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Primal Hybrid Finite Element Methods
for 2nd Order Elliptic Equations

By P. A. Raviart and J. M. Thomas

Abstract. The paper is devoted to the construction of finite element methods for

2nd order elliptic equations based on a primal hybrid variational principle. Optimal

error bounds are proved. As a corollary, we obtain a general analysis of nonconform-

ing finite element methods.

1. Introduction. Let 2 be a bounded open subset of R", with a Lipschitz continu-
ous boundary I". We consider the 2nd order elliptic model problem

—Au=f in Q,

(1.1)

u=0 onT,

where [ is a given function of the space L2(2). The usual variational form of problem
(1.1) consists in finding u € H{(2) which minimizes the energy functional

(1.2) J) = % fn lgrad v|? dx - fnfb dx

over the space H}(S).

Standard finite element methods for numerically solving problem (1.1) are based
on this variational principle: they consist in first constructing a finite-dimensional sub-
space V), of the space H(l)(Q) made up with elementwise smooth functions which are
continuous along the interelement boundaries and then in minimizing the energy func-
tional J(v) over the subspace V,. Such conforming methods have been extensively
studied and convergence results are now classical (see for instance Ciarlet [4], Strang
and Fix [15]).

On the other hand, it has been noticed that one could weaken the requirement
of interelement continuity for the functions of the space ¥, and still obtain a con-
vergent finite element method. One gets the so-called nonconforming methods in
which the space ¥V, is no longer contained in H(l)(Q). For an analysis of some non-
conforming methods for solving 2nd order elliptic problems, we refer to Crouzeix and
Raviart [6], Irons and Razzaque [8], Lesaint [9], Strang [14].

In this paper, we shall use a more general approach in order to construct finite
element approximations of problem (1.1). It is based on an extended variational
principle, known as the primal hybrid principle, in which the constraint of interelement
continuity has been removed at the expense of introducing a Lagrange multiplier.

This type of method has been first introduced by the engineers (cf. Pian [10], [11],
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392 P. A. RAVIART AND J. M. THOMAS

Pian and Tong [12]) and can be viewed as a generalization of nonconforming methods.
Similarly, dual hybrid methods can be derived by using the complementary

energy principle (cf. again [10], [11], [12]). For the numerical analysis of these
methods, we refer to Thomas [16], [17], [18]. Hybrid methods for solving 4th
order elliptic problems have been also analyzed: see Brezzi [1], [2] and Brezzi and
Marini [3]. Finally, we refer to Fraeijs de Veubeke [7] for a general discussion of
finite element methods including hybrid methods.

An outline of the paper is as follows. In Section 2, we describe the primal
hybrid variational principle associated with problem (1.1); in Section 3, we define the
method of approximation. Examples of triangular and quadrilateral hybrid elements
are derived in Sections 4 and 5, respectively. The error analysis is given in Section 6
and, in Section 7, we discuss briefly the use of numerical integration in order to de-
rive nonconforming methods.

Some results of this paper have been announced in [13]. For the sake of
conciseness, we have omitted some proofs and developments; they will be found in
[18].

Throughout this paper, we shall make a constant use of the Sobolev spaces

H™(Q) = {v € L}(Q); 0% € LA(Q), lal < m}

provided with the norm and seminorms

1/2
ol ¢ = ( )> fﬂla"‘vl2dx> L Wl =< > fnla"‘vlzdx>1/2.

lal<m lal=m

Given a vector-valued function q = (q,, . . . , q,,) € (H™(Q))", we shall set:

n 1/2 n 1/2
lall,, ¢ = ( }:uq,-uf,,,ﬂ> Ml = ( > iq,.lf,,,n) .
i=1

i=1

We shall denote by H'/2(I") the space of the traces v;p over I' of the functions v €
H'(Q) and we shall define as usual

HY(Q) = {v €H' (v = 0}

2. The Primal Hybrid Variational Formulation. Let O =U‘f= 1 S_Zr be a decompo-
sition of the domain & into subdomains &, such that:

(i) Q, is an open subset of Q with a Lipschitz continuous boundary 92,, 1 <r
<R,

(i) Q,NQ =gforr+s.

Clearly a function v € L%(Q) belongs to the space Hy () iff

(a) the restriction v, of v to the set £2, belongs to the space H'(Q,),

(b) the traces of the functions v, and v, coincide on 982, N 3L

(c) the trace of the function v, vanishes on 92, N T', 1 <r <R.
We want to relax the conditions (b) and (c). Hence, we introduce the space

R
@1 X={eL}(;v, EH(Q), 1 <r <R}~ [[H' ()
r=1
provided with the norm
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(22) ol = < > ||v,||f,n> .
r=1

In order to characterize H(‘)(Q) as a subspace of the space X, we first introduce
the space

(2.3) H(div; Q) = {q € (L3(Q))"; div q € L%(Q)}
normed by
(2.4) lallg(givie) = lalif o + lidiv qli3 )/,

Given a vector-valued function q € H(div; 2), we may define its normal component
q v € H Y%(T) where H™1/2(T") is the dual space of H!/%(T") and v is the unit out-
ward normal along I'. Moreover, we have Green’s formula

(2.5) Vv € H'(Q), fn {grad v - q + v div q} dx = frvq ‘v dys

where the integral [ represents the duality between H~'/2(I") and H'/2(I).
Next, we define the space

R
M= g/.t € n H“l/z(BQr); there exists a function q € H(div; Q)
(2.6) ¢t

9

such that q -», =p on 8Q,, 1 <r<R

where v, is the unit outward normal along 8S2,. We may provide the space M with
the norm

