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Interior Maximum Norm Estimates
for Finite Element Methods

By A. H. Schatz and L. B. Wahlbin*

Abstract. Interior a priori error estimates in the maximum norm are derived from
interior Ritz-Galerkin equations which are common to a class of methods used in
approximating solutions of second order elliptic boundary value problems. The
estimates are valid for a large class of piecewise polynomial subspaces used in prac-
tice, which are defined on quasi-uniform meshes.

It is shown that the error in an interior domain £, can be estimated with
the best order of accuracy that is possible locally for the subspaces used plus the
error in a weaker norm over a slightly larger domain which measures the effects
from outside of the domain Q.

0. Introduction. Let D be a bounded domain in RY, N > 2, with boundary
9D. In order to illustrate the type of results we are seeking, consider a second order
elliptic boundary value problem

N
©.1) Lu= —Z ax, (,](x)a > + 3 bi(x)% +dx)u=f inD,
i=1 1

=1
02) Some boundary conditions on 7.

Assume that this problem has a unique solution u. For 0 < & < 1, let S”(D) be a one
parameter family of finite element spaces. Many methods have been proposed in the
literature for finding an approximation u, in S*(D) to the solution of special cases of
the problem (0.1), (0.2), and we refer the reader to Bramble [2] for a survey of some
of these procedures. Several of these methods differ only in the way they treat the
boundary condition (0.2), but have the same interior equations. By this we mean that
if we let © C C D, and let §#(€) denote the functions in S”(D) with compact sup-
ports in §2, then

0.3) Aw —u,,x)=0 forallx € g"'(Q)a
where
N
04) A, w) = f ( a; %’ g: Z b—w + de) dx.
ij=1 i

In this paper we shall be concerned with deriving maximum norm estimates
foru —u, on , C CQ, where u and u,, are only required to satisfy the interior
equation (0.3). This equation disregards what happens outside of 2. For example,
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it disregards the behavior of u outside of §2, and the particular way a method handles
the boundary conditions, in fact, what these boundary conditions are.

We shall now briefly describe some recent work on error estimates for Galerkin
methods and then state and discuss our main result. Typically, let S#(2) C WL(Q)
consist of the restrictions to § of a given class of piecewise polynomials defined on a
quasi-uniform partition which covers §. Let r > 2 denote the optimal order of % (the
“size” of the partition) to which functions in $”(£2) can approximate functions lo-
cally in L, norms. It was shown in Nitsche and Schatz [16] that if (0.3) holds, then
forl1 <g<oand p =0,

(0.5) lu = u,l,q ) < COlu—=xly o)+ lu—-u, "w*P(n)) for any x € S"(Q).

Here Il - Iy~ @) is the dual norm to that of W?., 1/q + 1/q' =

Interlor maximum norm estimates, in cases where the spaces S” are defined on
uniform (“‘regular”, “translation invariant’”) meshes, were given in Bramble, Nitsche
and Schatz [3], Bramble and Schatz [5], Bramble and Thomée [6], and Strang and
Fix [20]. Global maximum norm estimates for Dirichlet’s problem were discussed in
Ciarlet and Raviart [9]. Recently, quasi-optimal global estimates for general quasi-
uniform meshes have been obtained. The one-dimensional case of two point boundary
value problems was given in Wheeler [21] in the context of continuous, but not con-
tinuously differentiable, piecewise polynomial spaces (and then without the assump-
tion of quasi-uniformity), and the general case occurs in Douglas, Dupont and Wahlbin
[10]. In Scott [18], the Neumann problem was treated for the equation —Au + u =
fand N = 2. The Dirichlet problem for —Au = fin the case of N = 2 and r = 2 was
discussed in Natterer [14], and for N arbitrary and r > 3 announced in Nitsche [15].
In [15] and [18] the authors, in their respective situations, obtained the estimate

0.6) lu —u,llp, oy < Ch<1n—> lu — x| w0 for any x € S*(D),

oo

1 forr=2,
|
0 forr=3.
Let us return for a moment to estimates in L,. If u € L,() and $*(Q) C
H?(S), then one can show that the estimate (0.5) may be replaced by

where

0.7) lu—u,lp 0,y <CUu—xlL,@) + lu — u, "wEP(Q)) for any x € S"(Q).

A proof of this will be presented in Appendix 2 for coercive forms A. However, the
estimate (0.7) does not hold true if S#(2) ¢ H*(2). For example, if the S”(Q) are
piecewise linear functions on triangles in the plane, then the equation (0.3) does not
in general make sense for u € L,(2).

In the present paper we shall show, for S# defined on quasi-uniform partitions,
that (see Theorem 5.1 for the precise assumptions)
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1\
—u,ll < C( (Ing ) lu —xl + lu—u,l, _
©8) lu - u, Le() S <<nh> U= XILw(2) u—uy qu(Q))

for any x € S"(Q).

Note that by partial integration over each element, the equation (0.3) makes sense
for $”(R2) as above and u continuous on 2. The estimate (0.8) has been previously
proved in Bramble and Schatz [S] in the case that the spaces S” are smooth splines
on a uniform mesh and r = 3. Their proof relies on Fourier methods, which are not
available in the general quasi-uniform case.

Comparing the estimate (0.8) to (0.6), we have reduced the local smoothness
requirements on the solution u, and we have also given estimates when r = 2 and N
= 3.

The estimate (0.8) essentially says that, except for the factor In(1/k) when r =
2, the Galerkin method is “locally bounded” in L.,. This is important since the esti-
mate is then applicable to a large class of problems for which the solutions are not
smooth in the interior. For example, if u € WS () for 0 < s <7, then the first term
on the right of (0.8) can be replaced by Ch*(In(1/h))"; and the influences of the
smoothness of u outside of 2, and of the treatment of the boundary conditions in the
approximate procedure, are contained in the second term. It is often the case that for
a particular boundary value problem and approximation method an estimate of the
form

_ < CH ull
I u, “wg._r(v) = wrznax(l,2—r+s)(v)

holds. (For a survey of some methods satisfying this inequality, see Bramble and
Osborn [4]. In more special cases, cf. (0.7), the norm on the right-hand side can be
replaced by the norm in W;“a"(o’z" *X(D).) In this case we have that if u € WE ()
N w;nax(l ,2—r+s)(D) (or ue Wi(ﬂ) N w;nax(o,2—r+s)(v)), then

lu = u, Ny a)) <Ch‘<ln%>r for0<s<r

In Section 6 (Theorem 6.1) we consider a model problem, namely the Neumann
problem on a smooth domain, and derive pointwise estimates for the Green’s function
(cf. Bramble and Schatz [S] for a special case). Briefly, if G®)(x) denotes the
Green’s function with singularity at y, G,Sy )(x) the usual Galerkin approximation, and
ifx€Q,, y€Q, with Q, CCQ,, then

169 - G0l < CU;“(';‘ |Nfz'ih,»'
provided Ix —y| > Ch. Except for the logarithmic factor when r = 2, these estimates
are “locally optimal”. In Theorem 6.1 we also derive an estimate for the error when
lx — yI < Ch. Asis well known, cf. [5], estimates of the above type can be used to
derive error estimates when the right-hand side f in (0.1) is nonsmooth.
We shall now give a rough outline of the main steps in our analysis leading to
the result (0.8). Assume that the form 4 is coercive, cf. (4.1). (The proof for non-
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coercive forms follows from this case via an argument involving a compact perturbation
of the elliptic operator, see Appendix 1.) Let x, € S—Zl be such that

sup (@ —u )X = 1@ —u,Xx)!.
x€EN
Let D C C £ be a sphere with center at x, and w a smooth cut-off function which
is 1 in a neighborhood of x, and has compact support in D. We set U = wu and let
u, € S"(D) satisfy

AW = u,,x) =0 for x € S*D).

