## Application of Method of Collocation on Lines for Solving Nonlinear Hyperbolic Problems

By E. N. Houstis\*

Abstract. A collocation on lines procedure based on piecewise polynomials is applied to initial/boundary value problems for nonlinear hyperbolic partial differential equations. Optimal order a priori estimates are obtained for the error of approximation. The Crank-Nicholson discretization in time is studied and convergence rates of the collocation-Crank-Nicholson procedure are established. Finally, the superconvergence is verified at particular points for linear hyperbolic problems.

Introduction. We consider the nonlinear hyperbolic problem

$$p(x, t, u)D_t^2u - q(x, t, u)D_x^2u = f(x, t, u, D_xu), \quad (x, t) \in (0, 1) \times (0, T],$$
 subject to the initial conditions

$$u(x, 0) = u_0, \quad D_t u(x, 0) = u_1, \quad x \in (0, 1),$$

and to Dirichlet boundary conditions for t > 0. We examine the convergence of the collocation on lines procedure using piecewise polynomials with continuous first derivatives as the approximating functions.

In Section 4 we obtain optimal-order asymptotic estimates for the error of the approximation in the  $L_{\infty}$ -norm. In Section 5, the Crank-Nicholson discretization of the resulting system of ordinary differential equations is studied and convergence rates of the collocation on lines—Crank-Nicholson procedure are established. Finally, in Section 6 the superconvergence phenomenon is established locally for a linear hyperbolic problem.

The method of collocation on lines was proposed first by Kantorovich [7]. The convergence of this method for a problem of mathematical physics was investigated by E. B. Karpilovskaya [8]. Yartsev [11], [10] proved convergence for linear elliptic and biharmonic type problems using trigonometric polynomials as basis functions. Douglas and Dupont [3], have studied the same method using piecewise cubic Hermite polynomials for a nonlinear parabolic problem and in [4] verified the superconvergence locally for the heat equation. Finally, Douglas and Dupont [5] generalized and extended their results in [3], [4]. The results in this paper are from the author's thesis [6].

1. Preliminary Results. Let 
$$\Delta_x = (x_i)_0^N$$
 be a partition of  $[0, 1]$ ,  $I = [0, 1]$ ,  $h_j \equiv |x_{j+1} - x_j|$ ,  $I_j \equiv [x_j, x_{j+1}]$  and  $h \equiv \max_j |x_{j+1} - x_j|$ . Throughout this paper

Received June 10, 1975; revised June 7, 1976.

AMS (MOS) subject classifications (1970). Primary 65N35.

Key words and phrases. Collocation on lines method, nonlinear hyperbolic problems.

<sup>\*</sup>This research was partially supported by NSF Grant GP-32940X.

we denote by  $\mathbf{P}_r$  the set of polynomials of degree less than r and  $\mathbf{P}_{r,\Delta_x}$  the set of functions that are polynomials of degree r-1 in each subinterval  $[x_i,x_{i+1}]$ . We take  $-1<\rho_1<\rho_2<\dots<\rho_k<1$  and  $w_j>0, j=1,\dots,k$ , to be Gaussian points and weights, respectively, so that

$$\int_{-1}^{+1} p(x)dx = \sum_{i=1}^{k} p(\rho_i)w_i, \quad p \in \mathbf{P}_{2k}([-1, 1]).$$

The Gaussian points and weights in the subinterval  $[x_i, x_{i+1}]$  are

$$\xi_{ki+i} \equiv (x_i + x_{i+1})/2 + \rho_i h_i/2, \quad w_i^* = h_i w_i/2, \quad i = 1, \dots, k.$$

We introduce two pseudo-inner products corresponding to Gaussian quadrature and composite Gaussian quadrature:

$$(f, g)_{h_j} \equiv \frac{h_j}{2} \sum_{i=1}^k w_i f(\xi_{kj+i}) \cdot g(\xi_{kj+i}),$$

and

$$(f, g)_h \equiv \sum_{i=0}^{N-1} (f, g)_{h_i},$$

with

$$|f|_h \equiv \sum_{j=0}^{N-1} (f, f)_{h_j}.$$

For later use, we state without proof the lemmas:

LEMMA 1.1. The seminorm  $|f|_h$  is positive definite for all  $f \in P_{k+2,\Delta_x} \cap C^1[0,1]$  with f(0) = f(1) = 0.

LEMMA 1.2. If 
$$f, g \in \mathbf{P}_{k+2,\Delta_x} \cap C^1[0,1]$$
, then 
$$-(D_x^2 f, g)_h = (D_x f, D_x g) - D_x f \cdot g|_0^1$$

$$+\frac{(k+1)k}{(2k)!} \sum_{i} \frac{D_{x}^{k+1} f_{j}}{(k+1)!} \cdot \frac{D_{x}^{k+1} g_{j}}{(k+1)!} \int_{x_{i}}^{x_{j+1}} \prod_{i=1}^{k} (x - \xi_{kj+i})^{2} dx.$$

LEMMA 1.3. If  $f \in \{v \in P_{k+2,\Delta_{\tau}} \cap C^1, v(0) = v(1) = 0\}$ , then

$$(1.2) (D_x f, D_x f) \le -(D_x^2 f, f)_h \le 2(D_x f, D_x f)$$

and

$$(1.3) |D_x f|_h^2 \le (D_x f, D_x f).$$

Lemma 1.4. If  $f \in P_{k+2,\Delta_x} \cap C^1[0,1]$ , then

$$|f|_{h} \leq \lambda ||f|_{L^{2}(I)},$$

where  $\lambda$  is the maximum eigenvalue of the matrix  $A_{k+1} \equiv [\Sigma_{l=1}^k w_l L_i(\rho_l) L_j(\rho_l)]$  and  $L_i$  denotes the ith degree Legendre polynomials in [-1, 1].

Let  $H^k$  be the Sobolev space of functions having  $L^2$ -derivatives of order k on I and  $H_0^k \equiv \{u \in H^k | u(0) = u(1) = 0\}$ .

LEMMA 1.5. For  $f \in H^1$  we have

$$(1.5) (D_x f, D_x f) + |f|_h^2 \ge \frac{1}{4} ||f||_{H^1(I)}^2.$$

The above lemmas are established in [6], proofs also appear in [5]. Lemmas 1.2, 1.3 and 1.5 have been first proved for the case of cubic Hermite polynomials by Douglas and Dupont [3].