Q.7 llullyy = inf gl aivic2)-
q€H(diviQ); q'v,=u on 3%, 1<Sr<R

Then we have
LEMMA 1. A continuous linear functional L on the space X vanishes on H(l)(Q)
iff there exists a unique element u € M such that

R
2.8) YveX, L) = w dy.
Elfaﬂr

Proof. By the Hahn-Banach theorem, any continuous linear functional on H l(Q,)
is of the form

o0 ) )
v fn, iglqia:"'qo”sdxy q; €L°(Q,),0<i<n

Hence, given a continuous linear functional L on X, there exist # + 1 functions q; €
L%(Q), 0 <i <n, such that

YWeX Lw)=3 S~ . BV 4 dx =0
v ’ ) Z Q Zqi“— qoV .
r=1%""r Bxi

=1
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Assuming that L vanishes on H} o(8), we get
1 v
Yo €EHLQ), LQ)= fn 32"137 +qqv zdx =0

so that g, = Zj'_, 0q,;/dx;, in the sense of distributions in £2. Setting q =(q,, .. .,
q,,), we obtain div q = q, € L*(Q) so that q € H(div; Q) and

R
(2.9) YwEX, L)=Y fn {grad v - q + v div q} dx.
r=1 r

Conversely, any linear functional of the form (2.9) is continuous on X and vanishes on
H)(Q).
Now, using the Green’s formula (2.5) in each £, we get from (2.9)

R
(2.10) WEX, LO) =3 [, va v, dy.
r=1 r

Clearly, in (2.10), the function q is not uniquely determined but the corresponding
element u € M is unique. In fact, assume that

R
=0.
Yv € X, rglfaﬂr;w dvy
Then, we get, forallr=1,...,R,
Vv € H'(Q,), fan w dy =0,

which implies 4 = 0 on 9£2, by the surjectivity of the trace operator v —> Viag, from
H'(Q,) onto H 1/2(392,). The proof of the lemma is now complete. 0

Consider the continuous bilinear form on X x M

R
(2.11) b, ) = - rgl fanr“v dy.

Then, as a consequence of Lemma 1, we get the following characterization of the
space Hy(S)

(2.12) HY(Q) = {v € X; Vu EM, b(v, p) = 0}.

We are now able to introduce the primal hybrid formulation of problem (1.1).
Define the continuous bilinear form on X x X

R
2.13 a(u, v) = ad v - grad v dx.
(2.13) wv)=3 [, gudu g
We want to find a pair (4, \) € X x M such that

(2.14) VoEX, alwv)+ by, \) = fnfv dx,

(2.15) YueM, bu u)=0.
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THEOREM 1. Problem (2.14), (2.15) has a unique solution (u, \) € X x M.
Moreover u € Hcl)(Q) is the solution of problem (1.1) and we have

(2.16) A=0u/dv, ondQ,,1<r<R
Proof. Let (u, \) € X x M be a solution of (2.14), (2.15). Then, by (2.12)
we have u € Hy(2). Choosing v € H(Q) in (2.14) gives

Y EHYQ), [ gadu-gndvdx = [fodx

so that u is the solution of problem (1.1). Conversely, let u € H(l)(Q) be the solution
of (1.1) and consider the continuous linear functional on X
v— fn fo dx = a(u, v);

it vanishes on H(l)(Q) so that, by Lemma 1, there exists a unique A € M such that
YveEX, b )= fﬂ fo dx — a(u, v).

Hence, the pair (¥, A) is the solution of (2.14), (2.15).
Now, since f = — Au, we obtain by using the Green’s formula (2.5) in each Q,
with q = grad u

VUEX, b(l), )\)=_fﬂ Auvdx_a(u, v): fan aV

so that (2.16) holds. o
Remark 1. Define the continuous quadratic functional on X x M

L, u) = J) + b(v, ).

Then, one can easily check that the solution (1, \) € X x M of problem (2.14), (2.15)
may be characterized as the unique saddle-point of the functional L(v, u) over X x M,
ie.,

L(u, ) = Min Max [(v, u) = Max Min L(v, p).
vEX ueM MEM veEX

Hence, A is the Lagrange multiplier associated with the constraint u € H(l)(Q). o

3. A Hybrid Finite Element Method. Let us now introduce a method of approx-
imation of problem (1.1) based on the primal hybrid variational formulation (2.14),
(2.15). Given two finite-dimensional spaces X » and M, which satisfy the inclusions

(3.1) X, CX, M,CM,

we define problem (Q,,): Find a pair (uy,, N\,) € X, x M), such that
(3.2) Yo, € X, aluy, vy) + by, \,) = fg foy, dx

(33) Y, €M, bu,, u,) =0.

Before solving problem (Q,), we introduce the space
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(34) Vi = {v, € X,,; Y, € My, by, 1) = O}

Comparing with (2.12), the space V,, appears to be an approximation of the space
H)(). Notice however that V), is not in general a subspace of Hy(£2). Then, we
define problem (P,): Find u, € V), such that

(3.5 Yo, €V, au,,v,) = fn fo, dx.

Since in general V, ¢ H(l)(Q), problem (P,) is a nonconforming method for numeric-
ally solving problem (1.1).

Note that if (u,, \,) € X,, x M, is a solution of problem (Q,),u, € V), is a
solution of problem (P,). Moreover, we have the following result.

THEOREM 2. Assume that

(3.6) v, = Il ll, = a(v,, v,)'* is a norm over V,,.