Here ?i,, can be thought of as the approximate solution of a Neumann problem with
right-hand side equal to Lu%. Taking w, = ?in — u,, we have

0.9) (u = up)xg) = (4 = Uy Xxy) + wy(x,),

so that the error u — u,, consists of two parts, namely:
(i) The error u — ?ih in a projection for a “localized” . Lemma 5.1 will in
particular imply that

(0.10) I(& = T)xo) <CAn1m)IE = xlly py for x € S*(D).

(ii) The function w, € S"(D) which satisfies 4(w,,, x) = 0 for x € S"(D)
having support in a small neighborhood of x,. In Lemma 5.2 we shall show that
(0.11) lw,(x)! < Cllw, I WoP 0y’
The desired result now follows from (0.9), (0.10) and (0.11) since

w, I < W —u,ly oy + lu—u,l

woP (D) WP (D)
Here the first term on the right is again estimated via Lemma 5.1.

The proofs of (0.10) and (0.11) rely on the fundamental Lemma 5.3. Briefly,
Lemma 5.3 is concerned with error estimates in L -based norms for the Galerkin ap-
proximation v, of functions v which satisfy an elliptic differential equation with right-
hand side ¢ € &= whose support is contained in a sphere D, of radius Ch. For our
purposes, any such v may be thought of, after proper normalization, as a smoothed-
out Green’s function. In Scott [18] maximum norm estimates were obtained by esti-
mating the Green’s function in W}; that work motivated some of our considerations.
In Lemma 5.3 we shall show that

(0.12) lo~v,l_,

N/2+1 7
'0) < Ch (In 1/h) I|¢||L2(Dh),

and for D, C C D,

(0.13) lv-v, "wi»" <2 (In 1/h)71|¢llL2(Dn),

op

where le"‘(DI) denotes the piecewise norm relative to the element partition.
We shall now indicate how (0.10) follows from the estimates (0.12) and (0.13).
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It suffices to prove it for x = 0. Instead of representing the error directly in terms
of the Green’s functions, as was done in Scott [18], we proceed as follows. Taking
X, to be the center of D, we have, using inverse properties, that

@ =)o) < CUIN o,y + HN20E = T o,y -

We then employ a duality argument in order to estimate the second term on the
right-hand side:

A oy T
h'"Lo(Dp) — >
2n o< C®(Dy) "‘pIILz(Dn)

A(u - u,, V) A(u, v - vn)
= sup =

- = sup T T —
o€ C=(Dp) "‘p"Lz(Dn) vE C*=(Dy) II"’"Lz(Dn)

Integrating by parts over each element and taking care of the boundary terms via the
trace inequality A.0 of Section 2, one deduces with D; approximately equal to supp w,

).

~ 17
W= ,0m< sp  C—2=P @ y-v,l ,  +lo-uv,l ,,
veC>mp) el m,) wi@p) w1 (@p

The result (0.10) now follows using (0.12) and (0.13).

.The proof of (0.11) proceeds along somewhat similar lines.

To prove (0.12) (from which (0.13) follows) we start by subdividing D, which
for simplicity we assume has radius 1 and center at xo,'into annuli

Q= {xI1270"D<lx-x,1 <27}, j=0,...,J
and a sphere Q, of radius Cyh = 277, centered at Xy, s0 that D = Q, U (Uf__.OQI.).
Let e = v —v,. We have

J
lell = el + lell .
W1(D) f,\_:o wi(2)) W1(2p)

We estimate each IIellwl(Q N (and ||e||wlmh)) separately. Using the Cauchy-Schwarz

inequality Y !

llell
W, i)

where d; = 277, We apply Lemma 3.2, or Lemma 44 in the case of j =0, both of

which are generalizations of the interior H! estimates of Nitsche and Schatz [16], to

N [2
<l lel, o

obtain

lell <c@ il ,

+d ell
W) hy 7%

Wil ),
where Qll =2y V& UQ, )N D. We then sum and estimate the terms on the
right-hand side, using in particular a “kickback” argument which involves choosing
Cyw = 277 /n sufficiently large. The details are quite technical. We wish to point out
again, however, the use in the proof of H'-estimates which depend on distances,

roughly equal to d;, between domains €2; and Qil ,where also d; is approximately the

Ly(@})
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distance from 082; to x,,. This idea is related to estimating norms on annuli which are
weighted in terms of their distance to x,. The papers Natterer [14] and Nitsche [15]
use weighted norms to prove their results, and similarly Scott [18] employs weighted
norms implicitly. The techniques applied in these papers have much in common with
the ideas of Nitsche and Schatz [16], as do the techniques of the present paper.

In a forthcoming paper we shall adapt the local techniques developed here to
analyze the error in approximating the solution of a Dirichlet problem on a plane
polygonal domain. Some of these results were presented at the SYNSPADE III con-
ference at the University of Maryland in May 1975.

An outline of this paper is as follows. In Section 1 we introduce some notation.
Assumptions on the finite element spaces are listed in Section 2. In Section 3 we re-
call the interior H!-estimates of [16], and extend them somewhat. Section 4 is con-
cerned with some estimates for an auxiliary Neumann problem. Then, in Section 5,
we prove the estimate (0.8) in the case of coercive forms A4; the proof for noncoercive
forms is given in Appendix 1. Lastly, in Section 6, we give the application to point-
wise error estimates for the Green’s function.

1. Notation. Throughout this paper, ¢ and C will denote positive generic con-
stants. Let  be a bounded domain in RY. For 1 < g < o we denote by Lq(Q) the
usual Banach spaces with norm II-|l Lq(a): For m a nonnegative integer, Wy’ (Q2) will
be the usual Sobolev spaces with norms

1/q
; fi <
(}2:0 Ivlw, (Q)> or 1 <gq <o

max vl ; o for g = oo.
j=0,...m Wel($2)

loll ,, =
Wq ()

Here || ;. denotes the seminorms
wh (@)

1/q
( > llDavll‘I{q(m> for 1 < g < oo,

la | =j
IUI j =
Wq(D) max 1Dl _(q) for g = o.
lo l=j

o
We define the spaces W'(€2) as the completion of 6‘”(9) in the norm of W'(2). If
q = 2, we shall write W'(Q) = H™(S2) and use the symbols IIll o and I, o for the
norm and seminorm, respectively.

For m a negative integer we use the notation "'"Wm(ﬂ) for the norm dual to
Wym @), lg + 1/g' = 1, ie., a
||v||wm 0 = #M__,
7 et W (9)

where (v, w) = [, vwdx. For ¢ = 2 we again write Il o for I-I ., =
’ W, ()
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II-IIHm(Q). We note that if Q, CQ,, then

(1.1 ol < Iyl .
) wa'( ) wg'(2,)

In the proof of Lemma 3.2 we shall also need the following result.

LEMMA 1.1. Let 1 <q <2and p = 0. Furthermore, let Q]-, j=1,...,J, be
disjoint sets and Q = \J7 Q. Then

J
> Iz, <l
w P

o
j=1 q % W ()
Proof. Let y; € C5(;),j=1,...,J, be such that "‘pi"wl’,(n )= 1, where
l/g +1/g" = 1. Set -
ZJ: 1
9.= vl _ and ¢ = 09
] qu(Qi) | = ] ]
note that ¢ € Cy(2). We have
Iyl o) Y _ &= 009N
olld _ =
wP@ ~ |l J_ 99)y1~!

p, =177
wh(a)

Taking the supremum of the right-hand side over @), we deduce that

J
IIUII‘:GP @) >1§1 67.
The lemma now follows since the norm in the sequence space [, majorizes the norm
inl, for1 <qg<2.