2. Approximation Theory. In [6] we show that  $R_k(x) \equiv D_x^k (1-x^2)^{k+2}$ ,  $k=0,1,\ldots$ , on (-1,1) are orthogonal polynomials. By Rodriques' formula we see that  $D_x^2 R_k(x) = D_x^{k+2} (1-x^2)^{k+2}$  is a multiple of the Legendre polynomial on the interval (-1,1). We now establish some properties of these polynomials.

LEMMA 2.1. If  $k \ge 3$ ,

$$(2.1) (D^{\mu}_{\nu}R_{\nu-2}, x^{\nu})_{\mu} = 0, \quad \mu = 0, 1, 2, \nu \leq \mu.$$

PROOF. Since  $D_x^{\mu}R_{k-2}x^{\nu}$  is a polynomial of degree  $K+2-\mu+\nu$ , we have for  $k \ge 3$ ,

$$(D_x^{\mu}R_{k-2}, x^{\nu})_h = \int_{-1}^1 D_x^{\nu}R_{k-2}x^{\nu}dx.$$

Lemma 2.1 now follows by using integration by parts and the fact that  $D_x^{\mu}R_{k-2}$  vanishes at  $x = \pm 1$  and  $D_x^2R_{k-2}$  vanishes at the Gaussian points. Note that for  $k \ge 2$ ,

$$(D_x R_{k-2}, 1)_h = (D_x^2 R_{k-2}, x^{\nu})_h = 0.$$

We define an interpolation operator

$$T_h: C^1(I) \longrightarrow \mathbf{P}_{k+2,\Delta_{\mathfrak{r}}} \cap C^1(I)$$

such that

$$(T_h v)(x_l) = v(x_l),$$
  
 $(D_x T_h v)(x_l) = (D_x v)(x_l), \quad l = 0, 1, \dots, N,$   
 $(T_h v)(\tau_{i,j}) = v(\tau_{i,j}), \quad i = 1, \dots, k, j = 1, \dots, N,$ 

where  $\tau_{i,j} \equiv x_j + \sigma_i(x_{j+1} - x_j)$  and the  $\sigma_i$ 's are the roots in the interval (0, 1) of the orthogonal polynomials  $R_{k-2}(x)$ .

LEMMA 2.2. Assume that  $u \in H^{k+4}(I)$  and let  $e \equiv u - T_h u$ . Then there is a constant K independent of h so that

$$\begin{split} |D_x^l e|_h & \leq K h^{k-l+2} \|u\|_{H^{k+2}(I)}, \qquad l = 0, 1, \\ |D_x^2 e|_h & \leq K h^{k-l+1} \|u\|_{H^{k+3}(I)}, \\ |(D_x e, 1)_h| & \leq K h^{2k+5/2} \|u\|_{H^{k+3}(I)}, \\ |(D_x^2 e, 1)_h| & \leq K h^{2k+5/2} \|u\|_{H^{k+4}(I)}. \end{split}$$

PROOF. It follows easily from Lemma 2.1 and Peano's Kernel Theorem [9].

3. Collocation on Lines. In this section we consider the problem of approximating the solution of the nonlinear hyperbolic equation

(3.1) 
$$p(x, t, u)D_t^2u - q(x, t, u)D_x^2u = f(x, t, u, D_xu), \quad (x, t) \in (0, 1) \times (0, T],$$
  
subject to the initial conditions

(3.2) 
$$u(x, 0) = \alpha_1(x), \quad D_t(x, 0) = \alpha_2(x), \quad 0 < x < 1,$$

and the boundary conditions

(3.3) 
$$u(0, t) = 0, \quad u(1, t) = 0, \quad 0 < t \le T.$$

Assume that the coefficients satisfy

(3.4) 
$$0 < c_1 \le p(x, t, u) \le C_1, \quad c_2 \le q(x, t, u) \le C_2,$$

for  $0 \le x \le 1$ ,  $0 \le t \le T$  and  $-\infty < u < +\infty$ . Also, we assume that p, q, f are continuously differentiable functions of their arguments and uniformly bounded.

Throughout, we assume that this problem has a solution, u.

Let  $S_{\Delta_x} \equiv \mathbf{P}_{k+2,\Delta_x} \cap C^1$  and  $S_{\Delta_x} \cap H_0^1$  be spanned by the basis functions  $\{B_i\}_1^{kN}$ . We seek an approximation  $u_h(x,t)$  to u of the form

$$u_h(x, t) = \sum_{i=1}^{kN} \beta_i(t)B_i(x).$$

The coefficients  $\{\beta_i(t)\}_{i=1}^{kN}$  as functions of time are the solutions of the nonlinear ordinary differential equations

(3.5) 
$$\{p(u_h)D_t^2u_h - q(u_h)D_x^2u_h - f(u_h, D_xu_h)\}(\xi_i, t) = 0,$$

$$0 < t \le T, i = 1, \dots, kN,$$

and

(3.6) 
$$u_h(\xi_i, 0) = \hat{\alpha}_1(\xi_i), \quad D_t u_h(\xi_i, 0) = \hat{\alpha}_2(\xi_i), \quad k = 1, \dots, kN,$$

where  $\hat{\alpha}_1$ ,  $\hat{\alpha}_2$  are the  $S_{\Delta_x}$ -interpolants of  $\alpha_1(x)$ ,  $\alpha_2(x)$  respectively.

Although these are the equations which one solves in practice, the analysis is more conveniently made if one considers the equivalent problem of finding  $u_h \in S_{\Delta_n} \cap H_0^1$  such that

(3.7) 
$$(p(u_h)D_t^2 u_h - q(u_h)D_x^2 u_h - f(u_h, D_x u_h), B_i)_h = 0,$$

$$0 < t \le T, i = 1, \dots, kN,$$

and

(3.8) 
$$u_h(\xi_i, 0) = \hat{\alpha}_1(\xi_i), \quad D_t u_h(\xi_i, 0) = \hat{\alpha}_2(\xi_i), \quad i = 1, \dots, kN.$$

LEMMA 3.1. The collocation method (3.5), (3.6) and the discrete Galerkin method (3.7), (3.8) each possess a unique solution for  $0 < t \le T$ . Moreover, these solutions are identical if the processes are started from the same initial values.