Then:

(i) problem (P,) has a unique solution u, € V,;

(ii) problem (Q,,) has a unique solution (u,, N,) € X, x M, iff the following
compatibility condition holds

3.7) {/‘lh € Mh; Vl)h € th b(vh, /Jh) =0}={0}

Proof. The existence and uniqueness of the solution u, € ¥, of problem (P,)
follows from the assumption (3.6) and the Lax-Milgram lemma. On the other hand,
since problem (Q,,) is equivalent to a N x N linear system with N = dim X, + dim M,,,
the existence of the solution of problem (Q,,) follows from the uniqueness. Thus,
assume f = 0. Necessarily u, = 0 so that A, is characterized by the condition

Yu, € X,, bl,, \,) = 0.

Therefore A, = 0 iff condition (3.7) holds. 0
In the sequel, we shall assume that £ is a bounded and polyhedral subset of R".
Let T, be a triangulation of the set Q with polyhedra K whose diameters are < k.
For any K € T, we denote by 9K the boundary of K and vy the unit outward
normal along 0K. We now use the decomposition
Q= U K

KerT,
of the domain £ for defining a hybrid finite element method. The first step consists
in constructng a finite-dimensional subspace X, of the space

X=X(T)={v€EL*Q);VKET,, v, € H(K)}

Let K be a reference polyhedron (for instance the unit right n-simplex or the unit
hypercube). We assume for simplicity that each polyhedron K € T, is the image of
K through an affine invertible mapping F,.. We now introduce a finite-dimensional
subspace P of the space H 1(IE') which satisfies the inclusion

(3.8) P, C P for some integer k = 1,
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where P, denotes the space of all polynomials of degree < k in the n variables X,
Ca X,
Moreover, let us denote by S the space of all functions defined over 3K whose
restrictions to any (n — 1)-dimensional face K' of 3K are polynomials of degree < k.
Let us denote by T the space of all functions of S, which are continuous over k.
We assume, in addition, that the space i’la # of the restrictions to the set 3K of all

functions of P satisfies the inclusion

(3.9) T CPuz.

Then, we define

(3.10) Py ={vEH'(K);v="0,Fg', € P}
and

(3.11) X, ={vEL*Q); VK €T, v € Pyl

Note that the functions of X, do not satisfy any continuity constraint at the interele-
ment boundaries.

The second step consists in constructing a finite-dimensional subspace M, of the
space

M=MT,) = {ue [I H1/2(BK); there exists a function q € H(div; K)
KeT,

such that q - v =pon 0K, K€ T,

We introduce a finite-dimensional subspace S of the space Lz(bk) which satisfies the
following properties:

(3.12) §m C S for some integer m > 0,

PPN

(3.13) V&€§O, aS={au;nES)C
Now, for any K € T, , we set

UJ)

(3.14) Syx ={u € L2(3K); u =;10FEI,ZIE.§}.

Then, we define

M, ue HSaK’“wK +/~‘|aK =0on K, NK, for
KeT,
(3.15)

every pair of adjacent elements K|, K, € T,

One easily checks that M, is indeed a subspace of M.

Next, we want to give some simple sufficient conditions for hypotheses (3.6)
and (3.7) to hold. We begin with

LEMMA 2. Assume that the inclusion (3.12) holds. Then, condition (3.6) is
satisfied.

Proof. Let v, be a function of ¥, such that
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Io,ll7 = a(v,, v,) = 2 fK lgrad v,,|? dx = 0.
KeT,
Clearly, the function v, is constant in each element K € T,. Now, let K "bea(n—1)-

dimensional common face of two adjacent elements K » K, € Th. Define u, €
Mger, L?(9K) by

1 onK', -1 onK’,
Muiok | = Mniok, =

0 ondK \K, 0 on 3K,\K',

Mpiax =0 foquﬁKl, K,.

Since 5’0 C .§ the function u, belongs to the space M. Hence, denoting by c; the
constant value of v, in K, i = 1, 2, and using the definition (3.4) of the space V,,
we get

0= b(vh, by) = (¢, cz)fK dy

so that ¢; = ¢,. Therefore, the function v, is constant in .

Finally, let K’ be a (n — 1)-dimensional face contained in I'. Define the function
W, € M, by

Mpix' =1, w, =0 elsewhere.

We obtain
0= b(vh, My) = fK' v, dvy

so that v, = 0 in Q. This proves that v, — llv,ll,, is a norm over the space v, .o
Since condition (3.6) is always satisfied, problem (P, ) has a unique solution
u, € V,. On the contrary, condition (3.7) which ensures the existence and unique-
ness of the Lagrange multiplier X, € M, is satisfied only for compatible choices of
the spaces P and S. In this respect, we have
LEMMA 3. Assume that

(3.16) {uGS; YWePr J; #vd7=0}={0}.

Then, condition (3.7) holds.

Proof. Using (3.16) and the definitions (3.10) and (3.14) of the spaces Py and
S, respectively, we get forall K € T,

{uESaK;VUEPK, faK/.tvd'y=0} = {0}.

This in turn implies (3.7). O

Remark 2. In fact, one can prove that, at least for some particular triangulation
T, of the domain &, condition (3.16) is as well necessary for hypothesis (3.7) to
hold. 0
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The next two sections of this paper will now be devoted to the explicit con-
struction of triangular and quadrilateral finite elements in R? which satisfy the com-
patability condition (3.16).

4. Examples of Hybrid Triangular Elements. Assume now n = 2. We first
consider the case of triangular elements: here Kisa triangle with vertices a;, 1 <i
< 3; we denote by A; = A\(x), 1 <i < 3, the barycentric coordinates of a point x €
R? with respect to the vertices g; of K.

LEMMA 4. Assume that K is a triangle. Let k = 1 and m = 0 be two integers.
Then conditions

LES,,
(.1 {
WweT,, falguv dy =0,

imply u = 0 iff

m+ 1 when mis even,
(4.2) k> {

m+ 2 when mis odd.

