =Qn 

Qn +1 

Pn /rn 0 

Fnl 

Rn =Rn+l 

e(n + 1) = 1, /l(n) = 1 

An = APnQnRn, An+1 =Apn+Qn+,Rn+l 

Pi = A(i, O)/B(i, 0), Qj = A(i, 1)IB(i, 1), Ri = A(i, 2)IB(i, 2) for i = n, n + 1 

FIGURE 1. Typical approximation triangles An and An+1 

We shall also need the following lemma for the work of Section 4: 
LEMMA 1. The matrix 

B(n, 0) A(1)(n, 0) A(2)(n, 0) 
B(n, 1) A(1)(n, 1) A(2)(n, 1) 

B(n, 2) A(1)(n, 2) A(2)(n, 2) 

has determinant ?1. Its inverse matrix is 

[nOO Cn 10 Cn2l 

Cn01 Cn 11 Cn21 

CnO2 Cn12 Cn22 

where the cnik are defined by (2.15). 
Proof. The lemma is contained in results of [9, pp. 121-122]. 
Now we turn to the particular 2-fraction for (a', ? 2) = (62 - 1, 0 - 1), where 

0 = 2 cos(27r/7) is the positive root of x3 + x2 - 2x - 1 = 0. In the remainder of 
the paper, we give a detailed discussion of this 2-fraction. The notations 

C = 02 1 =0 - 1 

and 

[dj, d2, . . . ] = 2-fraction for (c, (3) 

will be used from now on. 
The 2-fraction for (ca, j) is discussed in detail by Szekeres [9, pp. 138-140]. 
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He reports that his student M. Sved used a computer to calculate more than 100,000 
of the digits dl, d2, ... . All of these digits were either 1 or 2; and it was found that, 
apart from some irregularities at the beginning, the sequence dl, d2, . . . followed an 
almost periodic pattern made up of repetitions of the digit blocks a = 2121 and b = 
1121. To be precise, the pattern of the digits di can be described as follows: Let so 
denote the digit pattern a = 2121 and let sl denote the digit pattern b = 1121. Let 
s7 denote n repetitions of the block of digits si and define 

I~~~~~~~~~~~~~ 
s = Slss = 11212121, S3 = S8 S4 S3S2, 

S = S14S s6 = SS S S S5, S8 = S= ss (2.23) 55-4 3 6 5 4' 7~ 65 7 6' 

Slo = S9S8- S' l = S I As S12 = S 1110' S13 =S2sll 

Then, apart from the initial irregularities, the first 100,000 digits di are a suitable 
section of s, 2 (which, by a little calculation, has 146,896 digits). 

The "exponents" 13(i) in the equations s 1 = s(msi_ I (i = 1, 2, . . . ) of (2.23) 

are 

(2.24) 1, 8, 1, 14, 1, 1, 3,5, 1, 1, 1, 1. 

Szekeres [9, pp. 138-139] points out that the digits (2.24) are just the first dozen 
partial quotients in the ordinary continued fraction expansion of the number 17 given 
by 

(2.25) 71 3 log i) = *89935351 ... 
log(0 ? 2) -2logO0 

He gives a geometric argument which shows heuristically why a connection between 
the partial quotients of q1 and the pattern of the blocks si might be expected. 

In Section 5 of the present paper we give a proof that the 2-fraction digits di 
are indeed almost periodic, as suggested by (2.23). The relevance of the number 17 in 
connection with the pattern of the s 's is also proved. 

3. Good Approximations to Zero by x + ay + OBz. One of our goals (which we 
will attain in Section 4, after the preliminaries of this section) is to show that for 
k = 2, cl = a 02 - 1, a2 = f3 = 0 - 1 (as defined in Section 2), the linear forms 
YnO (n = 0, 1, 2, ... ) defined by (2.15) include all of the best approximations to 
zero by the linear form x0 + ?o + x2:2. Since we shall mainly be concerned with 

'Yni for j = 0, we modify the notation (2.15) so that the middle subscript in cnii is 
omitted when j= 0. Thus, we define 

(3.1) Yno = Cno + Cn?la+ Cn2!. 

We further define the coefficient 3-tuples c(n) of zyno by 

(3.2) c(n) = (cno, cn 1, Cn 2) 

In my papers [2] and [4] I gave a general algorithm for finding all of the solu- 
tions in integers xo, xl, .. - , xn not all zero of 
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X0 + X0Cil + ? + XnC'n I max Ixin < C, 

where 1, i l .Xn are a basis for a real algebraic number field of degree n and c is 
any fixed positive real number. Paper [4] discusses this algorithm in general terms, 
but [2] and especially its sequel [3] give a detailed study of the inequality 

(3.3) Ix + Oy + 02zI max(y2, Z2) < 1. 

Of course, 

X + Gy + 02Z = X + y + Z + CZ + 3y, 

so the solutions of (3.3) provide all of the good approximations to zero by the linear 
form x0 + Xct+ x2z. 

We shall need to relate the solutions of (3.3) to the coefficients c(n) of 'yno 
given in (3.2). Some results from [2] and [3] which we require are given without 
proof in this section. Our notation mostly follows that of those papers. 

Let F denote the cubic field defined by 0, and let 6' = 2 cos(47r/7), 0"= 

2 cos(67r/7) be the conjugates of 0. Then (note that many decimals in this paper are 
truncated, not rounded off) 

0 = 1.24697960 . . ., ' = -.44504186.. . , 0"=- 1.80193773 ... 

Since F is a cyclic or Abelian field, 6' and 0" belong to F. Also, 1, 6, 62 is an integral 
basis for F and 0, 6' is a pair of fundamental units for F. We let p = 1/0' for later 
convenience, so 0, ep is also a pair of fundamental units for F. 

Given any unit X of norm 1 in F, w-1 = 6m n for some unique integers m 
and n. Define 

(3.4) R(m, n) = cG-1 =mpn 

and define integers b(m, n), g(m, n), k(m, n) by 

(3.5) IR(m, n)J = b(m, n) + k(m, n)c + g(m, n)a 

(IR(m, n)I is uniquely expressible in this form since 1, 06 02 is an integral basis for F). 
We note that the notations (3.4) and (3.5) are not the same as in papers [2] and [3]. 
In those papers (see [2, p. 169] and [3, p. 980] ) R(m, n) was defined as Om + l e n 

and integers b(n), g(n), k(n$) were defined by R(m, n) = b(n) + g$0)0 + k(n)02 (this 
linear form can vary in sign, whereas the form defined in (3.5) is always positive). In 
particular, the following relations hold between the two notations: 

bn-i = ( -1)n(b(m, n) -g(m, n) - k(m, n)),g$n)1 = ( -1)ng(m, n), 

k((n) = (-1)4k(m, n). 

Of course, the definitions (3.4) and (3.5) are more convenient in this paper, and we 
use (3.6) to translate results from [2] and [3] into the notation used here. 

Next we define 

(3.7) S(m, n) = IR(m, n)Imax(k(m, n)2, g(m, n)2). 
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Notice that S(m, n) here is the same as S(m - 1, n) in the notation of [2] and [3], 
because of (3.6). For each integer n, let v(n) denote the value of m with the property 
that S(v(n), n) < S(m, n) for all integers m # v(n). If, as in [2, Section 4], the values 
of S(m, n) are tabulated in a rectangular array with the integers m arranged on a verti- 
cal axis and the integers n arranged on a horizontal axis, then S(v(n), n) is the smallest 
entry in one of the columns of the array. We are only interested in good approxima- 
tions, and for these S(m, n) < 1; thus by (3.4) we are only interested in values of m 
and n such that 10m'ePl < 1. It turns out [2, formula (19), p. 171] that, apart from a 
finite number of exceptions, S(m, n) < 1 occurs only in the second quadrant (m > 0, 
n < 0). In fact, even more is true: apart from finitely many exceptions, every solution 
of 

?X + X1a + x221max(x2, X2) < 1.3 

corresponds to some S(m, n) with m > 0, n < 0 [3, p. 980]. For the convenience of 
the reader, Table 1 of [2], which gives part of the S(m, n) array for m > 1, -1 > n 
is reproduced in this paper. 

Using the work of [2] and [3], we are able to determine the locations in the 
S(m, n) array of the good approximations, that is of the values of S(m, n) which are 
less than 1. We can also deduce the locations of the best approximations as a subset 
of the good ones. In order to do these things, we require some more notation and 
results from [2] and [3]. 

If a is any function of 0, 6' and 0", let &t' and dt" denote the numbers obtained 
by replacing 0, 6', 0" by 6', 0", 0 and 0", 0, 6', respectively, in the expression for cZ. 
Thus, if -1 = Omepn, then wY'-1 = 6'm0'n and " 

- 6"m ."n Now let n be any 
fixed integer and put w-l = 6ed ; define u(n) to be the value of m with the property 
that 

I 1WC1(n)/CO (n)1 - 11 < I 1C%1/WM1 -11 

for all integers m = u(n). The function u(n) is easy to calculate, as the following 
lemma [2, Lemma 5, p. 170] shows: 

LEMMA 2. Define E1 = 0062 and E2 = kpP'2 1. The integer u(n) is equal to the 
unique integer m which satisfies 

log(2(1 +E1)-1) n logE2 log(2(1 +El 
loE1 <m? <1?.I log El log E1 log E1 

Let E(n) denote COU(n)lIC(n) = (66'2)u(n)(pp'2)n; this function will be very 
important later on. Note that it follows simply from the definition of u(n) that [2, 
formula (17), p. 170] 

(3.8) 2062 < IE(n)j < 20-1 

for every n. So we define 

E 2062 .39612452, E = 20-1 1.60387548. 
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It is proved in [3, pp. 982-983] that S(u(n) + m, n) < S(u(n) + m + 1, n) holds 

for all sufficiently large m > 0 and is false for all sufficiently large Iml, m < 0. In fact, 

S(u(n) + m, n) oo as m -+oo or m --oo; 

this follows at once from a generalization of formulas (13) and (14) of [3, p. 985]. A 

more detailed but straightforward examination of the same generalized formulas gives 

the following: 
THEOREM 1. For n < 0 and Inl sufficiently large, the inequality S(u(n) + m, n) 

< 1 is possible only for m = -1, 0, 1 or 2. 