PROOF. It follows from Lemma 4.1 in [5].

4. Error Analysis. In this section, we find a priori error bounds for the collocation on lines procedure. We consider the problem of finding  $u_h \in S_{\Delta_{\chi}} \cap H^1_0$  such that

$$(4.1) (p(u_h)D_t^2 u_h - D_x^2 u_h - f(u_h, D_x u_h), v)_h = 0, 0 < t \le T,$$

for all  $v \in S_{\Delta_{\mathbf{v}}} \cap H_0^1$ .

In order to find estimates for the error  $u-u_h$  in the  $L_\infty$ -norm, we assume that  $u(\cdot,t)\in C^1(I)$  and define  $w(\cdot,t)\equiv T_hu$  which is in  $S_{\Delta_x}$ . Then we find a priori bounds for the difference  $w-u_h\in S_{\Delta_x}$ ; and applying known approximation results to the difference u-w, we obtain bounds for the error of the collocation on lines procedure.

If X is a normed space and  $\psi$ :  $[0, T] \rightarrow X$ , define

$$\|\psi\|_{L^{2}(0,T;X)} = \int_{0}^{T} \|\psi(t)\|_{X}^{2} dt, \qquad \|\psi\|_{L^{\infty}(0,T;X)} = \sup_{0 \leq t \leq T} \|\psi(t)\|_{X}.$$

THEOREM 4.1. If

- (i) the coefficients in (3.1) have bounded third derivatives and satisfy conditions (3.4),
  - (ii)  $u \in L^{\infty}(0, T; H^{k+4}), D_t u \in L^2(0, T; H^{k+4}) \text{ and } D_t^2 u \in L^2(0, T; H^{k+4}),$
- (iii)  $u_h(x, 0), D_t u_h(x, 0)$  are the  $S_{\Delta_x}$  interpolants of u(x, 0) and  $D_t u(x, 0)$ , respectively, then for the error of approximation we have

$$\begin{aligned} \|u - u_h\|_{L^{\infty}(0,T;L^{\infty})} &\leq K[\|u\|_{L^{\infty}(0,T;H^{k+4}(I))} + \|D_t u\|_{L^{2}(0,T;H^{k+4}(I))} \\ &+ \|D_t^2 u\|_{L^{2}(0,T;H^{k+4}(I))}] h^{k+2}, \end{aligned}$$

where K is a constant independent of h and u.

PROOF. Let  $\eta \equiv u - w$  and  $\zeta \equiv w - u_h$ . Then (3.1), (4.1) imply that

$$(p(u_h)D_t^2\zeta - D_x^2\zeta, v)_h = (-p_u^1\zeta D_t^2 w - p(w)D_t^2 \eta - p_u^2 \eta D_x^2 u, v)_h$$

$$+ (D_x^2 \eta, v)_h + ([f(w, D_x u) - f(w, D_x w)], v)_h$$

$$+ (f_u^1 \eta + f_u^2 \zeta + f_{D_x u}^3 D_x \zeta, v)_h.$$

In (4.2) we choose  $v = D_t \zeta$  and in [6] we show that

$$\frac{1}{2} \left[ |\sqrt{p(u_{h})} D_{t} \zeta|_{h}^{2} + |\zeta|_{h}^{2} - (D_{x}^{2} \zeta, \zeta)_{h} \right] \\
\leq K \int_{0}^{t} \left\{ |\zeta|_{h}^{2} + |D_{x} \zeta|_{h}^{2} \right\} d\tau + \int_{0}^{t} \left\{ |\eta|_{h}^{2} + |D_{t}^{2} \eta|_{h}^{2} \right\} d\tau + K \int_{0}^{t} |D_{t} \zeta|_{h}^{2} \\
+ K \left\{ |\zeta|_{h}^{2}(0) - (D_{x}^{2} \zeta, \zeta)_{h}(0) + |\sqrt{p(u_{h})} D_{t} \zeta|_{h}^{2}(0) \right\} \\
+ \int_{0}^{t} (D_{x}^{2} \eta, D_{t} \zeta)_{h} d\tau + \int_{0}^{t} (f(w, D_{x} u) - f(w, D_{x} w), D_{t} \zeta)_{h} d\tau.$$

Integration by parts gives

$$\int_0^t (D_x^2 \, \eta, \, D_t \zeta)_h \, d\tau = (D_x^2 \, \eta, \, \zeta)_h |_0^t - \int_0^t (D_t D_x^2 \, \eta, \, \zeta)_h \, d\tau,$$

and

$$\begin{split} &\int_0^t (f(w, D_x u) - f(w, D_x w), D_t \zeta)_h \, d\tau \\ &= (f(w, D_x u) - f(w, D_x w), \zeta)_h |_0^t - \int_0^t (D_t \{ f(w, D_x u) - f(w, D_x w) \}, \zeta)_h \, d\tau. \end{split}$$

Using Poincaré's inequality, the elementary inequality  $|cd| \le (\frac{1}{2}p)c^2 + pd^2$  and Lemma 2.2 in [6] we have obtained

$$\left| \int_{0}^{t} (D_{t} D_{x}^{2} \eta, \zeta)_{h} d\tau \right| \leq \frac{1}{16} \int_{0}^{t} \left[ -(D_{x}^{2} \zeta, \zeta)_{h} + |\zeta|_{h}^{2} \right] d\tau + K \sum_{i=1}^{N} h_{i}^{2k+4} \int_{0}^{t} \|D_{t} u(\cdot, \tau)\|_{H^{k+4}(I_{j})}^{2k+4} d\tau.$$

Using Taylor's theorem, we can easily show that

$$(f(w, D_x u) - f(w, D_x w), w - u_h)_h$$

$$= \sum_{i=1}^{N} (f_{D_x u}(w, D_x w)|_{x=\xi_{k(j-1)+1}} D_x \eta + \omega h_j D_x \eta, \zeta)_{h_j},$$

where  $\omega$  is bounded independent of  $h_i$ . It follows from Lemma 2.2

$$\begin{split} |(f_{D_x u}|_{x=\xi_{k(j-1)+1}} D_x \eta, \zeta)_{h_j}| \\ & \leq K h_j^{k+2} \big[ ||u(\cdot, t)||_{H^{k+3}(I_j)} |\zeta|_{h_j} + ||u(\cdot, t)||_{H^{k+3}(I_j)} ||D_x \zeta(\cdot, t)||_{L^2(I_j)} \big], \end{split}$$

and

$$|(\omega h_j D_x \eta, \zeta)_{h_j}| \leq K h_j^{k+2} \|u(\, \cdot \,, \, t)\|_{H^{k+2}(I_j)} |\, \zeta|_{h_j}.$$