Proof. Since Kisa triangle, we have f’k =P, 5 and dim(fm) =3(m+1),
dim(T,) = 3k.

For k < m, we get dim(§m) > dim(f"k) so that conditions (4.1) cannot imply
u=0.

Thus, let us assume k = m + 1 and let u satisfy conditions (4.1). Then, for all
vE f"k, we get uv € §2k_1 so that the integral [, guv dy can be computed exactly
in terms of the values of the function uv at the (k + 1) Gauss-Lobatto quadrature points
of each side of K. Denote by {a, a4, . .., a4, @y} (resp. {ay, a5 5, - . .,
Q41> A3h{az, @y 40, - ., agy, a,} the set of (kK + 1) Gauss-Lobatto points of
the side [a,, a,] (resp. [a,, a5], [a;, a;]). Clearly, foreachi =1, ..., 3k, there
exists a unique function v; € f‘k such that

vi@) =8;;, 1<j<3k

Since conditions (il.l) are invariant by an affine invertible mapping, we may assume
that the triangle K is equilateral. Then, replacing v by v;, 1 <i <3k, in (4.1) gives
(4.3) ua,), 4 <i<3k,
and

Mya(ay) + g 50) =0,
(4.4) Ha3(ay) +1y,(a,) = 0,

H31(a3) + us,(a,) =0,
where T the restriction of u to the side [a;, a].] .

For k = m + 2, conditions (4.3) imply u = 0. Hence, it remains only to con-
sider the case k =m + 1. Let



400 P. A. RAVIART AND J. M. THOMAS

0=(,<§ < <, <f =1

be the (k + 1) Gauss-Lobatto abscissae for [0, 1] ; we introduce the homogeneous
polynomial of degree k — 1 in the variables £ and

k—1
(4.5) Pr—1(g,m) = [1 (& — &m)s
i=1

wheren; =1 -%,1 <i<k—-1. Sincen, =%, _;,1 <i<k-1, we get

Pi-1&, ) = (D*"'p,_ (m, ¥).

Thus, for k = m + 1, conditions (4.3) exactly mean

1

(4.6) Hij = CiPe—1 (A Ny) - on g, 4], ¢, = (R VAT
Using (4.6), conditions (4.4) become

¢ + (D1, =0,
@.7) Cy3 + (¥ e, =0,

c3; + (-1 Te,y =0.

When m = k — 1 is even, the linear system (4.7) has the unique solution ¢;, = ¢, =
¢3, =0, s0 that u = 0. When m = k — 1 is odd, (4.7) has nontrivial solutions so
that conditions (4.1) do not imply u = 0. O

Remark 3. When m = k — 1 is odd, we have proved that the space of functions
u which satisfy conditions (4.1) is one-dimensional. When Kis equilateral, these func-
tions u are the functions of the form

Bz =P (Af, 2y),
(4.8) Ma3 =cDp_1(N5,N3), cER.O

M3 = CPk_10\3: )\1),

We are now able to introduce
Example 1. let k 2> 1 be an odd integer. Given a reference triangle K, we
choose:

P=P, S=5_, (m=k-1).
Then, by Lemmas 2, 3 and 4, the corresponding problem (Q,,) has a unique solution
(uy, Np)-
Let us characterize the associated space V), defined by (3.4). Clearly a function
v, € X, belongs to the space V, iff:
(i) for any pair (K|, K,) of adjacent triangles of T, , we have

VueEP,_,, fK, Uy, ~ v, ) dy =0,

where K' = K, N K, and vy, ; is the restriction of v, to K;, i =1, 2;
(i) for any side K’ of T, contained in T, we have
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Yu €P._,, fK,uvh dy =0.

Now, in each above integral, MYy, belongs to the space P,, _, ik So that [ v, dy
can be computed exactly in terms of the values of uv,, at the k Gauss-Legendre quad-
rature points of the side K'. Hence a function v, € X, belongs to V, iff:

“4.9) v, is continuous at these Gauss-Legendre points contained in £2;

(4.10) v, vanishes at these Gauss-Legendre points located on T

Denote by {b; }_l (resp. {b; },2kkJr 1 1b; }3k2k+ 1) the set of the k& Gauss-Legendre
points of the side [a,, a,] (resp. [a,, a5], [a;, a,]).

LEMMA 5. Assume that k is an odd integer. Then {b; }3_"1 is a YA‘k-zmisolvem‘o
set. Moreover, for k > 3 and for any P, _j-unisolvent set {b; } 3 k +1 Oof points of K
NK) = (k + D)(k + 2)/2), the set

= {b; }N(k) is P, -unisolvent.*

Proof. Let us first show that {bi}?:1 is a Tk-unisolvent set. Since dim(f’k) =
3k, we have only to show that a function v € f"k which vanishes at the points b,
1 <i < 3k, must vanish identically. In fact, since k is odd, we get for such a func-
tion v

v(a;) = ~v(ay) = v(a;) = —v(a,)

so that v(g;) = 0, 1 <i < 3. Hence, the restriction of v to any side 12' of12 isa
polynomial of degree <k which vanishes at & + 2 distinct points so that v = 0.
Next, assume &k > 3; we get

N(k) = dim (P,) = 3k + dim (P, _5).

Let {b; }, 3k+1 be a set of dim(P,_;) distinct points of K. Then, given a function
v € P, which vanishes on ¥ = {bl.}?':(f), we get by the first part of the proof v,z =
0 so that

V=AW, WEP, .