Theorem 1 provides the desired localization of the good approximations S(m, n). 

Since it follows from Lemma 2 that 

lim u(n)/n = -log E2/log E1 - -.263, 
n-+-oo 

Theorem 1 says that the good approximations all lie along a certain line in the second 

quadrant of the S(m, n) array. The pattern is clear in Table 1, where the numbers 

S(u(n), n) are indicated by asterisks. Notice that because of (3.6), these numbers are 

one line lower than the numbers marked similarly in [2, Table 1, p. 178] or [3, Table 

1, p. 981 ]. 
The localization of the best approximations is more complicated, and is described 

in Theorem 2 below. We say that S(m, n) is a best approximation if the coefficients 

b(m, n), g(m, n), k(m, n) (defined by (3.5)) give a best linear form approximation to 

zero, as defined in Section 1. 
Define 

Tmn = max(lg(u(n) + m, n)l, lk(u(n) + m, n)l). 

Notice that Tm, n here is the same as Tm in in the notation of [3], because of (3.6). 

We require the following lemma about Tm n later on. 

LEMMA 3. If n < 0 and Inl is sufficiently large, then 

(3.9) for n even, Tm n > T0,n for all m # 0 1, 

and 

(3.10) for n odd, Tmn > To for all m # 0, 1, 2. 

Proof Assertion (3.9) is [3, Lemma 7, Corollary 1, p. 989] and assertion (3.10) 

is [3, Lemma 9, Corollary 1, p. 990]. 
Of course, we must replace the notation Tm n of [3] by Tm + 1,n in order to 

state Lemma 3 in the notation of the present paper. 

THEOREM 2. For n < 0 and Inl sufficiently large, S(u(n) + m, n) can be a best 

approximation only in the following cases: 

(i) neven,m=- or 0, 
(ii) n even, m = 1 and E(n) > 1030o1-1 t 1.1588, 

(iii) n odd, m = -1 or 0, 
(iv) n odd, m = 1 and -E(n) > 0-1 .8019, 

(v) n odd, m = 2 and -E(n) > 02 1.5550. 



THE SZEKERES MULTIDIMENSIONAL CONTINUED FRACTION 293 

Note. We later show (in the proof of Theorem 6 in Section 4) that Theorem 2 
remains true if case (v) is deleted. 

Proof Since the best approximations are a subset of the good approximations, 
it follows from Theorem 1 that we need only prove the inequalities on E(n) in cases 
(ii), (iv), (v) of Theorem 2. Recall that by the definition of E(n), E(n) > 0 if and only 
if n is even. 

For m = 1, IR(u(n), n)I = ou (nf) pIfn < IR(u(n) + 1, n)I = 0 u (nf) + 1 jpjfn so by 
definition S(u(n) + 1, n) cannot be a best approximation unless T1 ,n < To n. But by 
[3, Lemma 7, Corollary 2, p. 989], this inequality holds for n even only if E(n) > 
1030'1-1; and by [3, Lemma 9, Corollary 2, p. 990], the inequality holds for n odd 
only if -E(n) > 0- 1 . This does cases (ii) and (iv). 

For m = 2, reasoning as above shows that S(u(n) + 2, n) cannot be a best 
approximation unless T2,n < To0n. But by [3, Lemma 9, Corollary 2, p. 990], this 
inequality holds for n odd only if -E(n) > 02; and by Lemma 3, (3.9), we always 
have T2,n > T0,n for n even. Thus case (v) is the only remaining possibility for a best 
approximation, and the proof of Theorem 2 is complete. 

It is natural to expect that for each n, any best approximations S(m, n) will be 
close to the entry S(v(n), n) in the nth column of the S(m, n) array. This is so, and 
a quantitative expression of this fact is contained in the next theorem [3, Theorem 1, 
p. 983] (we must replace u(n) in [3] by u(n) + 1, because of (3.6)). 

THEOREM 3. For each even integer n < 0, v(n) equals either u(n) or u(n) - 1. 
For each odd integer n < 0, v(n) equals either u(n) or u(n) + 1. 

Thus Theorems 2 and 3 show that, at least for mnl sufficiently large, whenever 
S(m, n) is a best approximation, the inequality Im - v(n)l < 2 holds. 

We will need the following lemmas concerning the function u(n) for the work of 
the next section. 

LEMMA 4. Suppose n < 0; then u(n) increases as n decreases. There are no 
more than four consecutive values of n for which u(n) has the same value. Whenever 
u(n) takes on a given value, it has that value for at least three consecutive values of n. 
For n < 0, u(n) takes on every nonnegative integer value. 

Proof This is [3, Lemma 2, p. 984]. 
LEMMA 5. We have 

u(n - 1) = u(n) if and only if E_ < IE(n) I < 2 10 " I 1.1 099, 
(3.11) 

u(n - 1) = u(n) + 1 if and only if 210"I-1 < lE(n)l < E. 

In the former case, E(n - 1) = E(n)/020' -1.4450 E(n); in the latter case, E(n - 1) 
= E(n)/020 6" -.3569 E(n). 

We also have 

u(n - 2) = u(n) if and only if E_ < IE(n)l < 203062 .7681, 
(3.12) 

u(n - 2) = u(n) + 1 if and only if 2036 2 < IE(n)l < E+. 

In the former case, E(n - 2) = E(n)/040'2 t 2.0881 E(n); in the latter case, E(n - 2) 
= E(n)/03 ; .5157 E(n). 
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Proof The assertions in (3.11) are given in [3, formula (39), p. 990] and the 
assertions in (3.12) are given in [3, formula (23), p. 986] . The statements about E(n) 
are based on the fact that E(n) - ou(n)+2n6'2u(n)+n, which is an immediate conse- 
quence of the definitions E(n) = (QQ'2)u(n)(pWp2)n, ep = 1/0'. 

Next we define 

G = 0" - f -3.04891734, K= 0" - ' ; -1.35689587, 

so that 

G' 1.69202147, G" - 1.35689587, K' 3.04891734, K -1.69202147. 

The following lemma will be used in the calculations of Section 4. 

LEMMA 6. For every integer m, 

(3.13) g(m, n) 
I 

(GO'?p' + G',O"?p'n + G"O "Mp")n 
7 

and 

(3.14) k(m, n) = m(KOepn + K'O"'mpn + K"0"'mp"n)n 

Proof This is just part of [2, Lemma 4, pp. 169-170] ; D in that lemma is 7 in 

the situation we have here. 

4. The 2-Fraction for (oa, 1). It turns out (we prove it below) that in the 2- 
fraction for (oa, 1) all of the positive real numbers Tnj (n = 0, 1, 2, . . . ; 0 < / < 2) 

are units of the cubic field F defined by 0. Thus each Tnj is of the form 
(_1)m(2)0m(1)\m (2) for some integers m(1) and m(2) (recall (p = 1/0' < 0, so the 

factor (-1)m(2) ensures that zni > 0 has the correct sign). Table 2 gives the values of 
each Tnj and of the numbers e(n + 1), ,u(n) for 0 < n < 38. 

The main result which we prove in this section is that the triples (rnot, nl ynz2) 
(n = 0, 1, 2, . . . ) can be divided into a finite number of classes in the following way: 

For each n we have 

(4.1) z2nO = (1)m (2)0m( )pm (2), 7n 1= (-1)mn(2)+sm(1 )+rpmr(2)+s, 

*41n (_l)m(2)+UOm(1)+tepm(2)+U 

for some integers m(1), m(2), r, s, t and u. We put two triples in the same class if 

the integers r, s, t, u, e(n + 1) and ,u(n) are the same for both triples. It turns out 

that for n > 4 each of the triples (7n0' n1 'n 7n2) belongs to one of ten classes; 

further, for n > 15 eight classes are sufficient (and necessary) to contain every triple. 

The ten classes are listed in Table 3. The last column in Table 2 gives the class to 

which the corresponding triple belongs. The sequence of class labels in Table 2 appears 

to become periodic for n > 15, We shall eventually show (in Section 5) that in fact 

this sequence is almost periodic. 
Let us now indicate the dependence on n of the integers m(1), m(2), r, s, t, u 

in (4.1) by putting m(1) = m(1, n), m(2) = m(2, n), r = r(n), etc. 