Moreover, we obtain

$$\begin{split} |(f(w, D_x u) - f(w, D_x w), \zeta)_h| \\ &\leq \frac{1}{16} \left[ -(D_x^2 \zeta, \zeta)_h + |\zeta|_h^2 \right] + K \sum_{j=1}^N h_j^{2k+4} ||u(\cdot, t)||_{H^{k+3}(I_j)}^2. \end{split}$$

Following similar arguments as above, we show that

$$\begin{split} \int_{0}^{t} \left(D_{t}\{f(w,D_{x}u)-f(w,D_{x}w)\},\zeta\}_{h}d\tau \\ \leqslant \frac{1}{16}\int_{0}^{t} \left[-\left(D_{x}^{2}\zeta,\zeta\right)_{h}+|\zeta|_{h}^{2}\right]d\tau \\ +K\sum_{j=1}^{N}h_{j}^{2k+4}\int_{0}^{t} \left[\left\|u(\cdot,\tau)\right\|_{H^{k+3}(I_{j})}^{2}+\left\|D_{t}u(\cdot,\tau)\right\|_{H^{k+3}(I_{j})}^{2}\right]d\tau. \end{split}$$

It follows from (4.3)-(4.5), (1.3) and Gronwall's Lemma [6] that

$$\|w - u_{h}\|_{L^{\infty}(0,T;L^{\infty})}^{2}$$

$$\leq K[\|(w - u_{h})(\cdot,0)\|_{H^{1}(I)}^{2} + \|D_{t}(w - u_{h})(\cdot,0)\|_{L^{2}(I)}^{2}]$$

$$+ \sum_{j=1}^{N} h_{j}^{2k+4} \{\|u\|_{L^{\infty}(0,T;H^{k+4}(I_{j}))}^{2} + \|D_{t}u\|_{L^{2}(0,T;H^{k+4}(I_{j}))}^{2} + \|D_{t}^{2}u\|_{L^{2}(0,T;H^{k+4}(I_{j}))}^{2} \}.$$

It is an elementary consequence of Peano's Kernel Theorem that

$$(4.7) ||u - w||_{L^{\infty}(0,T;L^{\infty})}^{2} \leq K \sum_{j=1}^{N} h_{j}^{2k+4} ||u||_{L^{\infty}(0,T;H^{k+4}(I_{j}))}^{2}.$$

Finally, from (4.6), (4.7) and assumption (iii) it follows that

$$\|u-u_h\|_{L^{\infty}(L^{\infty}(I))}$$

$$\leq Kh^{k+2} [\|u\|_{L^{\infty}(H^{k+4}(I))} + \|D_{t}u\|_{L^{2}(H^{k+4}(I))} + \|D_{t}^{2}u\|_{L^{2}(H^{k+4}(I))}].$$

This concludes the proof of Theorem 4.1.

5. Computational Considerations. In this section, we discuss the question of actually solving the system of ordinary differential equations (3.5), (3.6).

Let

$$u_{h}^{j} \equiv u_{h}^{j}(x) = u_{h}^{j}(x, t^{j}), \quad t^{j} \equiv j\Delta t, \quad \Delta t = T/N,$$

$$v^{j+\frac{1}{2}} \equiv (v^{j+1} + v^{j})/2, \quad v^{j,\frac{1}{2}} \equiv \frac{1}{4} v^{j+1} + \frac{1}{2} v^{j} + \frac{1}{4} v^{j-1},$$

$$\partial_{t} v^{j+\frac{1}{2}} \equiv (v^{j+1} - v^{j})/\Delta t, \quad \partial_{t}^{2} v^{j} \equiv (v^{j+1} - 2v^{j} + v^{j-1})/(\Delta t)^{2}.$$

Then the Crank-Nicholson-Collocation approximation  $\{u_h^j\}_0^N$  is defined such that

(i) 
$$\{p(t^j, u_h^{j, 1/4})\partial_t^2 u_h^j - q(t^j, u_h^{j, 1/4})D_x^2 u_h^{j, 1/4} - f(t^j, u_h^{j, 1/4}, D_x u_h^{j, 1/4})\}(\xi_i) = 0,$$

$$(5.2) i = 1, \dots, kN, j = 0, \dots, N-1,$$

(ii) 
$$u_k^j(0) = u_k^j(1) = 0, \quad j = 0, \dots, N.$$

At the end of this section we discuss the choice of  $u_h^0$ ,  $u_h^1$ . In order to analyze the convergence of the solution of (5.2) we consider the equivalent to (5.2) normalized problem

$$(p(t^{j}, u_{h}^{j, 1/4}) \partial_{t}^{2} u_{h}^{j}, v)_{h} - (D_{x}^{2} u_{h}^{j, 1/4}, v)_{h} = (f(t^{j}, u_{h}^{j, 1/4}, D_{x} u_{h}^{j, 1/4}), v)_{h},$$

$$(5.3)$$

$$v \in S_{\Delta_{x}} \cap H_{0}^{1}, 0 \leq j < N.$$

Also, we introduce the notation

$$\begin{split} \|u\|_{L^{2}_{\Delta t}(0,T;X)}^{2} &\equiv \sum_{0 \le t^{j} \le T} \|u^{j}\|_{X}^{2} \Delta t, \\ \|u\|_{L^{\infty}_{\Delta t}(0,T;X)}^{2} &\equiv \max_{0 \le t^{j} \le T} \|u^{j}\|_{X}^{2}, \end{split}$$

$$||u||_{\widetilde{L}_{\Delta_t}^2(0,T;X)}^2 \equiv \sum_{0 < t^j < T} ||u^j||_X^2 \Delta t.$$

THEOREM 5.1. Assume the hypotheses (i), (ii) of Theorem 4.1 hold. Further, assume  $D_{\star}^{3}u$ ,  $D_{\star}^{4}$ , u are in  $L^{\infty}(0, T; L^{2}(I))$  and

$$\|(u_h - w)^{\frac{1}{2}}\|_{H^1(I)} + \|\partial_t(u_h - w)^{\frac{1}{2}}\|_{L^2(I)} = O(h^{k+2}).$$

For  $\Delta t$  sufficiently small there exists a unique solution of the Crank-Nicholson-Collocation equations (5.2) and for the error of approximation we have

$$||u - u_h||_{L^{\infty}_{\Lambda t}(0,T;L^{\infty})} \le C(h^{k+2} + (\Delta t)^2),$$

where C depends on u and is independent of h,  $\Delta t$ .