Therefore v = 0 iff w = 0 or, equivalently, the set i is P -unisolvent iff the set
{bi}f\’(g‘,)ﬁ_1 is P,_5-unisolvent. O

Using the terminology of [4], we deduce from conditions (4.9), (4. 10) and
Lemma S that the space V,, is associated with a reference finite element (K g P)
where % is given (in a nonunique way for k > 3) by Lemma 5. Setting

L = Fy(2), KeT,, Z,= U Z,
KeT,

we see that the degrees of freedom of a function v, € V), are its values at the points
of Z, N Q. Since (X, 3 P,) is not a C%-¢lement, the space V,, is not contained in
(Q) and problem (P,) is indeed a nonconforming method for solving problem (1.1).

*Let us recall that a set T = {a }N 1 is P- unisolvent if for any set of scalars a; 1 <i <N,
there exists a unique function p € P such that p(a;) = ¢;, 1 <i < N.
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On the other hand, we may choose the degrees of freedom of a function u, €
M, to be its values at the k Gauss-Legendre points of each side K’ of Ty

The first hybrid elements are described in Figure 1 where we have used the
following conventions for the degrees of freedom:

e

FIGURE 1
These hybrid elements can be considered as nonconforming elements using Loof con-
nections (cf. Crouzeix and Raviart [6], Irons and Razzaque [8]).
Example 2. Let k 2 2 be an even integer. By Lemma 4, the choice pP=rP ,
S= §m is suitable only for k = m + 2. However, the next result will enable us to
construct a hybrid method where

P,CPCP,,, S=8_.

LEMMA 6. Assume that k is an even integer. Define P to be the space of poly-
nomials spanned by P, and the function

v = ~ ) (g ~ ) (g = ALY *DP2

4.11)
+ ()\2)\3)(16—2)/2 + ()\37\1)(k—2)/2}.

Then, the pair of spaces (13, §k_1) satisfies condition (3.15).
Proof. Let u be a function of S, _, such that

Vv EP, faz?“v dy = 0.

Assume again for convenience that the triangle K is equilateral. Then, by Remark 3,
u is necessarily of the form (4.8). Hence, it is sufficient to prove that

.3 .
,-; f[ai’ai"- 1! pk_l(xi, )\H' 1Wody # 0 (‘14 =a;, N\ = )\1).

Since these three integrals are equal, we have only to check that
f[al,a2] pk—l()\l’ )\2)7)0 d’y #* 0.

By an obvious change of variable, the previous integral becomes

J; i@ - Bk,
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where

G E =P E 1 -5, n®) =1 -25)E1 - g)*22,

Since the roots of g, _, are the Gauss-Lobatto abscissae £, , . . ., £,_, , the polynomial
qj_, is orthogonal to all polynomials of degree < k — 2 with respect to the weight
function &(1 — £). Now, r is a polynomial of degree £ — 1 so that '

A g (D HE)EA — B dE # 0.

Otherwise, q,_, would be orthogonal to all polynomials of degree < k — 1 which is
clearly impossible. O

Now, we use the pair of spaces (13, §k_1) defined in Lemma 6 in order to
construct the spaces X, and M, associated with the triangulation T,. Again, by
Lemmas 2, 3 and 6, problem (Q,,) has a unique solution (u,,, ;).

Since, for v, € X, u;, € M,,, we have p, v, i+ € Py g, the integrals [ u,v, dy
cannot be anymore computed exactly in terms of the values of u,v, at the k Gauss-
Legendre points of the side K'. As a consequence, the space V,, is not associated here
with a (nonconforming) reference finite element (K, 2 P) so that the degrees of freedom
of a function v, € V}, cannot be determined in a simple way. However, we shall see in
Section 7 how the use of numerical quadrature for evaluating the various integrals
Sk 'Bpv, dy will enable us to solve this difficulty.

5. Examples of Hybrid Quadrilateral Elements. We now consider the case of
quadrilateral elements: Here K is the unit square [0, 1]2 in the (£, n)-plane with
vertices a; = (0, 0),a, = (1, 0), a; =(1,1),a, =(0,1). For any integer k > 1,
we define Q. to be the space of all polynomials of the form

pEm = 2 cn.

0<ij<k

LEMMA 7. Assume that K is the unit square. Let k = 1 be an integer. Then
the space of functions u € S, _| such that

(5.1) Vel fzmdr=0

is one-dimensional.

The proof goes along the same lines of that of Lemma 4. More precisely,
using the notations of Section 4, one can show that the functions u € S, _; which
satisfy condition (5.1) are given by
B2 =€paPp (8,1 -8),

Ha3 =Cy3pp_(n, 1 =),
M3q =340 (1 - £, 8),

Mgy = Cq1Pp_ (1 =, m),

(5.2)

with
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Clp =Ch3 =C34="C4 =¢C when k is odd,

(5.3)
Cly =Cp3 =C34 =C4 =C when k is even.

Here again, My denotes the restriction of u to the side [a;, a]-] of K.
Now, in order to construct a suitable hybrid element, we introduce a space Q
of functions defined over K such that

(5.4) P,CQ T,C0uz

Since fk = Qy1ak » W can choose Q = Q. More generally, we can choose “serendip-
ity” space Q with P, C Q C Q,: for the derivation of the “serendipity” spaces, we
refer to [4] and [20, Chapter 7].

LEMMA 8. Let k > 1 be an integer. Define P to be the space of polynomials
spanned by é and the function

51 = &) = n(1 = I [EQ =~ HFTD + (1 = m)*=DI2]

when k is odd,
(5.5, n) =
EA-5H-n0-ml2t-1D2n-1)

[EQ = D)FED2 4 (n1 = m)EDI2] when k is even.