THE SZEKERES MULTIDIMENSIONAL CONTINUED FRACTION 295 

TABLE 2. Values of y,, in the 2-fraction for (at, t3) 

v-( )m (2) 9m (1) m (2) ()X90W~p y=x)ZYp 

n mn1 m (2) w x y z E(n+1) j(n) Clas; 

0 0 -1 2 -2 1 -2 0 2 

1 0 -2 2 -2 1 -2 1 1 

2 1 -3 0 -2 1 -2 1 2 

3 2 -3 0 -2 1 -3 1 1 

4 2 -4 2 -3 1 -3 1 2 7 

5 1 - 4 2 -3 2 -4 1 1 4 

6 0 -3 1 -4 2 -4 0 2 2 

7 2 -5 1 -4 2 -4 1 1 3 

8 1 -5 2 -5 2 -4 1 2 6 

9 0 -4 2 -5 1 -5 0 1 1 

1 0 2 -6 2 -5 1 -5 1 2 7 

1 1 1 -6 2 -5 2 -6 1 1 4 

1 2 0 -5 1 -6 2 -6 0 2 2 

1 3 2 -7 1 -6 2 -6 1 2 9 

14 3 -7 1 -6 2 -7 1 1 1 0 

1 5 3 -8 3 -7 2 -7 1 2 7 

1 6 2 -8 3 -7 3 -8 1 1 4 

1 7 1 -7 2 -8 3 -8 0 2 2 

1 8 3 -9 2 -8 3 -8 1 1 3 

1 9 2 -9 3 -9 3 -8 1 2 6 

2 0 1 -8 3 -9 2 -9 0 1 1 

2 1 3 -10 3 -9 2 -9 1 1 5 

2 2 4 -10 3 -10 2 -9 1 2 8 

2 3 4 -11 3 -10 4 -10 1 1 3 

2 4 3 -11 4 -11 4 -10 1 2 6 

2 5 2 -10 4 -11 3 -11 b 1 1 

2 6 4 -12 4 -11 3 -11 1 2 7 

2 7 3 -12 4 -11 4 -12 1 1 4 

2 8 2 -11 3 -12 4 -12 0 2 2 

2 9 4 -13 3 -12 4 -12 1 1 3 

3 0 3 -13 4 -13 4 -12 1 2 6 

3 1 2 -12 4 -13 3 -13 0 1 1 

3 2 4 -14 4 -13 3 -13 1 1 5 

3 3 5 -14 4 -14 3 -13 1 2 8 

34 5 -15 4 -14 5 -14 1 1 3 

3 5 4 -15 5 -15 5 -14 1 2 6 

3 6 3 -14 5 -15 4 -15 0 1 1 

3 7 5 -16 5 -15 4 -15 1 2 7 

3 8 4 -16 5 -15 5 -16 1 1 4 
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TABLE 3. Labels for classes of triples anO = (1)m (2)Om (1)n (2), 

zn = (-1)M(2)+SOm(1)+re1n(2)+s, z2 = (-l)m(2)+u0m(1)+tipm(2)+u 

Class r s t u E (n+l)(n) 

1 2 - 1 -1 0 1 

2 1 -1 2 -1 0 2 

3 -2 1 0 1 1 1 

4 1 1 1 0 1 1 

5 0 1 -l 1 1 1 

6 1 0 12 
7 0 1 7 1 1 2 

8 10 2 121-2 
9 - 1 01 1 2 

9 1 102 0 10 -2 1 - 0 1 ~ -1 

TABLE 4. Determination of the class to which the triple 
Tnt i ('Yn+1, tn + 1,1b' f+1,2) belongs from the class of the triple Tn 

Class Allowable Values Glass 
of r n of pt(n+l) o flrnl Yn+l1. 'oyn,o1 

1 1 ~ ~ ~~~~~~~~~~5 2 -2 

2 7 2 -2 

2 13 2 -2 

2 9 ~~~~~~~2 -2 2 
9~~~~~~~c 

3 2 6 

4 2 2 1I(PI 
5 2 80 

6 1 1Q 

7 14 

8 13 

9 110 9 

10 2 7 - 

We also define the triple Tn by 

(4.2) In= ('Yn 0 1'n 7n 'Yn 2) (n =0, 1, 2,... 

It is clear from (2.14) to (2.14b) that if we are given the integers m(l, n), m(2, n), 
r(n), s(n), t(n), u(n), c(n ? 1) and pi(n), then the real numbers 7Yn +1,,'n 7+ 1, 1 and 
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zn+ 1,2 are determined. For the particular 2-fraction which we are considering, an easy 
calculation using (2.13) shows that the integer e(n + 2) is also determined, except pos- 
sibly when the triple rn defined by (4.2) belongs to class 5 of Table 3. Since the num- 
bers mn + 1,j (0 < / < 2) are known and are units in the cubic field F, it follows that 
(4.1) is valid with n + 1 in place of n, and so the integers m(l, n + 1), m(2, n + 1), 
r(n + 1), s(n + 1), t(n + 1) and u(n + 1) are all determined. Only ,u(n + 1) (which 
determines e(n + 2) via (2.13) if e(n + 2) is not already known) remains to be specified. 
A much more detailed study of the 2-fraction for (a, () shows (see below for the proofs) 
that in fact ,u(n + 1) has only one allowable value unless the triple rn is in class 1 or 2, 
in which case both values of ,u(n + 1) can occur. It is also the case that the allowable 
values of ,u(n + 1) always give triples Urn+ 1 which are in one of the ten classes listed in 
Table 3. This accounts for the fact that only finitely many different classes occur. 

Table 4 gives the allowable values of ,u(n + 1) for each of the ten classes, and the 
thereby determined classes to which the triples Trn+ 1 belong. Table 4 also gives 

1J+ 1,0/ Io = 6m(1,n n+l)-m(1,n)ljnlm(2,n+l)-m(2,n) 

which depends only on the class of the triple rn. 

The following theorem summarizes the results we have stated so far in this 
section. 

THEOREM 4. The numbers -ynj (n = 0, 1, 2... ; 0 < j < 2) are all cubic units. 
The triples Tn = 

(knot 7n1' 7n2) (n = 4, 5, 6, ... ) are each in one of the ten classes 
listed in Table 3. The class to which the triple rn +1 (n > 4) belongs is determined 
either by the class of rn alone (if rn is in any of the classes except 1 and 2) or by the 
class of rn and the value of p(n + 1) (if rn is in class 1 or 2); these determinations are 
listed in Table 4. 

Proof: We can verify directly that the numbers 'ynj (0 < j < 2) are units for 
0 < n < 4 and that the triple r4 is in class 7 (see Table 2). Given these facts, the first 
sentence of the theorem follows from the second, and the second sentence follows 
from the third. Thus, to prove the theorem we need only prove the last sentence. A 
complete proof involves ten cases, one for each class of triples. We give details of only 
two of the ten cases here. The calculations for the two cases which we fully work out 
are completely typical, so that the work in the eight omitted cases follows the same 
pattern. 

Calculations for Class 1. We first assume that each number in the triple rn is a 
unit, so that in particular we have from (3.4) that 

(4.3) zn 
= JR(u(n*) + i, n*)J = 6u(n*)+ijkpjn* 

for some integers n* and i. From now on we always use the notation n* to denote 
the integer (depending on n) such that (4.3) is valid. For example, znO is in class 1 
for n = 9, 20, 25, 31, 36, . . . and the corresponding values for n* (from Table 2) are 
n* = -4, -8, -10, -12, -14, respectively. 

We call the integer i which appears in (4.3) the index of mnO. It will turn out 
that for each class, the set of different indices of the numbers 'Yno in the class is finite. 
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TABLE 5. Description of subclasses by index and inequalities on E(n)* 

Subclass Parity Index Restrictions on E(n ) Class 

of fir n ofn i of 'r n+I 

la even -1 4 l0 1 1.0761 < E(n ) < 1.6039,a E+ 5 

lb even -1 1 .5550 < E(n*) < 1.0761 z G41(,I 7 

lc even -2 E .3961 < E(n) < .5550 "Zz|@' I 5 

2a odd -1 -1 .8019 < -E(n < 1.5550 92 3 

2b odd -1 92 1.5550 < -E(n) < 1.6039 P E 9 

3a odd 0 E .3961 < -E(n -l< .8019 - 0 6 

3b odd 1 91 .8019 < -E(n ) < 1.6039 z E 6 

4a even -1 E s .3961 < E(n ) < .5550 - GI9(9 2 

4b even 0 9 3| | 1 1.1588 < E(n ) < 1.6039 E 2 

5 even 0 GIG'I .5550 < E(n*) < 1.1588 9 31911 8 

6a odd -1 E .3961 < -E(n -l< .8019 c 0 1 

6b odd 0 0- 1 ~.8019 < -E(n ) < 1.6039 E+ I 

7a even 0 E- .3961 < E(n ) < .5550 G W'I 4 

7b even 1 93 39h1l| 1.1588 < E(n ) < 1.6039 E + 4 

8 even 1 010'l .555s0 < E(n*) < 1.1588- 3- 3 
|l 3 

9 odd 0 9-1 .8019 < -E(n < .8272 29 - 10 
10 

odd 
1 -91 

* 
7 

1 

10 | odd I 1-1 | 9 .8019 < -E(n ) < .8272 2 294 7 

Table 5 contains a complete list of the different possible indices (the proof that the list 
is complete is given later on, in Theorem 5). In particular, for class 1 the only possible 
indices are -1 and -2. 

The parity of the integer n* is determined by the class to which Tn belongs (see 
Table 5). Furthermore, for Tn in a given class, the index of 7nO has a given value if 
and only if E(n*) satisfies certain inequalities (see Table 5; here E(n) = (0062)u(n) . 

(,p2)fn is the function defined in Section 3). It is convenient to divide each class into 
subclasses according to the index of 'YnO and the class of Tn+i; this is done in Table 5. 

Since p < 0, the definition of E(n) implies that E(n*) is > 0 if and only if n* is 
even. This is reflected in the inequalities for E(n*) in Table 5. 

Since Tn is in class 1, we have e(n + 1) = 0 and ,u(n) = 1 from Table 3. Hence, 
by (2.14) to (2.14b) and the rest of the data for class 1 in Table 3, we have 

'n+1 =Om(1)jipjm(2) 
- 

Om(l)+21,p1m(2)-, 'Yn + 1 = oYnly 'Yn + 2 =zn 2 

with m(1) and m(2) determined by (4.3). Thus using the identity 1 - 02 1l-1 = 

o2 2, we get 

Itn+1, 
= follwsfom(.13 and (4.4) that (n 2) = 1,) s theEq1s. (4.4)a b 

(4.4)~ ~ ~ ~~~z + O =0m ( 1 ) + 1 1,plm (2 )- 1 

It follows from (2.13) and (4.4) that e(n + 2) = 1, so the Eqs. (4.4) and Table 3 
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imply that rn + 1 is either in class 5 or in class 7, depending on whether ,u(n + 1) 
equals 1 or 2, respectively. This already gives all of the statements in Theorem 4 
which apply to rn in class 1. However, we shall prove more (namely, some of the 
inequalities for E(n*) in Table 5 which apply in the various subclasses of class 1 for 
indices -1 and -2); we do this because the results are needed below, and the necessary 
calculations are representative of those needed to establish Theorem 4 for rn in any 
class other than 1 or 2. 