We shall also make use of spaces defined relative to partitions of 2. Let 0 <h
< 1 be a parameter, and for each h let ‘rf', 0 <i < I(h) be a finite number of disjoint
open sets such that @ C JX) 7% The sets 72N Q induce a partition of €, and rel-
ative to each such partition, we define W""(R2) (C™"(£2)) as the space consisting of
those functions which belong to W;"(Ti" N Q) (C™ (! N Q)), 0 <i<Ih). We in-
troduce the seminorms

I(n) bl l/q for 1 <a <
v r oo,
i=20 win) ort =4

lvl

m,h =
We () max  lvl for g = oo,

m,_h
i=0,., 1) We=(i0D)
and the corresponding norms "."w"'"’

q

. Note that if v € Wg'(S2), then "v“w'""'
= Il q

() «)

m. o
Wq ()

2. The Finite Element Spaces. Let  C C RY be fixed throughout this section.
We shall describe a class of families of finite-dimensional spaces which have properties
that are shared by many quasi-uniform finite element spaces used in practice to ap-
proximate solutions of partial differential equations.
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For each 0 < 4 < 1, $”(Q) will denote a finite-dimensional subspace of WL ()
N C2"(Q). Our first assumption relates to the geometry of the partitioning sets T{’.
We shall assume that a certain trace inequality holds on each of the 1',.”.
A.0. There exists a constant C such that for 0 </ < 1, and any f € W12(T,.”),
i=0,...,IHh),
1

faff' VAldo < C{lfl 1w+ If]

Wi wiah|-

We remark that the assumption A.0 is satisfied for a large class of partitions of
Q. For example, it holds if the Tih are taken to be N-simplices or N-dimensional
parallelepipeds of diameter ¢, ¢; < C, provided the ratio of the diameter and the
radius of the largest inscribed sphere is uniformly bounded. Briefly, to verify A.0 in
these cases one maps each of the Ti" onto a standard domain. The inequality can then
be proven, with & = 1, using integration by parts. The desired inequality is then ob-
tained by mapping back to 7.

For D C Q, S"(D) is defined as the restriction of $”(Q) to D, and

§"(D) = {xIx € S"(D), supp x € C D}.

Let r > 2 be a given integer. We shall assume that there exist positive constants C;,
C,, C3, Gy, kg, 7, and 0 < iy < 1 such that the spaces S”(2) satisfy the following
conditions A.1-A4 for 0 <h <h,.

A.l. Lets=0,1,0r 2 and let D, C C D with dist(D,, aD) > kyh and
dist(D, 9§2) = kyh. Then for each v there exists a x € S”(D) such that

@1 lo=xl o

< C A vl
a @p

WfI(D) for0<t<s<I<r 1<g<oo,
Furthermore, if D, C C D, with dist(D,, dD,) = kh and supp v C D,, then x €
§"D)).

A.2. Inverse Properties. Let p > —1 be an integer and D, C C D with
dist(D,, dD) > kyh. Then for x € S*(D),

(2.2.2) Ixly,p, < CE~®P+VlIxl_, 5,

< C,psNO e l—l/ﬂllxllw,,h(m for0<t<s<2,1<q<g<e

22b) Ixl s,
wg' (D)) q

A3. Let D, C C D with dist(D,, dD) = kyh, and let w € 6“(Dl). Then for
each x € S”(D) there exists an n € §"(D) satisfying

23) leox =nlly p <C3h||w||W1(D1)||x||1’Dl.

Furthermore, let D, C C Dy C C D, C C D, with dist(D,, dD3) > kyh and
dist(D3, dD,) = kyh. Then if w =1 on D, we have n = x on D5 and

24) llewx —nl Lo S C3h"w"w7(pl)"X"1»D1\D4’
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We shall finally make the assumption that if a sphere or radius d in £ is trans-
formed by similarity to a sphere of unit size, then the transformed finite element
space satisfies A.1, A.2, and A.3 with & replaced by A/d and with the constants occur-
ring the same as before.

A4. Let D; C C Q be a sphere of radius d > C4h with center at x,. The
linear transformation y = (x — x,)/d takes D, into a sphere D and S"(D,) into a new
function space S(D). Then S(D) satisfies A.1, A.2, and A.3 with h replaced by h/d.
Furthermore, the constants occurring in A.1, A.2, and A.3 remain unchanged, in parti-
cular, independent of d.

Examples of finite element spaces for which the above assumptions obtain are:

(i) The Lagrange and Hermite elements, cf. [8], which include, for example,
the restriction to  of piecewise linear elements, defined on a sequence of quasi-uni-
form simplicial partitions.

(ii) The plane triangular elements of Bramble and Zldmal [7].

(iii) The restriction to 2 of tensor products of one-dimensional piecewise poly-
nomials, cf. [3].

In these examples the properties A.1—A.3 are well known, cf. [11] and [19] in
the case of A.1, and [3] and [16] for A.3. That A.4 holds with respect to A.l and
A.2 follows via a scaling argument. For A.3, on the transformed spaces S(J), one has
to consider the original proofs. In the above examples, these proofs give (2.3) and
(2.4) with h replaced by h/d.

We shall now state two easy consequences of our assumptions.

PROPOSITION 2.1. Assume A.1, and let R, > 0 be fixed. There exists a constant
C such that the following holds:

Let D C C Q be a sphere of radius R > R, with dist(D, 0Q2) = 2kyh. Lets =
0, 1 or 2. Then for each v there exists a x € S"(D) such that

lv=xl_,n  <cn vl for0<t<s<I<r, 1<qg<eo,
wg' (D) w

1
e

Proof. The function v may be extended coniinuously in all Wf7 norms to a
sphere D, of radius 2R such that

ol
w_(D

< CR,) vl
q( D (o)vwl

@)
The result now follows from A.1.
We shall need a way of cutting down functions in the finite element space to
have compact support.
PROPOSITION 2.2. Let A3 hold and let D; CCD, CCD, CCDCCQ.
There exists a constant C such that if h is sufficiently small the following holds:
For each x € S"(D) there exists an n € §”(Dl) with n = x on D, and

(2.5) Ix ==l p <C||x||1’D\D3.

Proof. Let w € &"(D‘,) and w =1 on Dg, where D, CCD, CCD, CCD,.
By A.3 we can find n € §"(D1) with n = x on D, such that
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lwox =l p, < Crlxl 1,D\D3"
Since I(1 = w)xll; p < Clxl; py Dy Ve obtain the desired result by the triangle in-
equality.
In what follows we shall set k = 2k,,.

3. Interior Estimates in H'. Consider the bilinear form A of (0.4) where, for
simplicity, a;, b; and d belong to C “(Q) and a;; = da;;. Assume that 4 is uniformly
elliptic on £, i.e., there exists a positive constant C,; such that for all real vectors
§=(El,...§N)andx€§,

N N
(.1) Y gL >Cq Y £
i,j=1 i=1

Let u, € S"(Q2) be such that
(32) Aw—u,,x)=0 forall x € §”(Q).

Interior estimates for u — u, in H® norms were given in [16]. Our investigations will
rely on the following special case of a result from that paper.