Assume that condition (5.4) holds. Then the pair of spaces (13, S‘k +1) satisfies the
compatibility condition (3.16).

The proof is based upon Lemma 7 and is vefy similar to that of Lemma 6.

Example 3. Let k > 1 be any integer. Assume that T, is a triangulation of Q
made up with parallelograms K. On the reference unit square 12 we choose a pair
of spaces (i’, S‘k_l) defined in Lemma 8 in order to construct the spaces X, and M.
By Lemmas 2, 3 and 8, problem (Q,,) has a unique solution.

Note that, as in Example 2, the space V), is not associated with a (nonconform-
ing) reference finite element (12, s i’) but see again Section 7 for the use of numeri-
cal quadrature.

6. Error Estimates. Let us go back to the general situation of Section 3. We
want to derive bounds for the errors u —u, and A —A,. We begin by defining more
convenient norms over the spaces X and M. We first provide X with the norm

(6.1) vl = ( > IIIvIII%,K)”2

Ke Th
where for any K € T,
(6.2) livllly = (I3 ¢ + K2V O3,

(6.3) hg = diameter of K.

Next, we introduce the following norm over the space M
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_ b, W)
(64) Mhellar = SUE ol

Remark 4. One can easily check that the natural norm (2.7) over M can be
equivalently defined by

b(v,
6.5) lullyy = sup “(v—““l
vEX X

Therefore, the two norms (2.7) and (6.4) are equivalent, the latter being more appro-
priate for deriving practical error bounds. O

Let us now state the following result which can be viewed as a variant of a
general theorem of Brezzi concerning the approximation of variational problems (cf.
[1, Theorem 2.1]).

THEOREM 3. Assume that the hypotheses (3.1) and (3.6) hold. Then, the
solution u, € V, of problem (P,) satisfies

2 — 21(11/2
(6.6) Il —uyll, = g( inf uu—vhu,.) +< inf  sup M) $ "
v m

WSV WEM), B EM, o,
Assume, in addition, that there exists a constant o > 0 such that

b(Uh ’ /Jh)

6.7 em,,
(6.7) Vi € My, sup

thXh

= allluylllyy-
Then, problem (Q,) has a unique solution (u,, \,) and we have
1 1Y . .
(6.8) A= ALl < o oo = wpll, + {1+ & inf I = Il
M

nEMp

Proof. Assume that hypotheses (3.1) and (3.6) hold so that, by Theorem 2,
problem (P,) has a unique solution u,, € V. Define m,u € V) by

Vv, € V,, alu-mu,v,)=0.
Thus, we may write
2 _
e = wyliz =l = mpulld + llm,u = ull?.

On the other hand, since m,u is the orthogonal projection of u upon V, with respect
to the inner product a(-, ), we get
lu-—-mull, = inf Jlu-v,l,.
ntlln RV, A
On the other hand, we have
a(myu —u,, v,) a(u —uy,,v,)

flmu —u,ll, = sup = sup
S S vpev, gl
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Using (2.14), (3.4) and (3.5), we obtain for all v, € V,, and all u, €M,

alu —uy,,v,) = b(v,, N\ — uy)
so that

. b(l)h, A- /Jh)
lmu —u,ll, = inf  sup ————.
RREM), v, EV, o, 1l

This proves (6.6).

Next, we notice that condition (3.7) exactly means that there exists a constant
o > 0 (which may depend on X,, and M, ) such that (6.7) holds. Hence, by Theorem
2 again, the hypothesis (6.7) implies the existence and uniqueness of the solution
(up, Np) of problem (Q,). Now, using (2.14) and (3.2), we get for all v, € X, and
all w, €M,

b(v,, Ny, —my,) = alw —uy,v,) + b, A - up)-
Given uy, € My, we can choose by hypothesis (6.7) a function v, € X, such that
b(v,, N, — ) 2 alllvhlll);lll)\h = Mplllag-
Since vy, I, <Illv,llly, we obtain
alllny, = mylllyy <l =y ll, + N = w5,
Thus, we get, for all u, € M,
=ty < S =y, + (142 )i = i

and the desired inequality (6.8) holds.

To apply the above results, we consider a regular family (T ,) of triangulations
of the domain £ in the sense of [5], in that there exists a constant o > 0 indepen-
dent of A such that

hy
(6.9) max — <o,
KeT, Pk
where
(6.10) pg = diameter of the inscribed sphere in K.

Given a function ¢ € H*(Q), we define ¢ € M by

(6.11) v =:—"’ on oK, K€ T,.
Vg

'We first evaluate the expression
. b(v’ ‘ll - Mh)
inf sup ————

B EM, vVEX ”U”h

LEMMA 9. Let there be given spaces M, defined as in (3.15) which are associ-
ated with a regular family of triangulations (T,). Assume that the inclusion (3.12)
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holds and that ¢ € H' T (Q) with 1 <I<m + 1. Then there exists a constant T > 0
independent of h such that

b, ¥ —
(6.12) inf  sup w

< TH o )
BuEM, vEX “U”h I+1.,82

Proof. Let us recall the following result [6, Lemma 3] : there exists a constant
¢ > 0 such that, for any K € Th and for any (n — 1)-dimensional face K', we have

1+1
VX € H(K), 1 <I<m+1, Y €H(K), [, (x-n2xpdy<c -pﬁ—lxll,x ol &
K

where 7. denotes the orthogonal projector in L2(K") upon P, K
Now, given ¢ € H'*1(Q), we define M, € M, in the following way: for any K €
T, and any (n — 1)-dimensional face K' of K, we set

My = TR :_;p; =ngy onK'.