We first assume that rn is in subclass la or lb, so n* is even and the index of 

no0 is -1. This means (using (4.3) with i = -1, (3.5) and the notation in (3.1)) 

(4.5) n0 = Cn0? + Cn1a + Cn 2 = CnO + k(u(n*) - 1, n*)oy + g(u(n*) - 1, n*)3. 

Also, by the definition of class 1 in Table 3 we have (using (4.5) and the notation in 
(2.15)) 

(4.6) 7n i = Cn l 0 + k(u(n*) + 1, n* - l)a + g(u(n*) + 1, n* - 1)0 

and 

(4.7) zn2 = Cn20 + k(u(n*), n* - I)a + g(u(n*), n* - 1)f. 

Now we consider the approximation triangle An defined by (2.21). We let rF 
(j = 0, 1, 2) denote the sides of this triangle which are contained in the straight lines 

rnj(x1, X2) = 0 (j = 0, 1, 2, respectively) defined by (2.20). (See Figure 2, in which 
the vertices A(n, j)/B(n, j) (/ = 0, 1, 2) are simply labelled by the respective values 
of j.) We shall show that, at least for large n, the slopes of the lines rnF(x1, X2) = 0 
depend on the value of E(n*) in a simple way. Since IE(n*)l is bounded by E+ and 
E_ (see (3.8)), this will show that the shape of the triangle An depends only on the 
value of E(n*). Since the shape of An is what determines ,u(n + 1) (see the discussion 
in Section 2), we will be led to inequalities for E(n*) like those in Table 5. 

We define 

s(F1) = slope of the line segment [' (0 < j < 2). 

Thus it follows from (4.5), (4.6), (4.7) and the definition (2.20) of the lines 

pnj(x1, X2) = 0 that 

s(Fo) = -k(u(n*) - 1, n*)Ig(u(n*) - 1, n*), 

(4.8) s(rl) = -k(u(n*) + 1, n* - 1)/g(u(n*) + 1, n* - 1), 

s(F2) = -k(u(n*), n* - l)Ig(u(n*), n* - 1). 

If we take m = u(n*) - 1 and n = n* in (3.13) and divide both sides by 
flu (n *)(pfl*, then we get 

g(m, n) 1 (GOu(n lfn* + G'E(n*)O'- + G"0 -1) 
f lu (n *),ttn* 7 tflu (n *),pttn * 

a similar result follows from dividing both sides in (3.14) by 0 fu (n *) ?"n . Since it 
follows easily from the definition of u(n*) that (Q/Q??)U(n*)(p/p??)f* -+ 0 as n* 
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-00, we deduce from (4.8) that 

K'E~n*) ?11 ?K"O11- 

(4.9) s(F0) t- G'E(n*)O'- + G"O" 

for n* < 0, In*I large (that is, for n large). 
We define the function qO(E) by 

K'EO'- 1 + K"0"1- 
qO(E) = - GEt- ??+oft-! 9 

so s(Fo) qo(E(n*)) by (4.9). Thus, s(ro) depends on E(n*) in a simple way, as we 
asserted above (notice since n* is even in class 1, we have E(n*) > 0 so by (3.8) we 
need only consider qO(E) in the range 20?2 = E < E <E = 20-1). 

If we further define 

-K'EO'~o'11 ? K"O i p"1-1 K'Ep'1 ? K(p11 
ql(E) G'EO'f'- + G"O" "-1 ' q2( = - G'Ep'`1 + G"p"1 

then after proceeding as in the derivation of (4.9) we have 

(4.10) s(rF) - q1(E(n*)) (I = 0, 1, 2) for all large n. 

Calculation of the maxima and minima of the functions q1(E) in the range E_ < E < 

E+ gives 

(4.11) -1.47 < s(o) < -.78, 1.9 < s(rl) < 8.86, -8.86 < s(2) < -3.41. 

Figure 2 is drawn so that the slopes s(F1) lie within the ranges given in (4.11); thus 
the triangle in Figure 2 has a shape which is typical of the shapes of approximation 

triangles for class 1 (notice that the inequalities (4.11) are restrictive enough to ensure 
that these approximation triangles are all roughly similar in shape). We are only inter- 
ested in the ratios of certain lengths determined by the approximation triangles, so 
only the shape of the triangle in Figure 2 (and not the lengths of its sides) is relevant. 

In particular, if we define 

(4.12) W11ill = span of r, (O j 2) 

(the definition of span is in Section 2), then ,u(n + 1) has the value 2 if and only if 

(1 2 (B(n, 0) + B(n, 1))! 

We derive (4.13) as follows: In obtaining the approximation triangle An+ from the 
triangle An of Figure 2, we insert a new vertex A(n + 1, 1)/B(n + 1, 1) on the side 
F2 of An. Then An+ 1 is the triangle with vertices A(n, 0)/B(n, 0), A(n, 2)/B(n, 2) 
(labelled 0 and 2, respectively, in Figure 2), and A(n + 1, 1)/B(n + 1, 1). (See the 
discussion in Section 2 concerning (2.22).) Also, A(n + 1, j)/B(n + 1, f) = 

A(n, j)/B(n, j) for j = 0 and 2 (by (2.6), (2.6b) and (2.6c)). Hence, ,u(n + 1) is deter- 
mined (see the discussion in Section 2) by whichever of the two line segments from 
A(n, 0)/B(n, 0) to A(n, 2)/B(n, 2) and A(n + 1, 1)/B(n + 1, 1), respectively, has the 
longer span; in fact, ,u(n + 1) = 2 if the former segment is the one with the longer 
span, and ,u(n + 1) = 1 if the latter segment is the one with the longer span. Now 
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0 

ri 

F2 
a = 82 - 51 

(3 -0 - 82 
7Y = 8 - 80 ? ir 

27 

/1 52=1-6 X 

FIGURE 2. Typical approximation triangle, subclass la or lb 

the span of the former segment is simply 11r, 11, and it follows from (2.22) with ,u(n)= 
1 that the span of the latter segment is 1jr21IB(n, 1)I(B(n, 0) + B(n, 1)). Thus (4.13) 
is precisely the condition needed for ,u(n + 1) = 2. 

Next we define 

1r,1 = length of rj (0 < j < 2). 

I~~~~~~~ 

Of course, 1r,1 is related to the span 11r,11 defined in (4.12) by 

(4.14) 11r,11 = max(Iri cos 8,1, IT'jl sin 8j), 

where 8j (O < 8j < 7r) is the angle between the x1 -axis and the line rnj(x I, x2) = O 

(see Figure 2). 
Since by (4.1 1) we have is(rl)l > I and IS(r2)1 > 1, it follows from Figure 2 and 

(4.14) that 11r,11 = jrjl sin 8j for j=1, 2. Using Figure 2 and some trigonometry, we 
have 

r2l I akl- I sin yaisin:0 = sin 8 Cos 8 - sin ,8 Cos ,5 

and therefore, 

tan 82(tan 8o - tan 80) 
=tan 8 (tan 8 0 - tan 8 2) 

Since tan 8j = s(r,) (O < j < 2), (4. 10) gives 
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(4.15) 1"r211 11r111_'1 - q20 -q1) (qj = q1(E(n*))). 

Also, it follows from Lemma 1, (2.15) and (4.5) to (4.7) that 

B(n, O) -Cnllcn22 cn2lcnl2 

B(n, 1) Cn2 1CnO2 -cCnO1Cn22 

(4.16) 
- k(u(n*) + I, n* - l)g(u(n*), n* - 1) - k(u(n*), n* - 1)g(u(n*) + 1 - 1)1 

k(u(n*), n* - l)g(u(n*) - 1, n*) - k(u(n*) - 1, n*)g(u(n*), n* - 1) 

If the method of deriving (4.9) is applied to the right-hand side of (4.16), we find that 

B(n, O)IB(n, 1) is approximately equal to a certain function of E(n*) for n* < O. jn*j 

large. Calculation of this function shows that it is in fact a constant, namely, -0" - 1. 

Thus, we have proved that 

(4.17) lim B(n, O)/B(n, 1) = -0" - 1 ; .8019. 
nf-,00 

Now let r(E(n*)) denote the function on the right-hand side of (4.15). Calcula- 

tion shows that for E_ < E(n*) < E+, the function r(E(n*)) is monotone increasing 

and 

(4.18) r(E(n*)) < -0" if and only if E(n*) < 0410'1. 

Combining (4.15), (4.17) and (4.18), we may conclude that (4.13) holds if and only if 

E_ < E(n*) < 04 10'i. This means that for rn in subclass la or lb, we have n +1 in 

class 7 only if E < E(n*) < 04 10'I, and otherwise rn+ 1 is in class 5. This proves part 

of the restrictions on E(n*) stated in Table 5 for the subclasses of class 1. The remain- 

der of the restrictions (in particular, the range of E(n*) in which subclass lc occurs) 

will follow from the proof of Theorem 5 below. 

We pause for a digression at this point. To avoid needless complication of the 

proof of Theorem 4, nothing has so far been said about the accuracy of the approximate 

equalities in (4.10) and (4.15) (although it does of course follow from the work above 

that the difference between the two sides of these equalities - 0 as n* -oo). This 

does not affect the proof, except for the following: the possibility that for E(n*) less 

than but very near to 04 10'1 1.0761 we could have (4.13) false despite the fact that 

(4.18) is true (because the approximation (4.15) is used in deducing (4.13) from (4.18)) 

has not been ruled out. In fact, this possibility cannot occur, because the work of 

Baker (for example, the theorem in [1]) provides a lower bound for IE(n*) - 0410' II 

of the form c(l)I(n*)c(2) (c(1) and c(2) computable constants), and this lower bound 

implies that E(n*) cannot approach 0410 'I quickly enough for the unwanted possibility 

to occur. The detailed justification of this is straightforward, so we omit it. Appeals 

to the result of Baker [1] are needed at various other places in our proofs, but in every 

case the application of the theorem of Baker is very similar to the one we have just 

explained; thus, from now on we shall not explicitly point out the places where we 

need to use this theorem. 
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FIGURE 3. Typical approximation triangle, subclass 1 c 

Now we finish the calculations for class 1; we assume that rn is in subclass 1 c, 
so n* is even and the index of ynO is -2. Thus, we obtain the following analogues of 
(4.5), (4.6) and (4.7): 

YnO = CnO + k(u(n*) - 2, n*)a + g(u(n*) - 2, n*)3, 

(4.19) 'n 1 
= 

Cn10 + k(u(n*), n* - 1)a +g(u(n*), n* - 1)0, 

Yn2 = Cn20 + k(u(n*) - 1, n* - I)a + g(u(n*) - 1, n* - 1)3. 