LEmMMA 3.1. Assume that (3.1), A.1 (for ¢ = 2), (2.2a) of A2 and (2.3) of A3
hold. Let p be a nonnegative integer and D, C C D C C Q. There exist constants
h, = h,(p, dist(D,, 0D)) and C such that the following holds:

Let u and u, € S"(Q) satisfy (3.2). Then for 0 < h < hi,1<q<o,5=0
orl,and 1 <I<r,

(3.3) hu =, < CUH™Slul,  + lu—w, Ilw;p(D)}.
For D, and D concentric spheres of radii R, and R, the constant C depends on p,
and monotonicc.zl{y on Cal» R=R))Y, IIaijllwi(ﬂ), (1A W (2) and Id|l wY(2) for
some fixed positive integers a, 3, 7.

Lemma 3.1 was proved in [16] for ¢ = 2, but follows for all ¢ by use of Sobo-
lev’s lemma.

In particular, if u,, satisfies A(u,, x) = O for all x € Sh(S2), then
(34 ey, IIS,D1 < Cllu, Wq—”(D)'

In Lemma 3.1 the domains D and D, were arbitrary but fixed. We shall need
the precise behavior of the constants in (3.3) in the case when D and D, may vary,
and are possibly close, with 4. We shall find this behavior by a scaling argument, us-
ing A4, and applying Lemma 3.1 on domains of unit size.

LEMMA 32. Let (3.1), A1, A2, A3 and A4 hold. Let p be a nonnegative in-
teger. There exist constants C and Cg such that the following holds:

Let D, C CD C C Q with dist(D, 0§2) = kh and dist(D, 0D) = d = Csh. If
uand u, € S"(Q) satisfy (3.2), then for 1 <q <2,

(35) lu—u,ly , <CHul, p +dVORTHD=ZEFDy -y |

3

—P
WP (D)
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Proof. We first note that if d is of unit size, then (3.5) is a special case of (3.3).
By (1.1), Lemma 1.1 and a covering argument it suffices to prove (3.5) with D, and
D taken as spheres of radii d/2 and d, respectively, with centers at Xg. Assume x, =
0 and let x denote the variable on D. Let y = x/d be the new variable on the trans-
formed regions 51 and D; note that dist(ﬁl, oD) = %. Set

e(x) = u(x) — u,(x)

and

EQp) = Up) - U, = u(yd) — u,(yd).
We have

lel? p, =aV@?IEN} 5, + EIf 5)
so that if d < 1, as may be assumed,
(3.6) lel, p, <a@"7MEl 5 .
Next note that E satisfies the relation
(3.7) A E X)) =0
for X in the transformed space, where with 8, denoting differentiation with respect to

Yis

N
Ad(v’ w) = JB (Z (a,](yd)SiU(Y)BIW(V))

i,j=1

+ <d % (B, (ra)s p(»)) + d2d(yd)v(y)> W(y)> dy.
i=1

This form is uniformly elliptic with the same modulus of ellipticity C,,, as for the
original form A, and the norms of derivatives of the coefficients are decreased com-
pared to those of A. From (3.7), A4 and Lemma 3.1 we deduce that for h/d <h, =
1/Cs,

h r—1
(338) IE1, 5, < c<<3> Ul, 5 + IEI w;p(5)>.

One easily finds that
(3.9) 01, 5 <d™12¥1ul;
and using the definition of the Wy P norm, we have ford <1,

o <JdNla-»p
» 5y <4 ||e||w;,,(D).

(3.10) IEI v:

From (3.6), (3.8), (3.9), and (3.10) we obtain the inequality (3.5). This proves the
lemma.
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4. An Auxiliary Neumann Problem. In order to prove our interior estimates
we shall employ an auxiliary Neumann problem. In this section we state this problem
and collect some facts relating to it.

Throughout this section we shall assume that if D C 2, then the form A is co-
ercive over H'(D), i.e., there exists a positive constant ¢ independent of D such that

@.1) clvl? , <A, v) forall v € H'(D).

Here the region of integration for 4 is D. In the sequel the appropriate region of
integration will be clear from the context.

Let D C 2 be a sphere. Then for each ¢ € L,(D) there exists a unique function
v in H'(D) such that

4.2) A@, w) = (g, w) for all w € H'(D).

This may be thought of as the variational formulation of a Neumann problem for a
second order operator with the natural boundary conditions being the vanishing of the
conormal derivative. The following a priori estimates are well known, cf. [17].

LEMMA 4.1. Assume that (3.1), (4.1), and (4.2) hold, let 1 < g < oo, and let
m be a nonnegative integer. Then there exists a constant C such that

< .
"v"wg’“(n) CI|¢IIw;n(D)

We shall be particularly concerned with the problem (4.2) when ¢ has small sup-
port. Let D have radius 1 and center at the origin, and let

Diypy =1{x:a<lIxI<b}.

Write B, for Dyg,1- We have the following estimates.

LEMMA 4.2. There exists a constant C such that if v and ¢ satisfy (4.2), then
the following hold:

(i) If supp ¢ C B,, then

43) Wl pp, 0 < CaN/2+2-r N2 lplop, forh>a>2er>1,
. -
4.4) "v“W'i(D\Bze) S (n 1/e) Nl (5, F=2,
< 1-N
4.5) ||v||wL(D\B2€) Ce II«pIILl(Be),
(4,6) "v“Wi(Ble) < C(l)e"‘p"Ll(Be)‘
(i) If supp ¢ CDy, 5, then
<
4.7 "v"Wi(D\D[a/2,4a]) < Cllgplle(D[a,nl).
(iii) For ¢ € L (D),

Proof. We have
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v = [ 60wy,

where G is the Green’s function for the problem (4.2). By [12] and [13],

p C(1 + llnlx = yIl) for lal =0, N =2,
(s3
49) DXl <

Clx —yl?N-lel o N>3 or N=2, lal >0.

Let us show how this implies (4.3); the other estimates are proved in a similar fashion.
Forx €D, ,,) and 1 < lal < r, we have

|D%(x)| < fB IDXGE)(p) llp(y)| dy

1/2
<(fy, -y tehgy ) Ragl, o < VNIl
€

The same estimate is obviously true for lal = 0. Squaring and integrating with respect
to x we obtain the estimate (4.3).
The classical Ritz-Galerkin approximation v, € S"(D) to v is defined by

(4.10) A =v,,x)=0 forall x € S"(D).

We recall the following error estimates, cf. [1] and Proposition 2.1.

LEMMA 4.3. Assume (3.1), (4.1) and A.1 (for q = 2). There exists a constant
C such that the following holds:

Let v and v, € S"(D) satisfy (4.10). Then for2 —-r<s<1,1<I<r,

— l—s
b = v, 1, , < ol 5.

We shall also need a local estimate near the boundary, corresponding to Lemma 3.1,
for the projection with respect to the form A. The proof will follow along the lines
of Lemma 5.1 in [16] with some simplifications due to the fact that A is coercive.

Let D, C C D, Dy = D\D, and define

c
S"(Dy) = {x € S"(D), x =0 in a neighborhood of Dy }.

LEMMA 44. Assume that (3.1), (4.1), A.1 (for g = 2),(2.2.2) of A2 and A3
hold. Let D, C C D, C C D C C Q be concentric spheres, and D; = D\D,, i = 0, 1.
There exists a constant C such that for h sufficiently small the following holds:
Let v € H'(Dy) and v, € S"(D) satisfy A(v —v,,X) = 0 for all x € E”(D},).
Then

4.11) lv-v, III,DI1 <cE! Ilvllr,Dr0 + v =v,lL, (0, \Dg))-

Here C in general depends on the radii of D, D, D, the quantities C,; and the con-

stant in (4.1), and IIaijllwa(D), IIb,.IIWﬁ 0y ||d||w7 o) for some fixed a, B, .