PROOF. It is easily seen that a unique solution of (5.2) exists under assumption (i) and (3.3) for  $\Delta t$  sufficiently small. Throughout this proof we use the notation  $w \equiv T_h u$ ,  $\eta \equiv u - w$  and  $\zeta \equiv u_h - w$ . First, we observe that u satisfies

$$(5.4) \qquad (p(u^{j,\frac{1}{4}})\partial_t^2 u^j)_h - (D_x^2 u^{j,\frac{1}{4}}, v)_h = (f(u^{j,\frac{1}{4}}, D_x u^{j,\frac{1}{4}}), v)_h + (e^j, v)_h$$

for 
$$v \in S_{\Delta_x} \cap H_0^1$$
, where  $\|e^j\|_{L^2(I)} = O(\Delta t^2) \|D_t^4 u\|_{L^2(I)}$ .

After straightforward calculations and the application of the Mean Value Theorem, we obtain

$$(p(u_{h}^{j,1/4})\partial_{t}^{2}\zeta^{j}, v)_{h} - (D_{x}^{2}\zeta^{j}, v)$$

$$= (p*\zeta^{j,1/4}\partial_{t}^{2}w^{j}, v)_{h} + (p(w^{j,1/4})\partial_{t}^{2}\eta^{j}, v)_{h}$$

$$+ (p**\eta^{j,1/4}\partial_{t}^{2}u^{j}, v)_{h} + (e^{j}, v)_{h} - (D_{x}^{2}\eta^{j,1/4}, v)_{h}$$

$$+ (f_{u}^{*}\eta^{j,1/4} + f_{u}^{**}\zeta^{j,1/4} + f_{D_{x}u}^{*}D_{x}\zeta^{j,1/4}, v)_{h}$$

$$+ (f(w^{j,1/4}, D_{x}w^{j,1/4}) - f(w^{j,1/4}, D_{x}u^{j,1/4}), v)_{h}.$$

In (5.5), we choose as test function  $v = (\zeta^{j+1} - \zeta^{j-1})/2t$  and then we obtain

$$\frac{1}{2\Delta t} \left\{ \left[ |\sqrt{p(u_{h}^{j,\frac{1}{4}})} \partial_{t} \xi^{j+\frac{1}{2}}|_{h}^{2} + |\xi^{j+\frac{1}{2}}|_{h}^{2} - (D_{x}^{2} \xi^{j+\frac{1}{2}}, \xi^{j+\frac{1}{2}})_{h} \right] - \left[ |\sqrt{p(u^{j,\frac{1}{4}})} \partial_{t} \xi^{j-\frac{1}{2}}|_{h}^{2} + |\xi^{j-\frac{1}{2}}|_{h}^{2} - (D_{x}^{2} \xi^{j-\frac{1}{2}}, \xi^{j-\frac{1}{2}})_{h} \right] \right\} \\
\leq C \left[ |\xi^{j+\frac{1}{2}}|_{h}^{2} + |\xi^{j-\frac{1}{2}}|_{h}^{2} + |\partial_{t}^{2} \eta^{j}|_{h}^{2} + |\eta^{j,\frac{1}{4}}|_{h}^{2} + |\partial_{t} \xi^{j+\frac{1}{2}}|_{h}^{2} + |\partial_{t} \xi^{j+\frac{1}{2}}|_{h}^{2} \right] \\
+ \left| \left( D_{x}^{2} \eta^{j,\frac{1}{4}}, \frac{\xi^{j+1} - \xi^{j-1}}{2\Delta t} \right)_{h} \right| \\
+ \left| \left( f(w^{j,\frac{1}{4}}, D_{x} w^{j,\frac{1}{4}}) - f(w^{j,\frac{1}{4}}, D_{x} u^{j,\frac{1}{4}}), \frac{\xi^{j+1} - \xi^{j-1}}{2\Delta t} \right)_{h} \right|,$$

where C is a generic constant.

Following the same arguments as in Section 4 and using Lemma 2.2, we get

$$\Delta t \sum_{j=1}^{n-1} \left( D_{x}^{2} \eta^{j, \frac{1}{4}}, \frac{\zeta^{j+1} - \zeta^{j-1}}{2\Delta t} \right)_{h}$$

$$\leq \frac{1}{\epsilon} \left\{ - \left( D_{x}^{2} \zeta^{n-\frac{1}{2}}, \zeta^{n-\frac{1}{2}} \right)_{h} + |\zeta^{n-\frac{1}{2}}|_{h}^{2} - \left( D_{x}^{2} \zeta^{\frac{1}{2}}, \zeta^{\frac{1}{2}} \right)_{h} + |\zeta^{\frac{1}{2}}|_{h}^{2} \right\}$$

$$+ K \max_{0 \leq t^{j} \leq T} \sum_{i=1}^{N-1} h_{i}^{2k+4} \| u^{j} \|_{H^{k+4}(I_{i})} + \max_{0 \leq t^{j} \leq T} \| e_{1}^{j} \|_{L^{2}(I)}^{2}$$

$$+ \frac{1}{2\epsilon} \Delta t \sum_{j=1}^{n-1} \left\{ - \left( D_{x}^{2} \zeta^{j+\frac{1}{2}}, \zeta^{j+\frac{1}{2}} \right)_{h} - \left( D_{x}^{2} \zeta^{j-\frac{1}{2}}, \zeta^{j-\frac{1}{2}} \right)_{h} + |\zeta^{j-\frac{1}{2}}|_{h}^{2} \right\}$$

$$+ K \Delta t \sum_{j=1}^{n-1} \sum_{i=0}^{N-1} h_{i}^{2k+4} \| D_{t}^{2} u^{j} \|_{H^{k+4}(I_{i})}^{2}$$

$$+ \Delta t \sum_{j=1}^{N-1} \| e_{2}^{j} \|_{L^{2}(I)}^{2},$$

where  $\|e_s^j\|_{L^2(I)} = O(\Delta t^2)$  for s = 1, 2, K is a generic constant and  $\epsilon$  a constant that can be small enough.