As before, we consider the approximation triangle An, and we use (4.19) to 
determine the slopes s(rF) (0 < j < 2) of the sides of the triangle (compare (4.8)). 
Calculations like those used to derive (4.9) give 

(4.20) s(rF) r1(E(n*)) (j=0, 1, 2) for all large n, 

where 

K'EO'-2 + K"0"1-2 

r0( - G'EO'2-2 + G"101"-2 

r,(E) GWEO'l-hp'f- + G"O"'1-i?'-p" (X = 1, 2). 

Calculation of the maxima and minima of the functions r1(E) in the range E_ < E < 
E gives 
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(4.21) -1.72 < s(ro) < -1.46, -8.86 < s(r1) < -3.41, -3.42 < s(r2) < -2.08. 

The triangle in Figure 3 is drawn so that the slopes s(F1) lie within the ranges given in 

(4.21). 
Just as in the subclasses la and lb, we have p(n + 1) = 2 if and only if (4.13) 

holds. Since by (4.21) we have Is(r1)l > 1 and is(r2)l > 1, the same reasoning by 

which we deduced (4.15) from Figure 2 and (4.10) leads us to deduce 

r2(ro - r,) 
(4.22) Fr211 i r,(ro - r2) (r, = r1(E(n*))) 

from Figure 3 and (4.20). Following the derivation of (4.17) leads to 

(4.23) lim B(n, O)IB(n, 1) = -0" - 1 - .80 19. 
nf-,oo 

Now let r(E(n*)) denote the function on the right-hand side of (4.22). Calcula- 

tion shows that for E_ < E(n*) < E+, the function r(E(n*)) is monotone increasing 

and r(E(n*)) > 1.9 always. Combining this inequality with (4.23), we conclude that 

(4.13) is always false. Hence p(n + 1) = 1 always holds for rn in subclass ic, and 

this means rn + 1 is always in class 5, as specified in Table 5. We shall see below (in 

the proof of Theorem 5) that in fact subclass Ic only occurs for the restricted range 

of E(n*) given in Table 5. 

Calculations for Class 3. Since rn is in class 3, we have e(n + 1) = p(n) = 1 

from Table 3. Hence by (2.14) to (2.14b) and the rest of the data for class 3 in Table 

3, we have 

Yn+1,O =0m(1)- Ijp1m(2)+1 Om(1) jpjm(2), yn+ll = Snow n+1,2 Yn2' 

with m(1) and m(2) determined by (4.3). Thus, using the identity 01 IGpI - 1 = -0" - 

1 = 0-1, we get 

(4.24) 'Yn + 1,O = om (1)-1Ipim (2), yn+l,1 = om (1) 1IpIm (2), 

n + 12 = Om(l)Wep1m(2)+l. 

It follows from (2.13) and (4.24) that e(n + 2) = 1, so the Eqs. (4.24) and Table 3 

imply that rn + 1 is in class 6 if and only if p(n + 1) = 2. We shall prove that p(n + 1) 

=2 always holds if rn is in class 3. 

We first assume that rn is in subclass 3a so n* is odd and the index of YnO is O. 

Thus we obtain (using (4.3) with i = 0) the following analogues of (4.5), (4.6) and (4.7): 

2YnO = Cno + k(u(n*), n*)o + g(u(n*), n*):, 

(4.25) Ynl 
= 

CneIo + k(u(n*) - 1, n* + 1)oa + g(u(n*) - 1, n* ? 1)3, 

Yn2 = Cn20 + k(u(n*), n* + 1)o + g(u(n*), n* + 1)j. 

As before, we consider the approximation triangle An, and we use (4.25) to de- 

termine the slopes s(rF) (0 < j < 2) of the sides of the triangle. Calculations like those 

used to derive (4.9) give 

(4.26) s(rF) ; tj(E(n*)) (j= 0, 1, 2) for all large n, 
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where 

EK'?+ K" W K'EO"j2 so'-?K"rO"'j2 (j 1, 2). to(E) EG' + G" ' t1(E) G'EO"-2sp + G"O"' =1p"2 

Calculation of the maxima and minima of the functions ti(E) in the range -E+ < E < 
-E_ (because n* is odd, E(n*) < 0) gives 

-0O < s(ro) < -4.85 if -E+ < E(n*) < _0-1, 
(4.27) 

4.22 <s(ro) <+00 if -0- <E(n*) <-E 

(this follows since EG' + G" = 0 for E = -G"/G' = -01 -.8019) and 

(4.28) -1.35 < s(r1) < -.52, -.53 < s(F2) < .48. 

The triangle in Figure 4 is drawn so that the slopes s(rF) are about what they would 
be for E(n*) ; -E_; namely, s(ro) 4.22, s(r1) - -.52, s(r2) .47. As E(n*) de- 
creases from -E_, the shape of the triangle An tends to an isosceles right triangle, 
which is the shape of the triangle for E(n*) P -0-1. (For this value of E(n*) we have 
s(ro) 00 w s(rF) -1, s(r2) t 0, so the hypotenuse of the right triangle would be the 
line segment from 0 to 2 in Figure 4.) It is evident from their shapes that for any of 
these triangles An with -0- 1 < E(n*) < -E_, we have i(n) = 1, as we must have in 
class 3. However, for -E+ < E(n*) < -0-1 the shape of the triangle An would be 
such that i(n) = 2 (contradicting our assumption that rn is in class 3a). Thus, our 
assumption that rn is in class 3a implies that E_ < -E(n*) < 0- 1, which is exactly 
the restriction on E(n*) listed for class 3a in Table 5. Some (though not all) of the 

1,' ~ 622 
2 

FIGURE 4. Typical approximation triangle, subclass 3a 

other restrictions on E(n*) listed in Table 5 can be deduced in a similar way. A full 
derivation of all the restrictions on E(n*) listed in Table 5 must wait until the proof of 
Theorem 5 below. 
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FIGURE 5. Typical approximation triangle, subclass 3b 

Proceeding as in the derivation of (4.13) (except that now An+1 is the triangle 

with vertices A(n, 1)/B(n, 1), A(n, 2)/B(n, 2) and A(n + 1, 1)/B(n + 1, 1), as in Figure 

1; and we have e(n + 1) = p(n) = 1 in (2.6) to (2.6c), since rn is in class 3), we find 

that p(n + 1) is determined by whichever of the two line segments from A(n, 1)IB(n, 1) 

to A(n, 2)/B(n, 2) and A(n + 1, 1)IB(n + 1, 1), respectively, has the longer span. 

Thus p(n + 1) = 2 if and only if 

(4.29) Iir2II(B(n 0) +B(n 1))IFOIl- < 1. 

We have Is(ro)I > 1 and Is(F2)I < 1 by (4.28). Thus I0r II = iro sin 60 and 

F2 I= ir2 COS 621. Using Figure 4 and some trigonometry, we have 

sin 6, cos 6 - sin 68 cos I 
iF2I iFrKl 

- sin y/sin ot = 
sin 68 co 6O 2 - sin 6 2 COS I 

and therefore (or2 11 = + Ir2 I cos 6 2 since 0 < 62 < 7r/2 in Figure 4) 

1 tan 61 - tan 60 
IIF2II 0[r?[[ = tan 60 tan 61 - tan 62 

Since tan 6, = s(F1) (0 < j < 2), (4.26) gives 

tl - to 
(4.30) F2 r (t = tF(E(n*))) 

Following the derivation of (4.17) leads to 

(4.31) lim B(n, 1)/B(n, 0) = -0" ; 1.8019. 
nf-40 

Now let r(E(n*)) denote the function on the right-hand side of (4.30). Calcula- 

tion shows that for -E, < E(n*) < -E_, the function r(E(n*)) is monotone decreas- 
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ing and r(E(n*)) < 1.2 always. Combining this inequality with (4.31), we conclude 
that (4.29) is always true. Hence p(n + 1) = 2 always holds for rn in subclass 3a, and 
this means rn+ 1 is always in class 6, as specified in Table S. 

Now we assume that rn is in subclass 3b, so n * is odd and the index of zYn iS 1. 
Thus we obtain the following analogue of (4.25): 

YnO = Cno + k(u(n*) + 1, n*)a + g(u(n*) + 1, n*)3, 

(4.32) 2Ynl = Cnel0 + k(u(n*), n* + l)ao + g(u(n*), n* + 1)j, 

Yn2 = Cn20 + k(u(n*) + 1, n* + I)a + g(u(n*) + 1, n* + 1)3. 

As before, we consider the approximation triangle An, and we use (4.32) to 
determine the slopes s(rF) (0 < j < 2) of the sides of the triangle. Calculations like 
those used to derive (4.9) give 

(4.33) s(rF) w1(E(n*)) (j = 0, 1, 2) for all large n, 

where 
= EK10 '?K"O"1 K'EO'i-1 cp'?+K"O 1p 

wo(E)0 EG O + G '"O ", wi(E) = G'EO"1 ' ?+ G ?tO"Ii1 9pr (j = 1, 2). 

Calculation of the maxima and minima of the functions w1(E) in the range -E+ < E < 
-E_ gives 

(4.34) 1.67 < s(o) < 4.23, -.53 < s(rl) < .48, .47 < s(r2) < 1.01. 