Proof. We shall first prove (4.11) in the case that v =0 on D;, ie. that if v,
satisfies
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C
4.12) A@v,, x) =0 for all x € S"(D}),
then
(4.13) "l)hnl,D'l SCIIUh"Ll(Dl\DO)‘

In order to show this let D, CCD, CCD; CCD, CCD;, CCD; CCDbe
concentric spheres and set D]'- = D\D;. Let w € C™(D) with w =1 on Dy and w =
0 on Dy. Then using (4.1), we have

(4.14) v, II";’D'1 < lewv, II%’D < CA(wvy,, wuy,).
A straightforward computation yields that
(4.15) A(wvy,, wu,) = A(v,, wzvh) + 1,

where

N N
I= ID v, > aDwDjwdx + JD w3 bDwdx.
=1 i=1

Since each D;w vanishes outside of D4\D3, we have that

(4.16) 111 < Cllv, 13 5\

Now from (4.12), we have for any x € E”(D;),

(4.17) Ay, w,) = A(v,, v, = X).

By A.3 we can find an n € SO”(DS) with n = v, on D, such that
(4.18) I(1 = w?y, = nll, , < Crllv, Iy pop,:

Choosing x in (4.17) as x = v, —n, we have that w2vh — x vanishes outside of
D \D, and

lew?v, - Xl po\p, < I - ww, =l p.
Hence from (4.17) and (4.18),
(4.19) Ay, wvy) < Chll, 13 5 g -
From (4.14), (4.15), (4.16) and (4.19) we obtain

(4.20) oIy, py < Cllv,ly pp, s

and the desired result (4.13) follows on applying (3.4) of Lemma 3.1 to the right-
hand side of (4.20).

We are now in position to prove (4.11). With w as before, let (wv), € SH(D)
satisfy A(wv — (wv),, X) = 0 for all x € S*(D). Then

“4.21) lv—wv, "1’0'1 < lwv = (wv), ||1’D/1 + ll(wv), — v, "1’0'1'

From Lemma 4.3 we obtain
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(4.22) law = (wo), Iy p <ol , <Gl 5

< ! . .
Since A((wv), = vy, x) = 0 for all x € $"(DY), it follows from (4.13) (with D, re-
placed by D), the triangle inequality and (4.22) that

I(ww), = v, 1l py < Cl(ww), = vl (0 4\Ds)
(4.23) < C(law = (wv), I, 0 \ps) + v =1L (0 \Ds))

< C(hr—lul)"r,Db + "U_Uh "Ll(Dl\DS))'

The inequality (4.11) now follows from (4.21), (4.22) and (4.23). This completes the
proof of the lemma.

5. Interior Maximum Norm Estimates. In this section we shall state the main
result of this paper. We shall prove it here for coercive forms. The case of noncoer-
cive forms will be treated in Appendix 1.

THEOREM 5.1.  Assume that AO,A.1,A2, A3, A4 and (3.1) hold. Let Q, CC
Q, let p be a nonnegative integer, and 1 < q < . There exists a constant C and an
0 < h, <1 such that the following holds:

Let u be continuous on § and u, € SH(Q) satisfy

A —u,,x)=0 foral x € $"Q).

Then for 0 <h < h, and any x € S"(Q),

G lu—u,lp o) <CLUn R lu=xlz () + lu—u,l 1,

-p
Wo (2)

where

1 ifr=2,
7=
0 ifr=3.

Proof of Theorem 5.1 for Coercive Forms A. We shall make the additional hy-
pothesis that the form A4 is coercive, i.e., satisfies (4.1). The case of noncoercive forms
will be given in Appendix 1. In what follows, D C C § will be a sphere of radius R
> 0 with center at x,, where xo € Q is such that lu —u, I, (a,) = @ —u,)(x,)l.
We shall need the following lemmas.

LEMMA 5.1.  Under the above hypotheses, there exists a constant C such that
the following holds:

Let u have compact support in the sphere ¥:D. If ?[h € S™(D) satisfies

(5.2) AW -,,x)=0 foradlx€S"D),
then for 0 <h <h,,
(53) 1% = %,y < Cln RV 1T, (-

LEMMA 5.2. Under the above hypotheses, there exists a constant C such that if
w,, € S*(D) satisfies
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(5.4) Aw,, X) =0 fordl x € $*(D),
then
(5.5) o)) < € b

Before proving Lemmas 5.1 and 5.2, let us show how Theorem 5.1 follows in
the coercive case. Let w € @“(1/20) with w =1 on %D and set # = wu. Then taking
’Jh € S"(D) satisfying (5.2), we have from (5.3) that

(5.6)  luCxg) = u,(xo) < Cln 10 Nl _(py < CQn 1/R) Nully_ p)-
For n € $"(%D) we obtain
A(d, —u,,n) = A —u,, ) = 0.

Hence taking w, = ?[h —u,,, it follows from (5.5) (with D replaced by %D) and (5.3)
that

I(Eh —u,)xo)l < CII'Jh —u,l

w,F (D)
<c{lu- 17,, g ocapy + lu—u,l w;”(%D)}
< C{(In l/lz)7||u||L°°(D) + lu—u, Ilw;p(D)}'
Using this and (5.6), we obtain via the triangle inequality
lu —u,lly (o) < C{(n 1/h)7llu|lL°°(Q) + lu—u, "w;”(n)}

and the theorem follows upon writing u —u, = (u — x) — (4, —x) for x € SHQ).
The proofs of Lemmas 5.1 and 5.2 will depend on the following technical lemma.
LEMMA 5.3. Under the hypotheses of Theorem 5.1, let D, C C D be a
sphere of radius C'h. There exists a constant C such that for 0 < h < h, the follow-
ing holds.
Letp€ ﬁ“(Dh), and let v and v, € S"(D) satisfy

(5.7 AW, v) = (Y, ¢) forall y € H' (D),
(5.8) A(x,v-v,) =0 for all x € S*(D).
Then

59 "U—l)h "Wi(D) < ChN/2+l(ln l/h)?"‘p"o,ph

and for D, C C D,

(5.10) v —v, IIW%,,, < V% (In l/h)7||¢I|0,Dh.

()

Assuming Lemma 5.3 for the moment, we shall prove Lemmas 5.1 and 5.2.

Proof of Lemma S.1. Let Iu' = u,l, _upy= (& —4,)(x;)l. For simplicity
in notation we shall assume that x, is the center of D. Let D, be a sphere of radius
C'h, C' > k, with center at x,. Then
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1= w,)oe)) < Vule DU+ 12,06
< x)l +CH 2NN, 0,
< Iﬁ'(xl)l +CH™NI? II?[h - Z"Lz(o,,) + ChN2 II’JIILz(Dh)
<c{laly p,y + N, = Ul p,))-
Here we used (2.2.b) and the triangle inequality.
Now (5.3) would follow once we had shown that

(5.11) KNP =N, < CAn1/R) 1AL (p)-
We have
~ ~ U= Uy, 9

(5.12) "“_"h"o,D,, = sup (—"-r—h-——)

ety "Plo.py
For each such ¢, let v and v,, satisfy (5.7) and (5.8). Then
(5.13) (- u,, ¢) = A(u - u,, v) = A4, v — v)).
Let L denote the second order operator corresponding to 4 (given by (0.1)), L* its

formal adjoint, and 8/0n the conormal derivative. Integrating by parts, we have

~ ~ ~ a
A(u, v—v,) = ul*(v—v, )dx + u—(@w—-v,)do,
( n) EZI f,’_’h ( h) ;EZI J:')‘rf' an( h)
where, since % vanishes outside %D, we may take I = {i Iri" N%D + Z}. Let D, =
Uier 77 Then

> J;:, uL*(v — v,)dx

i€l

<clul v -, | .