Finally, by arguments similar to those of Section 4 we can show that

$$\Delta t \sum_{j=1}^{n-1} \left( f(w^{j,\frac{1}{4}}, D_{x}u^{j,\frac{1}{4}}) - f(w^{j,\frac{1}{4}}, D_{x}w^{j,\frac{1}{4}}), \frac{\zeta^{j+\frac{1}{4}} - \zeta^{j-\frac{1}{4}}}{\Delta t} \right)_{h}$$

$$\leq \frac{1}{\epsilon} \left[ -(D_{x}^{2}\zeta^{n-\frac{1}{2}}, \zeta^{n-\frac{1}{2}})_{h} + |\zeta^{n-\frac{1}{2}}|_{h}^{2} - (D_{x}^{2}\zeta^{\frac{1}{2}}, \zeta^{\frac{1}{2}})_{h} + |\zeta^{\frac{1}{2}}|_{h}^{2} \right]$$

$$+ K \max_{0 \leq t^{j} \leq T} \sum_{j=0}^{N-1} h_{i}^{2k+4} \|u^{j}\|_{H^{k+4}(I_{i})} + \max_{0 \leq t^{j} \leq T} \|e_{1}^{j}\|_{L^{2}(I)}^{2}$$

$$+ \frac{1}{\epsilon} \Delta t \sum_{j=1}^{n-1} \left[ -(D_{x}^{2}\zeta^{j+\frac{1}{2}}, \zeta^{j+\frac{1}{2}})_{h} + |\zeta^{j+\frac{1}{2}}|_{h}^{2} \right]$$

$$- (D_{x}^{2}\zeta^{j-\frac{1}{2}}, \zeta^{j-\frac{1}{2}})_{h} + |\zeta^{j-\frac{1}{2}}|_{h}^{2} \right]$$

$$+ \Delta t \sum_{j=1}^{n-1} \|e_{3}^{j}\|_{H^{k+3}(I)}^{2}$$

$$+ K\Delta t \sum_{j=1}^{n-1} \sum_{i=0}^{N-1} h_{i}^{2k+4} [\|u^{j}\|_{H^{k+3}(I_{i})}^{2} + \|D_{t}^{2}u^{j}\|_{H^{k+3}(I_{i})}^{2}],$$

where  $e_3^I = O(\Delta t^2)$ . From (5.6)–(5.8) and the discrete form of the Gronwall Lemma we derive in [6] the relation

$$\begin{aligned} |\partial_{t} \xi^{n-\frac{1}{2}}|_{h}^{2} + |\xi^{n-\frac{1}{2}}|_{h}^{2} - (D_{x}^{2} \xi^{n-\frac{1}{2}}, \xi^{n-\frac{1}{2}})_{h} \\ &\leq C \left\{ - (D_{x}^{2} \xi^{\frac{1}{2}}, \xi^{\frac{1}{2}})_{h} + |\xi^{\frac{1}{2}}|_{h}^{2} |\partial_{t} \xi^{\frac{1}{2}}|_{h}^{2} \right\} \\ &+ K\Delta t \sum_{j=1}^{n-1} \sum_{i=0}^{N-1} h_{i}^{2k+4} [\|u^{j}\|_{H^{k+3}(I_{i})}^{2} + \|D_{t}^{2} u^{j}\|_{H^{k+4}(I_{i})}^{2}] \\ &+ C\Delta t \sum_{j=1}^{n-1} \left\{ |\partial_{t}^{2} \eta^{j}|_{h}^{2} + |\eta^{j-\frac{1}{2}}|_{h}^{2} \right\} + \Delta t \sum_{j=1}^{n-1} \left[ \|e_{2}^{j}\|_{L^{2}(I)}^{2} + \|e_{3}^{j}\|_{L^{2}(I)}^{2} \right] \\ &+ K \left[ \max_{0 \leq t^{j} \leq T} \sum_{i=0}^{N-1} h_{i}^{2k+4} \|u^{j}\|_{H^{k+4}(I_{i})}^{2} + \max_{0 \leq t^{j} \leq T} \|e_{1}^{j}\|_{L^{2}(I)}^{2} \right]. \end{aligned}$$

Finally from Lemma 1.4, 2.2 and inequality (5.9), we conclude that

$$\|\xi\|_{L^{\infty}_{\Delta_{t}}(0,T;L^{\infty})} \leq C[\|\xi^{\frac{1}{2}}\|_{H^{1}(I)} + \|\partial_{t}\xi^{\frac{1}{2}}\|_{L^{2}(I)}] + Kh^{k+2}[\|u\|_{L^{2}_{\Delta_{t}}(0,T;H^{k+3}(I))} + \|D^{2}_{t}u\|_{L^{2}(0,T;H^{k+4}(I))} + \|u\|_{L^{\infty}_{\Delta_{t}}(0,T;H^{k+4}(I))}] + c(u)\Delta t^{2},$$

where C and K are generic constants independent of u, h,  $\Delta t$  and c(u) independent of h,  $\Delta t$ . From the results of Section 2 we easily see that

(5.11) 
$$\|\eta\|_{L^{\infty}_{\Delta t}(0,T;L^{\infty})} \leq Ch^{k+2} \|u\|_{L^{\infty}_{\Delta t}(0,T;H^{k+2})}.$$

Therefore, the inequalities (5.10) and (5.11) imply

$$||u - u_h||_{L^{\infty}_{\Lambda,t}(0,T;L^{\infty})} \le c(u) (h^{k+2} + (\Delta t)^2),$$

provided

$$\|\zeta^{\frac{1}{2}}\|_{H^{1}(I)} + \|\partial_{t}\zeta^{\frac{1}{2}}\|_{L^{2}(I)} \leq ch^{k+2},$$

where c(u) is independent of h and  $\Delta t$ . This concludes the proof of Theorem 5.1.

It remains to discuss the choice of  $u_h^0$  and  $u_h^1$ . We choose  $u_h^0 \equiv T_h u(x, 0)$  and  $u_h^1 \equiv T_h \widetilde{u}$  where

$$\widetilde{u} = u(x, 0) + \Delta t D_t u(x, 0) + \frac{(\Delta t)^2}{2} D_t^2 u(x, 0) + \frac{(\Delta t)^3}{6} D_t^3 u(x, 0);$$

the derivatives  $D_t^2 u$  and  $D_t^3 u$  are evaluated using the differential equation.