The triangle in Figure 5 is drawn so that the slopes s(rF) lie within the ranges given in 
(4.34). 

Just as in subclass 3a, we have p(n + 1) = 2 if and only if (4.29) holds. We have 
Is(ro)i > 1 by (4.34) and Is(r2)1 < 1 by (4.34) and the restriction E(n*) > -.8271 
given for subclass 3b in Table 5 (since s(F2) _ 1.01 when E(n*) ; -E_, and this value 
of E(n*) is excluded by Table 5; as a matter of fact, allowing E(n*) - -E_, so that 
Is(r2)1 > 1, would not change the results of our calculations, but would introduce a 
superfluous computation). Hence the same reasoning by which we deduced (4.30) 
from Figure 4 and (4.26) leads us to deduce 

(4.35) IF2II 11F0111 - Wi 
(4.35) nlr211 nrollr-1 ';z- - - w1) (w1 = w1(E(n*))) 

from Figure 5 and (4.33). Following the derivation of (4.17) leads to 

(4.36) lim B(n, 1)/B(n, 0) = -0" 1.8019. 
nf-+Oo 

Now let r(E(n*)) denote the function on the right-hand side of (4.35). Calcula- 
tion shows that for -E+ < E(n*) < -E_, the function r(E(n*)) is monotone increasing 
and r(E(n*)) < 1.35 always. Combining this inequality with (4.31) we conclude that 
(4.29) is always true. Hence p(n + 1) = 2 always holds for rn in subclass 3b, and this 
means rn + 1 is always in class 6, as specified in Table 5. We shall see below (in the 
proof of Theorem 5) that in fact subclass 3b only occurs for the restricted range of 
E(n*) given in Table 5. 
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Patterns A. B, Cl Class of 
- - ____| 8 | ln+j C(n+j+l) g(n+j) 

73 9 02 0 2 
966 1 3 1 1 

* *-% * -2 6 1 2 
If 6 ~ 5I i - 3 1 0 1 

*0 *44 5 1 1 

1T14 al 1f 62 L1 (n4 9 8 1 2 
6 3 I I 

13 Ro 7 6 I 2 

____ ~~ ~~~9 1 0 I 
ri*-5 n4-.4 n*-3 n*~2 n*-l nj* 9 7 1 2 

10 4 I 

The position of u(i) (n*-99 < i <ntr') is indicated as f ollows: pattern A,* 
pattern B, *; pattern C1, . 

Patterns C2, D Class of 
j tin+j E(n+1+1) p(n+j) 

0 2 0 2 
- - -^, | 12 S9| 2 | 5 1 1 | 1 3 X 2 

7 3 2 6 12 
14 311 10 ____ I 01 
*. *0 ~~~ 0 4 5 11 

1 - 12 n 9 6- 5- _ n 8 1 2 
* *0 *0 %0 ~~ ~~6 311 

T 19 position of )3 7 3 7i 6 1 2 
Q 16 13 7 4 1 -2 0 1 

_____ '~8 6 2 LL1 Q4 10 8 1 2 
11 311 

-~~~ ___~1 'o 12 6 12 

n*-7 n1-6 n"-5 n*-4 n*~-3 n*-2 n*-1 n* 14 7 1 2 

The position of u(i) (n*..7 ? 5i -5 n*) is indicated IT 4 1 
as follows: pattern C2, *4 pattern D, S. 

The position of the first component W+ of each triple t in the S(mn) n+J,0 n+j 
arrav is indicated box the class label of nt with a subscript j (e. A., the 

n+j 
position of tnO is indicated by 20 since Tn is in class 2). Subscripts j < 0 
indicate components En+; O (J < 0) of triples Cn+l in the nre-rious Dattern. 
Subsnrints I > 10 -for Datterns A. B. CI or j > 15 for patterns C2, D indicate 
components of triples t in the next pattern. The integer n* < 0 is always 
odd. j 

FIGURE 6. Arrangement of patterns of triples rn +j (O j < 10 

or 0 < j < 15) in the S(m, n) array 

The proof of Theorem 4 is complete once the calculations for all ten classes are 
carried out. Of course, it is assumed in making these calculations that the finite list 
of subclasses in Table 5 is complete, and that the indices, parity of n* and restrictions 
on E(n*) listed there are correct. Our next theorem justifies all of the entries in Table 
5, and provides some information about the sequence of class labels for the triples rn 
(this sequence for 4 < n < 38 is given in Table 2). 
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Before we can state Theorem 5, we need some more definitions. We define 
patterns A, B, C, D of values of u(n), n < 0, as follows: 

Pattern A-u(n) = u(n - 1), u(n - 2) = u(n - 1) + 1 = u(n -I) (I = 3, 4, 5). 
Pattern B-u(n) = u(n - 1), u(n - 2) = u(n - 1) + 1 = u(n -I) (I = 3, 4), 

u(n - 5) = u(n - 4) + 1. 
Pattern C-u(n - 1) = u(n) + 1 = u(n - j)(j=2, 3, 4), u(n - 5) =u(n - 4) + 1. 
Pattern D-u(n - 1) = u(n) + 1 = u(n -j) (/ = 2, 3), u(n - 4) = u(n - 3) + 1 = 

u(n - 5). 

By Lemma 4, these are the only possible patterns of values of u(n - j), 0 < j < 5, if 
u(n - 2) > u(n). 

It turns out that whenever rn is in class 2, we have u(n* - 2) > u(n*) for the 
associated integer n*; thus for these values of n* the pattern of values of u(n*) is always 
one of the patterns A, B, C, D given above. Furthermore, it turns out that for n > 17, 
whenever rn is in class 2 the sequence of class labels for rn+i is determined for 0 < 

j < 10 or for 0 < j < 1 5. In fact, we either have 

(4.37) rn, Tn+ . . . ., .Tn+1 are in classes 2, 3, 6, 1, 5, 8, 36, 1, 7, 4, respectively, 

or 

Tn Tn+1,. . .* *rTn+15 

(4.38) 
are in classes 2, 3, 6, 1, 5, 8, 3, 6, 1, 5, 8, 3, 6, 1, 7, 4, respectively. 

Also, whenever rn (n > 17) is in class 2, the index of YnO is -1; hence (4.37) or (4.38), 
in conjunction with the last column of Table 4, determines the indices of 7Yn+jo and 
the associated integers (n + j)* for each j, 0 < j < 10 or 0 < j < 15, respectively (see 
Figure 6). All the statements in this paragraph (plus more) are proved in Theorem 5. 

THEOREM 5. Suppose n > 17. Then whenever rn is in class 2, it follows that n* 
is odd, u(n* - 2) > u(n*) and the index of 'Yn0 is -1. Also, either the classes of ri 
and the values of j* and of the index of yjO are determined for n < j < n + 10 by one 
of the patterns A, B, C1 of Figure 6; or the classes of rT and the values of j* and of 
the index of yio are determined for n < j < n + 15 by one of the patterns C2, D of 
Figure 6. This gives the correct values for the parity of n* in Table 5, and shows that 
the finite list of indices there is complete. Further, each entry in one of the patterns 
of Figure 6 only occurs when the restrictions given in Table 6 for the corresponding 
value of E(n*) are satisfied. This gives the restrictions on E(n*) given in Table 5. 
Finally, each triple ij is in one of the patterns A, B, Cl, C2 or D of Figure 6; that is, 
the sequence rn , n > 17, can be divided into a sequence of blocks (with 11 or 16 
members per block), each of which fits one of the patterns in Figure 6. 

Proof We begin the proof by considering any triple Tn such that Tn is in class 2, 
n* is odd, u(n* - 2) > u(n*), the index of 'Yno is equal to -1 and 0-1 < -E(n*) < 
20810'i3. (This is the restriction given in Table 6 for pattern A.) For example, T17 is 
such a triple with n* = -7, u(n*) = 2 < u(n* - 2) = 3, 71 7,O = OkK1-7 (see Tables 1 
and 2) and E(n*) = E(-7) =0--20-3-.8026. 
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TABLE 6. Patterns of triples rn + i (O < j < 10 or 0 < j < 1 5) 

Associated triples T n+j 
Pattern Restrictions on E(n ) and subclass of Tn+1 

A H 1e t.8019 < -E(n 8 < 1.0306 2H I n 2a 

H 3 1012 : 1.1588 < E(n* - 1) < 1.4893 - 2H 
6 

32 InTl' 

0 .4136 < -E(n - 2) < .5315 ; 2H | n+l' 3a; n?2' 6a 

H6 6joll 1 .5976 < E(n - 3) < .7681 z 2030,2 Tn+4' 5; 'n+5' 8; n+8' lb 

0 89,-2 .8636 < -E(n - 4) < 1.1099 - 20H0'| n+6' 3b; n+7' 6b 
-10 1, - 3 

-* 2-l1 I b;r 4 0 10 3 1.2480 < E(n - 5) < 1.6039 + = 2 n+9' 7b; n+10' 4b 

819 13 B 20 10 1.0306 < -E(n ) < 1.1099 - 2010'I | - n 2a 

2H H'w 1.4893 < E(n - 1) < 1.6039 E+ = 29 Tn+3' la 

20H5IO' I? .5315 < -E(n - 2) < .5724 2H |H' I ?n+l' 3a; Tn+2' 6a 

20302 .7681 < E(n - 3) < .8272 n+4' n+5 8; n+8 lb 

2H0|'I 1.1099 < -E(n - 4) < 1.1953 20H H0' I Tn+6' 3b; rn+7 6b 

20' = E s .3961 < E(n - 5) < .4266 - 20 n7I 7a; n0' 4a 
Cl 1.1099 < -E~~~~~~~~~~~~n 9,2 ?,2a+9 

n10 

C1 2010'| 1.1099 < -E(n) < 1.4439 0 H 9 0 
2 

II' 