By the previous inequality, we obtain for all v € H!(K)

oY) ) thH
fl(,(sb‘uh)vdy:ﬁ(, (5;(—17}': @>vd7<c—;)—K— Wolyy 1 g 0l g

Hence, using (6.9), we get, for all v € X,

b, ¥ =~ Hy) = - KEZT [ — v dy TRl gl
h

and the conclusion follows immediately. O

We now give an estimate of the error |lu —u,||,,.

THEOREM 4. Let there be given spaces X, and M, defined as in (3.11) and
(3.15), which are associated with a regular family of triangulations. Assume that the
inclusions (3.8), (3.9), (3.12) hold and that y € H'*'(Q) N HY(Q) with I + 1 — n/2
>0and 1 <I<min(k, m + 1). Then there exists a constant T > 0 independent of
h such that

(6.13) e = wyll, < TH Whyy g
Proof. Define the subspace W, of the space H}(£2) by
W, = {w, € C°(D; VK € T),, wy,x € Px, wyr = 0}

Since M;, C M, we have W, C V. Now, in view of the inclusions (3.8), (3.9) and
since (T,) is a regular family, it is well known (see [5, Theorem 5], [4], for example)
that, for u € H'*1(Q), N HYQ) with I + 1 —n/2 >0 and 1 <1<k, we have

inf Ju—wyl; o <e Pl q
wuEW, ’ ’

where the constant ¢, is independent of 4. Hence
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inf llu—-v,ll, < inf ju-v <c,H
(6.19) eV, wlln < whewhl rlio Sebluly, o-
Using next Lemma 9 with ¢ = u, Y = A and since u EHFY Q) with 1 <I<m+1,
we obtain for some constant ¢, independent of A

by, X — 1)
(6.15) inf  sup —b—"

<c,h'ul :
wpeMy vpev,  Mall, L

Then inequality (6.13) follows from inequalities (6.6), (6.14) and (6.15). ©

Remark 5. Assume in addition that the polyhedral domain £ is convex. Then,
as in [6, Theorem 4], an extension of the classical duality technique of Aubin-Nitsche
yields the following L2-estimate

(6.16) lle = uplly o S TR Ml o

for another constant T independent of 4. In the case of a general polyhedral domain,
the weaker estimate

(6.17) llw = uplly o < TRl o
follows from (6.13) and the analogue of the Poincaré-Friedrichs inequality
(6.18) Vvh € Vh’ “vh”o,g <c"vh“h’

where the constant ¢ = ¢(£2) depends only on .

In order to estimate the error X — ), we need first to check that hypothesis
(6.7) holds with a constant & > 0 independent of h.

LEMMA 10. Let there be given spaces X, and M, defined as in (3.11) and
(3.15), which are associated with a regular family of triangulations. Assume that con-
ditions (3.13) and (3.16) hold. Then hypothesis (6.7) holds with a constant o > 0
independent of h.

Proof. Forall K € T, and all u € H'/?(3K), we define

Wl = sup KR
(6.19) KT cnitxy Wil ¢

Then condition (3.16) means that there exists a constant & > 0 such that

N Jagbwady _ .
(6.20) Yo €ESs, §upA—i£——'— = allullly g -

wep Wil 2
Let u, € M,. The first part of the proof consists in showing that, for each
K € T,, there exists a function v € F such that

Pk :
;l; Mty My g MVIE & -

k‘l )
IR LT

(6.21) faKu,,u dy>a

Consider the affine mapping Fy : x — F (x) = Bgx + by, where By is an invertible
element of L(R™) and by is a vector in R", such that K = F, K(f(); we may write
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vdy = f W\ d
(6.22) | Hav dy = [ = N0 dy,

where b = v Fy € P and, by (3.13), A€ 5‘ Thus, we choose o € P such that
(6.23) 220 dy > &, 2161, ¢

Now, by using [5, Eq. (4.16) and Lemma 2], we obtain

2 — — A 2~
il = Wl + Rl g < Idet BOINBE B ¢ + K102 2)

< detB)l(hp x> biF ¢ + R2IDII3 ¢
so that

(6.24) lillly x <hgog!ldetB)I' 1Bl 3.

On the other hand, it follows from (6.19) and (6.22) that

TR AW dy
Mupllyx = sup

’ ) w= WOFK'
ertee il <

Since by [4, Eq. (4.15) and Lemma 2]

~ -1 _
willy & <k oz Idet(B ) 1/2|nw|||1’K,
we get

(6.25) ety lly ¢ < Py Idet By )l /2 1IN, 2.

Hence inequality (6.21) follows from (6.22)—(6.25).

We shall now show that condition (6.7) follows from (6.21) with

_ &Pk
o hg
Let w € H'(K); by normalizing v in (6.21), there exists a function v € B such that
=L dr>=af wwdr, bl = ol .

Therefore, given a function w € X, there exists a function v, € X, such that

by, ) bw, )

Za——
(o, Il Wil 5
Hence, we have

b(vha /‘lh) b(W, “h)
P Tl = % SR T, lkally o
vEX, nllix weX Wil x

409
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We are now able to prove

THEOREM 5. Assume the hypotheses of Theorem 4. Assume, in addition, that
conditions (3.13) and (3.16) hold. Then there exists a constant T > 0 independent
of h such that

(6.26) WA= Nllyy < Tl g

Proof. Using Lemma 9 with ¢ = u and { = \ we obtain

, blv, X = )
inf  sup ————

< THu| .
RREM), VEX llvll,, 1+1,9

Since |lvll,, < Ibllly and by the definition (6.4), we get

. L p
(6.27) “hlél{’fh X = Bylllyy < TRl -

Then inequality (6.26) follows from Lemma 10 and the inequalities (6.8), (6.13)
and (6.27). ©

Remark 6. In fact, one can derive a more “‘suggestive” result (cf. [18]). Define
the following norm over the space HKGThL2(aK).