In view of our assumption A.O,

~ !U_l)n’
Z fa‘r? u on do

i€l

~ T B
<CNT @y Mo =v,d Ly Wm0l a ),

I (Dp)

and therefore,

lA(w, v — <clul iy -
(u, v —v )l < Cluly_pyh v v”"wl(D

+llv-vu,l )
h'y2,h :
1Pp w1

Dp
Now using Lemma 5.3 we obtain

1A, v —v,)l < ClEll, _pyhN/2(In 1/h)7||cp||0’Dh,

and (5.11) follows from this, (5.13) and (5.12). This proves Lemma 5.1.
Proof of Lemma 5.2. Using Proposition 2.2, there exists a function 7, €
§"(%D) such that n, =w,, on %D and ln, I, , , <Clw, I, ;. Then

(M, ¥)
lw,(xo) = In,(xp)I < N2y, "o,D,, =aN? p

vet=op lelop,
where diam D, < Ch. Letyp € &""(D,,) be fixed and let v and v, satisfy (5.7) and
(5.8) so that
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(> 0) = A(ny,, v) = A(ny,, V).
Let x, € So”(l/zD) with x, = v, on %D be as 7 in Proposition 2.2. Since A(n,, x,,) =
h n = Vn n> Xn
A(w,,, x,,) = 0, and using (2.5), we have
(5.15) (> ©) = AWy v, = x) < Climy 1y 340 10, "1,3D/4\D/8
< Clw,lly plly, |I1’3D/4\D/8‘

Since v, satisfies A(x,v,) = 0 for x € §”(D\Dh), (3.4) yields
5. oy, I <
(5.16) Usl1 3pja\pss < Cliv, Iy

1 @)
Using Lemma 5.3 and (4.8),

+ <V lglly
Iy <N Pl g,

o, I
1
" wi(D) 1

<lv-uv,l
1 " wio

1
Thus, from (5.16), (5.15) and (5.14) we obtain

lw,(x)l < Clw, I, 5.

Replacing D by %D, the desired result (5.5) follows from (3.4). This proves Lemma
52.

Proof of Lemma 5.3. We shall first prove (5.9). For simplicity in notation, let
D,, and D be concentric spheres with centers at the origin and with radii 4 and 1, re-
spectively. Let §2; denote the annuli

Q= {x12771 < Ixl <2773,

and let J be the largest integer such that 277/ > C,h, where C, is to be chosen later
(sufficiently large). Setd; =27, Q, = DU/, Q;, and let

=,V ., VU )ND,  1=1,2,....

/ -l

Furthermore, set e = v —v,. We have

J
5.17 lel =3 el + lel .
G-17) wiD) ,;0 Wi, Wi,

Using Lemmas 4.3 and 4.1, we obtain

(5.18) ||e||w1(

N [2 N [2 N[2pN[2+1
! h)<cc* W2 lelly o, < CCYPPRNEH Mol 1

By Lemma 3.2, or Lemma 4.4 in the case of j = 0, it follows that
N/2 N2 pr—1 ~N/2-1
IIeIIW} o) < (d; "6"1»91' < dd;j*'*{h "v"r,ﬂil +d; IIeIILl(le)}.
By (4.3) we have
~N/2+2-r; N /2
"v"r,ﬂ»l < d; "W/ lelly p, s

j
and thus
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J J J
I < 2-rpN/2+r-1 -1
;) Ie"w}(n,.) < (Z di™"h Ilsollo’Dh + C/Z:o d; "e"Ll(ﬂil)

(5.19) = |
<A1 ey, +C- 1,
where
I= ZJ; d; el 1.-
=o' L)

We shall now estimate I. Let
I __C*—h“enl‘l(ﬂh)-i-z d llellLl(ﬂ)
and note that 7 < 87, Now,
1 - _
C—*; llellLl(Qh) < C(C*)le th/2 l"e"Lz(ﬂh)

and by Lemma 4.3 and 4.1,

1 -
(5.20) T lel, (a,) < CCH7? ‘hN”“ll«pllo’Dh.
Next write
(A
“ellLl(ni) = s _(en)

nec“lzn,') Inly ca)
Letting A(w, ¥) = (w, ) for w € H'(D) and letting x € S*(D),
(5.21) llellLl(ﬂl.) = sup m
ety Iy )
We have

(5:22) A(e,tp—x)<llel| wlowa ]2)|N’ xl, wlow 12)+llell izllw—xlll’ﬂiz.

By A.1 (cf. Proposition 2.2 for j = 0) and by (4.7) we obtain for a suitable x,

5. Iy —
(5.23) Iy XIIWL(D\nf)<ChIIwII

Furthermore, by Lemma 3.2 and (4.3),

lel < Chlvll ~N/2-1
ell,ﬂf \Chll} 2’013+(jd ||e|| 1(013)

< a7 NN Rl g, + CaTV 2 el

er( D\Q <Ch||1]||L (Q)

s
Ly(®jy

and we can take x such that

1 =x1, g2 < IV, o < Chlnly g, < O lnl o).

Thus,
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_ < 12+2 -1
"6"1,9’?"‘1’ X"l,nf <c{ny llly, p,, + hd; IIeIILl(Q?)}IInlle(QJ.),

and from this and (5.21), (5.22) and (5.23),
< 1 N/2+2
IIeIILl(Qj) C{hllell wloww ]2) + hd; IIeII 1(91‘3) +h ||‘p||0,Dh}.
Now using (5.20), we have

~ J
N /2—-1pN/2+1 N/2+2 -1
1<c{c*/ TRV pNI2E2 57 g f"go"o’Dh
j=0

+Cn Yy (d el

J J .
T llell
o wio\a? y ;( L@}

£~

<ccyPTUNE el +z ||e|| oy T oo

l(D) C*
Thus, choosing C, large enough we obtain
< oN/2-1N /2 +1 <
<ccl*h "‘P"o,D,, + c. "e"w}(D)’
and from this, (5.17), (5.18) and (5.19),
- Cc
< CCONI2pN[2+1 ¥ + L
Ilellwl(D) < CCL™*h (In1/n) |hp||0 C lell

1 ,Dpy * wi(D)
Hence,

N/2+1 7
IIeIIWI(D) < Ch (In1/n) ||‘p||0’Dh,

1
which completes the proof of (5.9).

We shall now prove (5.10). LetD, CCD,, CCD;, CCD,, CCD,,
C C Dy, be concentric spheres with dist(D in> aDO.H),,) =kh,j=1,...,5. We
have

(5.24) "U — VU, "W2’h( < "U - Uh " 2.h + "U Uh " 2 A
1

Dy W1 (D1\Dygp) Dgp)
For x € S"(D) it follows from (2.2.b) that
=l 2, <o, e I
a5y | WP'@aw) T 1" (Dan) "W )
< llv-xl + v —xl + ch -,
w2, Xwlog, " w D)
Choosing x to satisfy (2.1), we have
lv — xll + Ch v =l
W) wiosm
< < v /? < N2
CWlz, <Ol b <O 2l

From this, (5.25) and (5.9) we obtain
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(5.26) o = v, I W <V 2(In1/n)" ol D,

(Dap)
As in (5.25), we have that for any n € $"(D)

lv — v, I 2,h
(527) Wi (P\Dap)

< llv =7l +cn o=l +cntiv—u,l
n w2 (D\D4y) K wl(\D3,) G wi)

Choosing 7 to satisfy (2.1) and using (4 .4), we arrive at

+Chitlv—-nl

o = nll
T M2 o\, W1l(D\D3,)

r—2 N/2 -
<cn "”"w’l(o\oz,,PC(l“ >|I¢IIL1(Dh)\Ch <ln )||¢||OD

This together with (5.9), (5.24), (5.26) and (5.27) proves (5.10).