2012 = E .3961 < E(n - 1) < .5153 0 810T1 n+3' lc 

20 2 1 0,1 .5724 < -E(n - 2) < .7447 6,2 IT n+l' 3a; n+2' 6a 

20H4 .8272 < E(n - 3) < 1.0761 zH4|H'4 | n4 5; Tn5, 8; Tn+8' lb 

20 0'| ; 1 , 1.1953 < -E(n - 4) < 1.5550 02 Hn+6' 3b; n+7v 6b 

20 7 9 .4266 < E(n - 5) < .5550 - 0H|' I| I 7a; 'nr 4a 
n9I )n+10' 

C2 o99'2 z 1.4439 < -E(n ) < 1.4893 - 2060,2 ITI 2a 

08l0l3 .5153 < E(n - 1) < .5315 2H5H'|3 Tn+3' lc 

H6H'2 ~ .7447 < -E(n - 2) < .7681 - 20 H' n+l' 3a; n+2' 6a 

04|' | 1.0761 < E(n - 3) < 1.1099 - 20H|' I I' 5; 8; -n+8 la 

02 1.5550 < -E(n - 4) < 1.6039 z E+ = 20 Tn+6' 3b; n+7' 6b 

H|HO' I .5550 < E(n - 5) < .5724 26 2|ll ITn+9 5; n+10' 8; n+13' lb 

H3 0 .8019 < -E(n 6) < .8272 20H 6 n+ll' 3b; n+12' 6b 

H| I0'V1 1.1588 < E(n - 7) < 1.1953 ; 206l0l11 In+l4' 7b; n+l5' 4b 

D 206 , 1.4893 < -E(n 2< 1.5550 IT 93 
<1.55003? 

2 

20Hj0' j .5315 < E(n - 1) < .5550 ; 0 |0' Tn+3' lc 

39,2 ;: -E n - 2) < .8019 203 .7681 < -E(n 2) < .8019 H _ - n+l 3a; tn+2' 6a 

2H0|' I 1.1099 < E(n - 3) < 1.1588 l H0|'l| Tn+41 5; ? n+5 8; n+8' la 

20 2' E .3961 < -E(n - 4) < .4136 0 
4 

n+6 3a; , 6a 

20-2101 .5724< E(n * 5) < .5976 0-6 io 1 InT9' 5; n+l0' 8; Tn+l3' lb 
=4 8*- b 20 4 .8272 < -E(n - 6) < .8636 H8 I2 Tn+ll' 3b; tn+12' 6b 

20 619,1 1 1.1953 < E(n - 7) < 1.2480 0 H 101 0i-3 n+14' 7b; n+l15 4b 

It follows from Lemma 5 that u(n*) = u(n* - 1) and u(n* - j) = u(n* - 1) + 1 
for 2 < j < 5; that is, u(n*) begins a pattern A, as defined above. This means 
E(n* - 2) = 0-3E(n*) ; .5157E(n*), so Srn+1 meets all the requirements of Table 5 
for class 3a; note that the fact that 

^n+1,0 = Q0 22 nO =Qou(n*-2)J1p~n*-2 

which shows that the parity of (n + 1)* is odd and that the index of 'n 1,0 is 0, 

follows from the last column of Table 4, and the relevant entry in that column is 
determined solely by the fact that rn is in class 2. 



THE SZEKERES MULTIDIMENSIONAL CONTINUED FRACTION 311 

Using Lemma 5 and the last column of Table 4 as we did above, we deduce that 
Tn+2 Tn+3, .... T + 1 0 are in classes 6a, la, 5, 8, 3b, 6b, Ib, 7b, 4b, respectively. 
We further deduce that the classes of Tn +j~ 0 < 6 10, are arranged as in pattern A 
of Figure 6, and that the corresponding values of i* and E(i*) (i = n + j for some j) 
satisfy all the relevant conditions in Table 5. 

Next we consider any triple Tn such that T,, is in class 2, n* is odd, u(n* - 2) > 
u(n*), the index of -yno is equal to -1 and 20810'13 <-E(n*) < 20 10'I. (This is the 
restriction given in Table 6 for pattern.B.) Reasoning as above, we deduce that u(n*) 
begins a pattern B and that Tn, Tn+1, . . . Tn+10 are in classes 2a, 3a, 6a, la, 5, 8, 
3b, 6b, lb, 7a, 4a, respectively. Also as above, we find that the classes of Tn+j, 0 < 

j < 10, are arranged as in pattern B of Figure 6, and that the corresponding values of 
i* and E(i*) (i = n + j for some j) satisfy all the relevant conditions in Table 5. 

The three remaining patterns Cl, C2, D in Figure 6 are handled the same way: 
We consider any triple Tn such that Tn is in class 2, n* is odd, u(n* - 2) > u(n*), the 
index of -yno is -1 and E(n*) satisfies the restriction given in Table 6 for pattern Cl, 
C2 or D. We deduce that u(n*) begins a pattern C1, C2 or D and that Tn+j (0 <1 
< 10 for pattern Cl, 0 < j < 15 for patterns C2 and D) are in the appropriate classes 
as listed in Table 6. We also find that the classes of Tn +j are arranged as in the 
relevant pattern Cl, C2 or D of Figure 6, and that the corresponding values of i* and 
E(i*) (i = n + j for some j) satisfy all the relevant conditions in Table 5. 

We have now shown that whenever Tn is in class 2, n* is odd, u(n* - 2) > u(n*), 
the index of yno is equal to -1 and 0-1 < -E(n*) < 02, then Tn begins one of the 
patterns A, B, Cl, C2 or D of Table 6. However, we see from Table 6 that all of these 
patterns end with a triple (Tn + 10 for patterns A, B, C1 and Tn+ 15 for patterns C2, D) 
which is in class 4. By Theorem 4, the next triple, say T. (so j = n + 11 for patterns 
A, B, C1 and j = n + 16 for patterns C2, D), is in class 2, and we see from Table 6 
that j* is odd, u(j* - 2) > u(j*) (for this we also need Lemmas 4 and 5), the index of 

TjO is equal to -1 and 0-1 <-E(j*) < 02. It follows that each of the patterns A, B, 
Cl, C2, D leads into another one of these five patterns; the pattern which follows a 

given pattern for T, Tn + 1' . , * + (j = 10 or 15) is determined by the value of 
E(n*), as indicated in Table 7. 

Hence we have proved that as soon as the triples Tn fall into one of the five 
patterns, the rest of the sequence of triples can be divided into a sequence of blocks, 
each of which fits one of the patterns. We have already seen that the first pattern 
(which turns out to be pattern A) begins with T1 7. 

We have now proved all of the assertions in Theorem 5, except for the deduction 
of the restrictions on E(n*) in Table 5 from the restrictions on E(n*) given in Table 6. 
This is, however, easily explained as follows: We observe that class 3a, for example, 
occurs in position n* - 2 in patterns A, B, Cl, C2 of Figure 6, and in both of the 
positions n* - 2 and n* - 4 in pattern D of Figure 6. If we look at the corresponding 
six inequalities for E(n* - j) (where j is 2 or 4, as appropriate) in Table 6, we find that 
together these inequalities cover the interval E_ < -E(n*) < 0 -1. This is exactly the 
interval for class 3a given in Table 5. We prove all of the other restrictions on E(n*) 
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of Table 5 in an analogous manner (except for classes 9 and 10, which do not occur in 
any of the patterns of Figure 6; for these we can give an ad hoc proof very similar to 
the proofs for the other classes). This completes the proof of Theorem 5. 

We are now in a position to prove the following result, which, as mentioned in 
Section 1, verifies a conjecture of Szekeres. 

THEOREM 6. The linear forms y nO (n = 0, 1, 2,... ) given by the 2-fraction 
for (a, f) include all of the best approximations to zero by the linear form x0 + xi a 
+ x23. 

Proof Theorem 2 gives necessary conditions for a best approximation. If fno 'S 
a best approximation, then by (4.3) one of the five conditions of Theorem 2 must hold 
with n replaced by n* and m replaced by the index i of '"nO. Thus, in order to prove 
Theorem 6 it suffices to show that for each of the five conditions of Theorem 2, if 
there is a best approximation satisfying the condition, then there is always some yzo 
for which the condition holds with n replaced by j* and m replaced by the index i of 

,Yo 
If 1* is even and i = -1 or 0, then we see from Figure 6 that the 2-fraction al- 

gorithm always provides a suitable yzo. This covers condition (i) of Theorem 2. If j* 
is even and i = 1, then we see from Figure 6 that the 2-fraction does not provide a 
suitable yoO only in the following cases: pattern B, j* = n* - 5; pattern C1, j* = n* - 
1 or n* - 5; pattern C2, j* = n* - 1; and pattern D, j* = n* - 1. However, according 
to Table 6, in none of these cases is the necessary condition E(j*) > 1030'1-1 t 1.1588 
of Theorem 2, (ii) satisfied. Thus the 2-fraction covers condition (ii) of Theorem 2. 

If 1* is odd and i = 1, then it follows from Figure 6 that the 2-fraction does not 
provide a suitable zyo only in the following cases: patterns A, B, CI and C2, j* = n* - 
2; and pattern D, j* = n* - 2 or n* - 4. But by Table 6, in none of these cases is the 
necessary condition -E(j*) > 0-1 t .8019 of Theorem 2, (iv) satisfied. Thus the 2- 
fraction covers condition (iv) of Theorem 2. 