6. The Superconvergence Phenomenon. Consider the linear hyperbolic problem

(6.1) 
$$p(x, t)D_t^2 u - D_x^2 u = f(x, t), \quad (x, t) \in (0, 1) \times (0, T),$$

subject to initial conditions

(6.2) 
$$u(x, 0) = \varphi_1(x), \quad D_t u(x, 0) = \varphi_2(x), \quad 0 \le x \le 1,$$

and boundary conditions

(6.3) 
$$u(0, t) = 0, \quad u(1, t) = 0, \quad 0 < t \le T.$$

Also, we assume for all  $(x, t) \in [0, 1] \times [0, T]$ ,

(6.4) 
$$0 < m < p(x, t) \le M, \quad 0 < m \le q(x, t) \le M.$$

Let  $u_h$  denote the collocation on lines approximation defined from (3.5) and (3.6) where p,q and f are independent of u. Throughout we denote by  $L \equiv pD_t^2 - D_x^2$ ,  $||u||_{j,i} \equiv \sup \{D_x^{\alpha}D_t^{\beta}u(x,t)|x \in I, \alpha \leq j, \beta \leq i\}$  and  $x_{i-1/2} \equiv (i-\frac{1}{2})h_j$ . By Peano's Kernel Theorem [9] we obtain

$$\begin{split} L(u - T_h u) \left( \zeta_{kj+i}, t \right) \\ &= \sum_{l=1}^{s-2} \left\{ D_x^{k+l+1} D_t^2 u(x_{j-1/2}) \psi_l(\rho_i) - D_x^{k+l+3} u(x_{j-1/2}) \psi_{l+2}''(\rho_i) \right\} h_j^{k+l+1} \\ &- D_x^{k+3} u(x_{j-1/2}) \psi_2''(\rho_i) h_j^{k+1} + O(h_j^{k+s} [\|u\|_{k+s+2,0} + \|u\|_{k+s+2,2}]), \end{split}$$

where

$$\psi_i(x) = \frac{1}{(k+i+1)!} A_i(x) R_{k-2}(x)$$

with  $A_i$  a polynomial of degree i-1. In order to cancel the term of  $h_j^{k+1}$  accuracy we make a correction to  $T_h u$  defined locally by the following relations,  $\delta_0(\cdot, t) \in \mathbf{P}_{k+2, \Delta_x} \cap C^1$  with

$$h^{s-1}D_x^2 \, \delta_0(\xi_{kj+i}, t) = D_x^{k+3} u(x_{j-1/2}) \psi_2''(\rho_i), \qquad i = 1, \dots, k, j = 0, \dots, N-1,$$
  
$$\delta_0(x_j, t) = D_x \, \delta(x_j, t) = 0, \qquad j = 0, 1, \dots, N.$$

Now, in order to cancel the  $h_j^{k+l+1}$  order terms we define a new correction in the following way: first we introduce the function

$$v(y) = \begin{cases} 0, & y \le 0, \\ 3y^2 - 2y^3, & 0 \le y \le 1, \\ 1, & 1 \le y, \end{cases}$$

which obviously belongs to  $C^1$  and define for  $x \in I_j$ 

$$E_{j}(x, t) \equiv \lambda_{1,l} D_{x}^{k+l+1} D_{t}^{2} u(x_{j-\frac{1}{2}}) v\left(\frac{x-x_{j}}{h_{j}}\right) - \lambda_{2,l} D_{x}^{k+l+3} u(x_{j-\frac{1}{2}}) v\left(\frac{x-x_{j}}{h_{j}}\right),$$

where  $\lambda_{1,l} \equiv -\psi_l(\rho_i)/v''(\rho_i)$ ,  $\lambda_{2,l} \equiv -\psi_{l+2}''(\rho_i)/v''(\rho_i)$ . Also, we define

$$\delta_{l}(x, t) \equiv \sum_{j=0}^{N-1} h_{j}^{l+3-s} \{ E_{j}(x, t) - x E_{j}(1, t) \}$$

$$= \sum_{j=0}^{N-1} \{ \lambda_{1, l} D_{x}^{k+l+1} D_{t}^{2} u(x_{j-\frac{1}{2}}) - \lambda_{2, l} D_{x}^{k+l+3} u(x_{j-\frac{1}{2}}) \} \left( v \left( \frac{x - x_{j}}{h_{j}} \right) - x \right).$$

In [6] we show that the  $\lambda_{\alpha,l}$  for  $\alpha=1,2$  are well defined and easily obtain

$$L(u - \bar{u}) (\xi_{kj+i}, t) = O(h_i^{k+s} [\|u\|_{k+s+2,0} + \|u\|_{k+s+2,2}]),$$

where

$$\overline{u} = T_h u + h_j^{k+s} \sum_{l=0}^{s-2} \delta_l.$$

THEOREM 6.1. Let u denote the solution of the problem (6.1) to (6.4) such that  $u \in L^{\infty}(0, T; H^{k+s+4})$ ,  $s \leq k$  and  $u_h$  is the collocation on lines approximation of u defined by (3.5), (3.6). Then the error of approximation at the nodes satisfies

$$\begin{split} \max_{j} \| (u - u_{h}) (x_{j}, \cdot) \|_{L^{\infty}(0,T)} &\leq C h^{k+s} [\| u \|_{k+s+2,0} + \| u \|_{k+s+2,2}] \\ &+ C [\| D_{t}(u_{h} - \overline{u}) \|_{L^{2}(I)} (0) + \| u_{h} - \overline{u} \|_{H^{1}(I)} (0)], \end{split}$$

where C is a constant independent of u and h and  $s \le k$ .