1/2
M, = (20 hgllulld .
(6.28) h <K K 0,0K

ETY

Then one can prove (cf. [18]) that there exists a constant ¢ = ¢(£2) > 0 such that
(6.29) Vu, €My, kg, < Clilgllipgs

so that we get as a consequence of the inequalities (6.26) and (6.29)

(6.30) IA =Nl < TH ey - O

Let us go back to the Examples 1, 2, 3. Assume that u € H'*1(Q) for some
integer / with 1 </ <k and that (T,) is a regular family of triangulations. It follows
from Theorems 4 and 5 that in each example, we have

llte =yl + NN = Nyl < Tl g
7. Remarks on Some Nonconforming Methods. Let us go back to the general
formulation of primal hybrid methods. It can be of interest to use numerical quadra-
ture for evaluating the various surface integrals [, uv dy which appear in the bilinear
form b(v, u). Then we obtain a new bilinear form b, (v, 1) and we replace problem
(Q,,) by the following one, called problem (Q}): Find a pair (uj;, \;}) € X, x M),
such that

(7.1) Yo, €X,, a(u},v,) +b,@,, \f) = fnﬁ’" dx,

(7.2) Vu, €M, b,k u,) = 0.

With the bilinear form b, (v, i), we associate the subspace V of the space X,
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(7.3) Vi = (v, € X5 Vi, € My, by (v, 1) = 0}

and we define problem (P}): Find u}; € V;f such that

(7.4) Y, € V§, a(u}, v,) = fQ fo, ax.

Here again, if (u}, \}) € X, x M, is a solution of problem (Qf), u} € V¥ is a solu-
tion of problem (P}). Now, the degrees of freedom of a function v, € V¥ can be
easier to determine than those of a function v, € ¥, so that problem (P}) can be
simpler to solve than problem (P,).

This is indeed the case in some important examples that we shall discuss briefly.
Again, we refer to [18] for general results concerning the existence, uniqueness and
approximation properties of the solutions of problems (Qj) and (Pf).

Example 4. Consider again the situation of Example 2 where Kisa triangle, k
is an even integer and the pair (f’, S'k_l) is chosen as in Lemma 6. But here, for each
side K" of T,,, we use the k-points Gauss-Legendre quadrature formula to compute the
integral [ upv, dy, v, € X, u, €M, . In fact, one can prove that the corresponding
problem (Qj) has a unique solution (4}, \}) and that, for u € H*(Q2), we have the
error estimate
(7.5) lle = wfll, + 1IN = Nl < TA*! ly q-

Note that the order of accuracy of the hybrid method has been decreased by one.
On the other hand, the space V¥ can now be characterized as in Example 1: a
function v, € X, belongs to V¥ iff it satisfies conditions (4.9) and (4.10). Moreover,
the space V;f is associated with a nonconforming reference finite element (k, i, f’).
Assume for simplicity that k = 2. Then:

(i) T = {bi}l-7=1 where the points b;, 1 <i < 6, are the Gauss-Legendre quad-
rature points and where b, may be chosen as the centroid of K ;

(ii) Pis the space of polynomials spanned by P, and the function v, =
M =2 =23 (5 — ).

FIGURE 2

We recognize here a nonconforming element introduced by Irons and Razzaque
[8, p. 579].

Example 5. We next consider the situation of Example 3: K is the unit square,
k is any integer = 1 and the pair (f’, S‘k_l) is chosen as in Lemma 8. Again we
compute each integral [ u,v, dy by using the k-points Gauss-Legendre quadrature
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formula. Then the problem (Qj}) has a unique solution and, for u € H*(2), we have
the estimate (7.5). Note that the convergence of this hybrid method is ensured only
for k = 2.

For instance, when k£ = 2 and Q is the space of polynomials spanned by 1, &, n,
£2, &n, n?, 2217, £n?, the space V}* is associated with a nonconforming reference ele-
ment (K E P) such that

@) T = {b,}}_, where the points b;, 1 <i < 8, are the Gauss-Legendre quad-
rature points and where by is the centroid of K ;

(ii) P is the space of polynomials spanned by Q and the function vy (¢, n) =
(&1 = &) —n(1 = )] (28 — (2n - 1).

Here again, we obtain a nonconforming element introduced by Irons and
Razzaque [8, p. 579].

Example 6 (Wzlson s rectangular element [19]). Here K is the unit square; we
set P = P, and §= S Unfortunately, by Lemma 7, the compatibility condition
(3.16) is not satisfied so that the problem (Q,) is not well posed. However, by Lem-
ma 2, problem (P,) has a unique solution u,, € V¥, and, by using Theorem 4 with k
=1 and m = 0, we get the estimate

(76) llee = uh”h < Th;ulz,gp

Now, instead of computing exactly each integral [ u,v, dy, we use the trape-
zoidal rule, the quadrature nodes being the endpoints of K. Then, one can prove
that problem (P}) has a unique solution u} € V;* and that, for u € H%(Q), we have

7.7 llw = ull, < Thlul, -

Furthermore, the space ¥, may be characterized as the space of all functions v,
such that
(i) for each rectangle K € T, v, € P,;
(ii) v, is continuous at the vertices of T, contained in £;
(iii) v,, vanishes at the vertices located on T
Hence the space V}} is associated with Wilson’s rectangular element as it is described
in [14]. For direct proofs of convergence of this nonconforming method, we refer
to [14], [9].
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