This completes the proof of Lemma 5.3.

The proof of Theorem 5.1 in the case that the form A4 is coercive is now ac-
complished. As mentioned previously, the case of noncoercive A will be given in
Appendix 1.

Theorem 5.1 was proved under the assumption that the domains £2, and £2
were fixed. Analogously to Lemma 3.2 we have the following result when the do-
mains may vary and be close with A.

COROLLARY 5.1. Assume that the conditions of Theorem 5.1 hold and let
Q, CCQ, CCQ. There exist constants Cg > 0 and C such that if Cgh <d,
dist(2,, 02,) > d, and dist(2,, 082) > d, then for 0 <I<rr,

a\ —N/q—
— < ! = /q—p —
lu —u,lp o) < Cgh <1n h> Iulw{”(nz) +d lu = u,, "w;"(nz) ’

where C is independent of h, u, u,, Q,, Q, and in general depends on p, Cg,,

IIai].II Wwe ()’ "b""wf,(n)’ "d"wl(n) for some a, B, 7.

Proof. We shall mimic the proof of Lemma 3.2. Let x, € &, be such that
I = u,)x ) = lu—u,llp (q,)- Without loss of generality we assume that £,
and 2, are concentric spheres with center at x;, and diam £2, 2d Lety =
(x- xo)/d and transform the problem to the new variables y on Q The new sets
?ﬁ' satisfy A.0 with & replaced by h/d. From A4 it follows that A.l, A2 and A3
are satisfied on the new domain 3’22 with h replaced by h/d. To verify that A4 is
satisfied on ?22, let y, € ?22 and transform a sphere of radius d > C,h/d in ?22 via
the transformation z = (y — yo)/?l. It is seen that this is equivalent to transforming
a sphere of radius dd in Q, via the transformation z = (x — xl)/dg for some point
x, € §,. Since dd > C,h, A4 yields that A.1, A2, and A.3 also hold with h/d re-
placed by h/d:i. Hence Corollary 5.1 is valid on the domains ?21 and ?22, and the
desired result follows by transforming back to the original domains.

6. Pointwise Error Estimates for the Green’s Function Near the Singularity. In
this section we shall apply the results of Section 5 to derive estimates for the error in
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the Green’s function. We shall restrict our attention to the Neumann problem on a
smooth domain, but the techniques given below are suitable for investigating other

boundary value problems and methods for solving them.

Let D be a bounded domain in RY with a smooth boundary 0D, and let 4 be
a bilinear form of the type (0.4), where A is coercive over H', ie., there exists a
constant ¢ > 0 such that

(6.1) cloll} p<A(@,v) forallv€H' (D).

Let $”(D) be a one parameter family of subspaces of W (D) having the global prop-
erty that

(6.2) inf lo—xl, p<c ol , for 1<I<r.

xESH(D)
In addition, the spaces will be required to satisfy the conditions of Theorem 5.1 on

interior subdomains.
Let y € D and G¥)(x) and G{)(x) € S"(D), respectively, be the Green’s func-
tion and approximate Green’s function defined by

A(G(y)’ v) = v()}) for a].l v E WL(D)’

and

AG, %) = x(v) for all x € S"(D).

We wish to estimate 1G®)(x) — Gf,y)(x)l where y is in the interior of D and x may be
close to y. More precisely we have:

THEOREM 6.1. Assume (6.1) and (6.2). Let Q, C C Q, C C D and suppose
that the conditions of Corollary 5.1 are satisfied. There exist constants C and C,
such that if h is sufficiently small, then fory € Q,, x € Q,.

@) If lx -yl = Cyh,

— G
(6.3) 16P(x) - 6| < o <1n <|x_hy_| >>/|x -2t
(i) Ifo<Ix -yl <C,h,

1 _
In |x—y|+1 for N =2,

(6.4) I6Px) -G <C |

|x—y|N—2 fOVN> 3.

This theorem can be applied, e.g. in the following situation, cf. [5]. Let f have
compact support in ). Then

@-u)0) = (V) - 6O dx,

supp f

and using the results (6.3) and (6.4), the error can be estimated in various domains
under weak regularity assumptions on f.

Proof. Letd = |x — yl and denote by B,(x) the sphere of radius r around x.
Furthermore, set e®) = GO — Gf,y ). Note that there exist a fixed domain Q,
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independent of d, 2, CC Q3 CC D and a constant ¢;, 0 < ¢; <% such that for
any x € §,,
D EBcld(x) CCQ,.

Let D, = B,/wld(x) C C D. Applying Corollary 5.1 to D, C C D, we obtain

Do < o (Y 16 ~N-r+2) ,(»)
65) e )l Cgh <lnh> GO, ) +d 160 ap b

Since dist(D, y) = %d, it follows from (4.9) that
(6.6) GO ,  <ad N2,
wo.(D)

oo

We shall next estimate the second term on the right in (6.5). We have

(»)
6.7) 1€ o, = s (70

IR LNy MR

Let v € WL (D) satisfy A(w, v) = (w, ) for all w € Wi(D). Then
@, ¢) = 4, v) = v) — v,),

where v, € S"(D) satisfies A(x, v —v,) = 0 for all x € S*(D). Since y € Q,, we may
apply Corollary 5.1 to (v — v, )(») on the spheres D} C C D' of diameter d/8 and
d/4, respectively, with center at y. Then

d\Y -
v —v,))I <C§h’ <ln<}—l>> Ivlw;(o') +d N/zllv—vnllo,v .

Note that dist(D’, D) > d/4. Using the fact that ¢ € &=(D), we have, cf. the proof
of Lemma 4.2, that

"v“w;(o y S < Cllgl WD)

Furthermore, from (6.2), cf. Lemma 4.3,

o= vyl p < Ol p < WGVl s

0. o< (2
(e, 9l Ch<ln<h>) lel WD)

This together with (6.7), (6.6) and (6.5) proves (6.3).
We shall next show (6.4). Letd = Ix —y| < C;h. In view of (4.9) it suffices
to show that

Hence

Clnl for N =2,

h
(6.8) IGP(x) <
" >N for N> 3.

We define x, by
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(69) sup 1GPx)l = 16 (x )]
x€.Q.2

We may assume that By, (x,) C Q,; otherwise Ix, —y| > % dist(Q,, 2,) and (6.8)
follows from (6.3) and (4.9).

Let 4, denote the form A with the integration extended over the domain D.
We have with € to be chosen later,

G’Ey)(xo) - A(G,(,"O), G’({V)) — A(G("O), G,(,y))
(6.10)

= Ap_, (x)(G*0,GP)) + Ap\g,,y(x) GO, GO = 1) +1,.
Using the inverse property (2.2.b) and (4.9), we have

I, <cl¢Pl | Icxo)) |
wm(Beh(xo)) wl(Beh(xo))

(6.11) c
< n IG,(,y)(xo)l - eh = CelG,(,y)(xo)l.
For I,, the Cauchy-Schwarz inequality and (4.9) give

I, <ClG*o0) )
2 SCIGEDL IO

CEUn MG, , for N =2,
<

Ap™N2HIGN, 4 for N> 3.
Note that by (6.1) and (6.9),

IGP13 5 < CAGS, G©)) = CCP () < CIGP(x,)1;

thus

~ 1
C(e)n + + elGY)(x ) for N =2,
(6.12) I <{ (@ - (Xo)

CEON™N*2 + elGPNx,)l for N> 3.