PROOF. We define

$$\rho(\xi_{ki+i}, t) \equiv L(u_k - \overline{u}) (\xi_{ki+i}, t),$$

where

$$|\,\rho(\xi_{kj+i},\,t)|\leqslant Ch_j^{k+s}\big[\|u\|_{k+s+2\,,0}\,+\,\|u\|_{k+s+2\,,2}\big]\,;$$

and we form the relation

$$(\rho, D_t(u_h - \overline{u}))_h = (D_t^2(u_h - \overline{u}), D_t(u_h - \overline{u}))_h - (D_x^2(u_h - \overline{u}), D_t(u_h - \overline{u}))_h.$$

We apply the elementary inequality  $1/2a^2 + 1/2b^2 \ge ab$  to obtain

$$|\,\rho|_h^2 + |\,D_t(u_h \,-\, \overline{u}\,)|_h^2 \geqslant D_t|D_t(u_h \,-\, \overline{u})|_h^2 \,-\, D_t(D_x^2(u_h \,-\, \overline{u}),\, u_h \,-\, \overline{u})_h.$$

In the above inequality we add the inequality

$$\frac{1}{2} D_t |u_h - \overline{u}|_h^2 \leq \frac{1}{2} |D_t (u_h - \overline{u})|_h^2 + \frac{1}{2} |u_h - \overline{u}|_h^2$$

to obtain

$$|\rho|_{h}^{2} + |u_{h} - \overline{u}|_{h}^{2} + 2|D_{t}(u_{h} - \overline{u})|_{h}^{2}$$

$$\geq D_{\star}\{|u_{h} - \overline{u}|_{h}^{2} + |D_{\star}(u_{h} - \overline{u})|_{h}^{2}\} - D_{\star}(D_{\star}^{2}(u_{h} - \overline{u}), u_{h} - \overline{u})_{h}.$$

We integrate from 0 to t and apply Gronwall's Lemma to get

$$C \int_0^T |\rho|_h^2(\tau) d\tau + |u_h - \overline{u}|_h^2(0) + |D_t(u_h - \overline{u})|_h^2(0) - (D_x^2(u_h - \overline{u}), u_h - \overline{u})_h(0)$$

$$\geq |u_h - \overline{u}|_h^2 + |D_t(u_h - \overline{u})|_h^2 - (D_x^2(u_h - \overline{u}), u_h - \overline{u})_h.$$

It follows from Lemmas 1.3, 1.4, 1.5 that

$$C\left\{\max_{t} |\rho|_{h} + \|D_{t}(u_{h} - \overline{u})\|_{L^{2}(I)}(0) + \|u_{h} - \overline{u}\|_{H^{1}(I)}(0)\right\}$$

$$\geq \|u_{h} - \overline{u}\|_{H^{1}(I)} + |D_{t}(u_{h} - \overline{u})|_{h}^{2}.$$

In particular, we have

$$C\left\{\max_{t}|\rho|_{h}+\|D_{t}(u_{h}-\overline{u})\|_{L^{2}(I)}(0)+\|u_{h}-\overline{u}\|_{H^{1}(I)}(0)\right\} \geq \|u_{h}-\overline{u}\|_{L^{\infty}(I)}.$$

It is easy to see that

$$|(u - \overline{u})(x_i, t)| \le Ch^{k+s}[||u||_{k+s-1, 2} + ||u||_{k+s+1, 0}],$$

where  $h = \max_{i} h_{i}$ . Consequently, we have

$$\max_{t} \max_{0 \le j \le N} |(u - u_h)(x_j, t)| \le Ch^{k+s} [||u||_{k+s+2, 0} + ||u||_{k+s+2, 2}]$$

$$+ C\{\|D_t(u_h - \overline{u})\|_{L^2}(0) + \|u_h - \overline{u}\|_{H^1(I)}(0)\}.$$

This completes the proof of Theorem 6.1.

Now, we consider the problem of choosing initial values, in order to obtain maximum accuracy. It is clear that the following

$$u_h(x, 0) = T_h \varphi_1 + h^{k+s} \delta_0(x, 0), \quad D_t u_h(x, 0) = T_h \varphi_2 + h^{k+s} \delta_0(x, 0)$$

yields  $(u_h - \overline{u})(0) = O(h^{k+s})$  in  $H^1$  norm, and  $D_t(u_h - \overline{u})(0) = O(h^{k+s})$  in  $L^2$  norm.

Department of Computer Sciences Purdue University West Lafayette, Indiana 47904

- 1. I. S. BEREZIN & N. P. ŽIDKOV, Computing Methods, Vols. I, II, Fizmatgiz, Moscow, 1962; English transl., Addison-Wesley, Reading, Mass.; Pergamon Press, New York, 1965. MR 22 #12685; 30 #4372.
- 2. E. A. CODDINGTON, An Introduction to Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, N.J., 1961. MR 23 #A3869.
- 3. JIM DOUGLAS, JR. & TODD DUPONT, "A finite element collocation method for quasilinear parabolic equations," Math. Comp., v. 27, 1973, pp. 17-28. MR 49 #4266.
- 4. JIM DOUGLAS, JR. & TODD DUPONT, "A super convergence result for the approximate solution of the heat equation by a collocation method," *Mathematical Foundations of Finite Element Method with Applications to Partial Differential Equations* (A. K. Aziz, Editor), Academic Press, New York, 1972.
- 5. JIM DOUGLAS, JR. & TODD DUPONT, Collocation Methods for Parabolic Equations in a Single Space Variable (Based on C<sup>1</sup>-Piecewise-Polynomial Spaces), Springer Lecture Notes in Math., Vol. 385, Springer-Verlag, Berlin and New York, 1974.

- 6. E. N. HOUSTIS, Finite Element Methods for Solving Initial/Boundary Value Problems, Doctoral thesis, Purdue University, 1974.
- 7. L. V. KANTOROVIČ, "Sur une méthode de resolution approchée d'equations différentielles aux derivées partielles," C. R. Acad. (Dokl.) Sci. URSS, v. 2, 1934, pp. 532-536. (Russian)
- 8. E. B. KARPILOVSKAJA, "Convergence of a collocation method for certain boundary-value problems of mathematical physics," Sibirsk. Mat. Ž., v. 4, 1963, pp. 632-640. (Russian) MR 27 #6402.
- 9. M. H. SCHULTZ, Spline Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1973. MR 50 #15270.
- 10. Yu. P. YARTSEV, "Convergence of the collocation method on lines," Differencial nye Uravnenija, v. 3, 1967, pp. 1606-1613 = Differential Equations, v. 3, 1967, pp. 838-842.
- 11. Yu. P. YARTSEV, "The method of line collocation," Differencial nye Uravnenija, v. 4, 1968, pp. 925-932 = Differential Equations, v. 4, 1968, pp. 481-485.