If 1* is odd and i = 2, then we see from Figure 6 that the 2-fraction never pro- 
vides a suitable zio. However, in only one case does it happen that the necessary con- 
dition -E(j*) > 02 t 1.5550 of Theorem 2, (v) is satisfied when j* is odd: namely, as 
we see from Table 6, for pattern C2, j* = n* - 4. It turns out that in this case 
IR(u(I*) + 2, i*)I is never a best approximation (that is, the necessary condition of 
Theorem 2, (v) is not sufficient in this case). We see this as follows: We have 

IR(u(i*) + 2, j*)I = b(u(j*) + 2, j*) + k(u(j*) + 2, j*)cx + g(u(j*) + 2, j*)o 
by (3.5). We also have T2 1* = Ik(u(i*) + 2, i*)I by [3, second line of formula (12), 
p. 983] (recall from Section 3 that we must replace the notation Tm n of [3] by 
Tm + 1in). We shall prove that IR(u(I*) + 2, j* - 1)1 satisfies u(j* - 1) = u(j*) + 1 
and Ti 9*- 

= T2,1*. Since 

IR(u(j*) + 2, j* - 1)1 = IS- lIR(u(j*) + 2, j*)I < IR(u(j*) + 2, j*)I 

by (4.3), it will follow that IR(u(j*) + 2, i*)I cannot be a best approximation (using 
the definition of best approximation given in Section 2). The assertion u(j* - 1) = 
u(j*) + 1 follows from Figure 6, since j* = n* - 4 and we are in pattern C2. The 
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assertion Ti=,* - i = T2,1* follows from the facts T,,,* = g(u(j* - 1) + 1, j* - 1)1 
[3, third line of formula (12), p. 983] and 

lg(u(j* - 1) + 1, j* - 1)1 = Ik(u(i*) + 2, j*)I. 

(This is a special case of the general fact that Ig(m, n - 1)1 = Ik(m, n)I; see the explana- 
tion in [3, p. 980].) This completes the proof that no best approximation satisfying 
condition (v) of Theorem 2 is not of the form yjO (of course, what we actually showed 
is that there are no best approximations satisfying condition (v) of Theorem 2!). 

If j* is odd and i = 0, then it follows from Figure 6 that the 2-fraction always 
provides a suitable yjO. If j* is odd and i = -1, then it follows from Figure 6 that the 
2-fraction does not provide a suitable yjO only in the case of pattern C2, j* = n* - 4. 
We show that in this case IR(u(j*) - 1, i*)l cannot provide a best approximation, be- 
cause 

IR(u(j*) + 2, j* - 1)1 =- 03 (pj- 1 R(u(j*) - 1, j*)l < IR(u(j*) - 1, j*)I, 

u(j* - 1) = u(j*) + 1 (from Figure 6, since j* = n* - 4 and we are in pattern C2) and 

T1 j* 1 = T2,j* < To j* < T_1,i* 

(the equality here was proved in the preceding paragraph; the first inequality always 
holds when IE(j*)l > 02 by [3, Lemma 9 and Corollary 2, p. 990], and IE(j*)l > 02 

holds for pattern C2, j* = n* - 4, by Table 6; the second inequality holds by (3.9) of 
Lemma 3). Thus we have proved that any best approximation satisfying condition (iii) 
of Theorem 2 must be given by some yjO. This completes the proof of Theorem 6, 
except for the fact that we have so far tacitly assumed that li*1 is large (because Inl is 
assumed large in Theorem 2, for example). However, calculation of the first few best 
approximations to zero by xO + x1a + x2j3 shows that all of them are of the form zno. 

This means Theorem 6 holds as stated. 

5. Almost Periodicity. It follows from Figure 6 and the last sentence of Theorem 
5 that for n > 17 we never have e(n) = e(n + 1) = 0. Table 2 shows that in fact for 
n > 0, e(n) never has the value 0 for two consecutive values of n. By the definitions 
(2.2) and (2.3), this means that the digits di of the 2-fraction for (a, ,B) are all either 1 
or 2. Furthermore, we find that after some initial irregularities (a close look at Table 
2 shows that the irregularities end at dl 3 = 1), the sequence d1, d2, . . . is made up of 
repetitions of the digit blocks 

(5.1) a = 2121 and b = 1121. 

Thus we have proved some of the characteristics of the sequence dj, d2, . . . which 
were first mentioned at the end of Section 2. 

Using the work of Section 4, we will also be able to prove that the sequence of 
digits di is almost periodic, in a suitable sense. The rest of this section is devoted to 
exploring this almost periodicity. 

The definition of almost periodicity that we shall use is the following: We say 
the sequence of integers nj, n2, . . . is almost periodic if there exists a subscript I such 
that given any N > 1, there exists M > N for which ni+i = nI+M+i, 1 < i < N, holds. 
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THEOREM 7. The sequence d1, d2, . . . of digits of the 2-fraction for (a, 13) is 

almost periodic. 
Proof Using Table 2, we see that the sequence d1, d2, . . . begins 

(5.2) 2, 1, 1, 1, 1, 2, 1,2, 1,2, 1, 1, 1, a, b, a, b. 

(Here we use the abbreviations (5.1).) By Theorem 5, the sequence dj, i > 14, is a 
sequence of digit blocks a and b. 

Using Theorem 5 and Table 7, we can easily prove that dj, d2, . . . satisfies the 

definition of an almost periodic sequence with I = 13 (to dispose of the initial irregu- 
larities shown in (5.2)). For it follows from Theorem 5 and Table 7 that if we have a 

given pattern A, B, C1, C2 or D made up of Tn, 5Tn+l, . . ., Tn+j G= 10 or 15), then 

the value of E(n*) by itself determines what the next pattern (say it is made up of 

Tm, Tm+ .+1 , etc.) will be, and also determines (by repeated use of Lemma 5; recall 

the proof of the inequalities in Table 6) the value of E(m*). Hence, if E(n*) has a 

given value at the beginning of the first member of a sequence of patterns (for example 

the sequence A, A, A, A, B, C1, C1, C1, C2), then there is an e > 0 such that when- 

ever m* satisfies IE(m*) - E(n*)l < e and Tm is in class 2, then Tm is the first triple 
in the first member of an identical sequence of patterns. It follows easily from 
Kronecker's theorem on inhomogeneous Diophantine approximation (see Koksma [5, 
p. 83] ) that -E(n), n odd (n = -1, -3, -5, . . . ) is dense in the interval [E_, E+] . 
Hence given any value of E(n*), n* odd, we can find a value of E(m*), m odd, which 
is as close to E(n*) as we wish. Now the almost periodicity of the sequence of d1's 
follows at once from our previous remarks. 

Of course, Theorem 7 does not imply that the sequence of d 's follows the very 
special almost periodic pattern obtained by extending (2.23) via the partial quotients 
of the number 7r defined in (2.25) (see the end of Section 2 for an explanation of this 
special pattern). Indeed, the question of whether this special pattern is actually follow- 

ed by the did's is too delicate to be decided here. All that we do here is to prove a 

certain consequence of assuming that the special pattern is followed. To state this, we 
need to define 

Na(n) = number of digit blocks a contained in d14, dl.., dn 

and 

Nb(n) = number of digit blocks b contained in d14, dl5,.. . dn. 

The fact we shall prove is the conclusion of the next lemma. 
LEMMA 7. Suppose that, after the initial irregularities, for any n the sequence 

dj, d2, . . ., dn is contained in some s;, where the first few values of si are defined by 
(2.23) and in general si+ 1 = syosi_ 1, where the ,B(i) (i = 1, 2, . . . ) are the partial 
quotients in the continued fraction for the number r7 defined by (2.25). Then 71 is a 
limit point of the set {Na(n)!Nb(n): n = 21, 22, . .. 

Proof The lemma follows easily from the definition of the si (see Szekeres [9, 
p. 139]). Szekeres [9, pp. 138-139] gives a geometric argument for the plausibility 
of the hypothesis of the lemma. 
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Our next lemma shows that we can prove the conclusion of Lemma 7 without 
deciding whether the hypothesis of Lemma 7 is true. 

LEMMA 8. The number r7 defined by (2.25) is a limit point of the set 

{Na(n)!Nb(n): n = 21, 22, .. .} 

Proof We know from Theorem 5 and Figure 6 that the sequence d14, dl5, 
is made up of patterns A, B, Cl (each consisting of a digit block a followed by a digit 
block b) and C2, D (each consisting of a digit block a followed by two digit blocks b). 
Let N(A, B, Cl; n) and N(C2, D; n) denote the number of patterns A, B, Cl and C2, D, 
respectively, contained in d14, d, 5, . . ., n; then 

(5.3) Na(n) N(A, BC1; n) + N(C2, D; n) 
Nb(n) N(A, B,C1;n) + 2N(C2, D; n) 

It follows from (5.3) that the lemma is proved if we can show that ? is a limit point of 

{N(A, B, Cl; n)/N(C2, D; n)}, where ? is defined by 

(5.4) 1? (1 + 

We see from Figure 6 that if rrn is the first triple of one of the patterns A, B or 
Cl, with associated value E(n*), then n +I is the first triple of the next pattern, with 
associated value E(n* - 4). Similarly, if Tn is the first triple of one of the patterns C2 
or D, then Tn+ 16 is the first triple of the next pattern, with associated value E(n* - 6). 
Thus by Table 6 when we pass from a pattern A, B or C1 to the next pattern, the num- 
ber E(n*) is multiplied by (070'2)-1 = Q71, say; and when we pass from a pattern 
C2 or D to the next pattern, the number E(n*) is multiplied by (0100'2)-1 =Q-1 

say. 
We saw in the proof of Theorem 7 that if E(n*) is the value associated with the 

first triple rn in the first member of a sequence of patterns (each of which is A, B, C 1, 
C2 or D), then the sequence of patterns appears again as soon as we reach a triple Tm 

such that Tm is the first triple in a pattern and E(m*) is sufficiently close to E(n*). 
Now let p = p(n) = N(A, B, C1; n) and q = q(n) = N(C2, D; n). It follows from the 

almost periodicity established in Theorem 7 that for infinitely many n we have 

(5.5) QpQq = 07p+10q0'2p+2q 

Solving (5.5) for p/q gives 

p ~-10 log 0- 2 ogIO'II- St Ollg00 221010,l = w7.93576549, 
q 7 log 0 ? 2 logIO'j - 7.3759 

where t is defined by (5.4). Thus ? is a limit point of {N(A, B, Cl; n)/N(C2, D; n)}, 
and Lemma 8 is proved. 
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