Choosing € small enough we obtain the desired inequality (6.8) from (6.9)—(6.12).
This completes the proof of the theorem.

Appendix 1. Proof of Theorem 5.1 for Noncoercive Forms 4. Assume that we
have proven the following weaker version of Theorem 5.1.
LEMMA A.l. Under the assumptions of Theorem 5.1, if u € W (D) and

AW —u,,x)=0 forx€ SO"(D),
then

).

— N < —
(A.]) lu—u,lp . up) C(llulle(D) + lu —u, "Wq—p(D)
We shall first show how Theorem 5.1 follows from this. Let K be a positive
number such that the form Az, A (v, w) = A(v, w) + K@, w) is coercive, i.e.,
satisfies (4.1). Let w € C™(%D), w =1 on %D, let & = wu and let u, € S"(D) be
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given by
A =y, x) =0 for x € S"(D).
By Lemma 5.1,
~ ~ 1\
(A2) % - u,\,_upy < c(m 17) lull, _(p)-

Next note that
A3, —u,, x) = —K@, %, x) for x € §"(4D).
For D' = ¢D with sufficiently small ¢, the form A is coercive over &' (D"). Let then
¥ € H'(D") be such that
AW, v) = K@i, - % v) forv€H\D').
Thus,
AW —(, —1,),x) =0 forall x € §"(D");
and hence using Lemma A.1 and (A.2),
W =@, = w)l,_up

<clyl_, oyt Cly —(u, — u,)l

oo

D,
Wq (D)

<
\Cllwlle(D

Thus, by (A.2) and the triangle inequality,

: +C(In 1) Nuly_ p.

) + Cllu, - u"w;”('/.u)

1 -;.
b=ty Sy + Clity =l c<1n E) lull, (-

By elliptic regularity, cf. Lemma 4.1, and (A.2),

~ o~ LY
W1 oo SOV, =T,y < C<1n ;) lul, oy

oo

so that finally

bt =, _oupry < c<1n %)r"u"mo) + O =ty
Theorem 5.1 follows from this.
' It remains to prove Lemma 4.1. We shall, under the general assumptions of
Theorem 5.1, prove the following: ‘

LEMMA A2. Let D' C C D be concentric spheres. If 2 <q <p < ° with 1/q
—1/p < 1/N, then

lu —u, "Lp(D') < C(llul + lu—u, "Lq(D))'

wlD)

Lemma A.1 follows from Lemma A.2, for, by iteration of Lemma A.2 one has

= w1, upy < Clull s

wol72

py * €l =,
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By Lemma 3.1,

— < —
lu —u, IILZ(%D) < C"u"wL(D) + lu —u, IIW;q(D),

and thus, Lemma A.l1 obtains.
Proof of Lemma A.2. Let K be such that A is coercive. Now,

Ag(u—u,, x) =K@ —u,,x) forx€S"D).
Let ¥ be such that
AW, v)=K(u—u,,v) alveH (D),
and ¥, € S”(D) such that Ag W —¥,, x) = 0 for all x € S”(D). Note that
Agw—u, —v¥,,x)=0 for x € §"(D),
and we may apply Theorem 5.1 in the coercive case to deduce
lu —u, =y, Iy w0y < Cllullw1 ) + Clu - u, "o,D + Cly, "0,D'

oo

Since

Wulle.p <Cly, I, p <Clu-u, lo.p
and
lu —u, "LP(D') <lu-u, - ‘»Un"Lp(D’) + 1y, IILP(D'),
the desired result will follow if we can show that
(A3) Iy, IILP(D:) < Cllu —u, IILq(D) for2<p<e0<1/g-1/p <1/N.
Since
Iy — ‘l’h"o,o <y - Vol p < CIIwIII,D <Clyll

Weo (D)’
we obtain using Sobolev’s lemma and elliptic regularity,

ly, ||LM(D') <y -y, "Lm(D') + Ilele(D:)

(A4) < a,( ,l1> Iy o+l =0l + CIVI,

W (D)
< CIIL}/IIW:O(D) < Cllwllwsz(D) < Clu - u, IILS(D) for 1/s < 1/N.
Similarly,
IIthIOD' < Ilylxll1 p <Clyl ,
J ’ w2 (D
(AS5) s (P

< Clu - u, IILS(D) for 1/s — 1/2 < 1/N.

By interpolation between (A.4) and (A.5) we obtain (A.3). As noted, this proves
Lemma A.2.

This completes the proof of Theorem 5.1 in the case of noncoercive forms.
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Appendix 2. Proof of (0.7). As mentioned in the Introduction, we shall take
the form A to be coercive, i.e., satisfy (4.1). We assume that A.1, A.2 and A.3 hold
(see Section 2), and furthermore that S”(2) C H?(2). We shall then prove that if
A(u —u,, x) = 0 for all xeﬁ"(n), then for @, CCQ,p>0,1<qg <o,

©.7) lu-u, "Lz(ﬂl) < C(lu - X"Lz(ﬂ) + lu—u, "w;p(n)) for any x € S"(Q).

Let Q, CCQ, CCQ; CCQ, CCQ where we may assume that 0, is
smooth. Let w € ¢=(Q;) with w =1 on Q,, and put ¥ = wu. Let &, € S*(2,)
satisfy A(u — '17,,, x) = 0 forall x € S”(Q4), where the form A4 is now taken over
Q,. Then

(A6) lu—u,ly o, <Vd=w,lg o + Vi, —u,ly g .
We shall estimate the two terms on the right-hand side. We have \
~ ~ (@ - u,, ¢)l
A7) =G, = sup qT"Q.
veC7(2g)  "¥lo,a4

For each such ¢ let v € H*(Q,) satisfy A(Y, v) = (¥, ¢) for all y € H'(R2,). Hence
if v, € 8"(Q,) satisfies A(x, v —v,) = 0 for all x € $"(2,), we have

(U = uy,, ) = AW - u,, v) = A(%, v —v,).
Integrating by parts and using Schwarz’ inequality, we obtain
(AB) I =y, @)l = 10, L — v, )l < Clll, o v -, 1, q,-

For a suitable x € S"(.Q4), given by Proposition 2.1, we have on using the inverse
property A2 and the fact that llv — v, ||1,94 <C infxesn(n4)llv - xl, Q4

lb=v,l, 0, <l =xl, o, +Ix-0,l, 4,
< v —)("2,93 + Chtlx - v, I,

(A9) < lv- X"z,n3 + Ch v - x||1’94 + Ch v —v,,"l’ﬂ4
Slh=xl, o, + ch v - Xl a,

< Cllvllz,a4 < C||¢||O,Q4.

In the last step we used elliptic regularity, cf. Lemma 4.1. It follows from (A.7),
(A.8) and (A.9) that

(A.10) W = u,llgq, <Clully g, <Clully g

For the second term on the right of (A.6), we note that A(u, — '17,,, x) = 0 for
all x € §"(92). By (3.4) and (A.10) (and assuming without loss of generality that
q < 2 below), we have
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N, —u,llg o, <Clu, —u, IIW?,(Qz)

(A.11) <cllu - uh |0 2, + lu—u,l w;p(n))

).

< llully o + lu—u, “w;p(ﬂ)

Inserting (A.10) and (A.11) into (A.6) we obtain the result (0.7) with x = 0. The
general case follows by writing u —u, = (u — x) — (4, — x). This completes the
proof of (0.7).
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