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Application of Method of Collocation on Lines
for Solving Nonlinear Hyperbolic Problems

By E. N. Houstis*

Abstract. A collocation on lines procedure based on piecewise polynomials is applied
to initial/boundary value problems for nonlinear hyperbolic partial differential equa-
tions. Optimal order a priori estimates are obtained for the error of approximation.
The Crank-Nicholson discretization in time is studied and convergence rates of the
collocation-Crank-Nicholson procedure are established. Finally, the superconvergence is

verified at particular points for linear hyperbolic problems.

Introduction. We consider the nonlinear hyperbolic problem
p(x, t, )D2u — q(x, t, W)DZu =f(x, t,u, D,u), (x,£)€(0,1) x (0, T],
subject to the initial conditions
u(x,0) =uy, Du(x,0)=u;, x€(0,1),

and to Dirichlet boundary conditions for # > 0. We examine the convergence of the
collocation on lines procedure using piecewise polynomials with continuous first de-
rivatives as the approximating functions.

In Section 4 we obtain optimal-order asymptotic estimates for the error of the
approximation in the L -norm. In Section 5, the Crank-Nicholson discretization of
the resulting system of ordinary differential equations is studied and convergence rates
of the collocation on lines—Crank-Nicholson procedure are established. Finally, in
Section 6 the superconvergence phenomenon is established locally for a linear hyper-
bolic problem.

The method of collocation on lines was proposed first by Kantorovich [7]. The
convergence of this method for a problem of mathematical physics was investigated by
E. B. Karpilovskaya [8]. Yartsev [11], [10] proved convergence for linear elliptic
and biharmonic type problems using trigonometric polynomials as basis functions.
Douglas and Dupont [3], have studied the same method using piecewise cubic Hermite
polynomials for a nonlinear parabolic problem and in [4] verified the superconvergence
locally for the heat equation. Finally, Douglas and Dupont [S] generalized and ex-
tended their results in [3], [4]. The results in this paper are from the author’s
thesis [6].

1. Preliminary Results. Let A = (xi)ﬁf be a partition of [0, 1], = [0, 1],
h]. =X~ x|, I = [x]., x]._H] and h = max; |x;;, — x;l. Throughout this paper
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444 E. N. HOUSTIS

we denote by P, the set of polynomials of degree less than r and P, , the set of
S
functions that are polynomials of degree r — 1 in each subinterval [x;, x;, ,]. We take
-1<p,; <p, <+ <p, <1 andw].>0,j= 1, ..., k, to be Gaussian points
and weights, respectively, so that
f ' p()dx = z p(p)w;, P € Py ([~1,1]).
- =

The Gaussian points and weights in the subinterval [x;, x;, .] are
Erjri = (5 +x400)2 + P2, wf = w2, i=1,....k

We introduce two pseudo-inner products corresponding to Gaussian quadrature and
composite Gaussian quadrature:

.k
(f, g)hi = _2{ Z if(sk,‘ﬂ') * g(Eki+i),

i=1
and
(f 8, = Z (f On,
with
j=0

For later use, we state without proof the lemmas:
LEMMA 1.1. The seminorm |f|, is positive definite for all f € Pk+2’Ax Nnco,1]

with f(0) = f(1) = 0.
Lemma 12 Iff,g € Py a N C'0, 1], then

—(D2f,8), =D, f, D8 —D,f gl
(1.1 K+1
G+ Dk DA DETE e
@) S e+ D (k+ 1)J H (6 = i) .
LemMA 13. Iff€ (v €E Pk+2,Ax N Cv0) =v(l) = 0}, then

(1.2) (D, £, D,N<—Dif, )y <2AD,.f, D, f)
and
(1.3) |D, fly <D, £, D, 1)
LemMma 14. Iff€ Pk+2,Ax N Clo, 1], then
(1.4) L fly < NI L2ay

where \ is the maximum eigenvalue of the matrix A, . | = [ZE WiLi(pL;(p))] and
L; denotes the ith degree Legendre polynomials in [—1,1].

Let H* be the Sobolev space of functions having L?-derivatives of order k on I
and H(’,c = {u € H*|u(0) = u(1) = 0}.
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LEMMA 1.5. For fE H' we have

(1.5) (D, f,D,.f)+If1} >%"f"1211<n’

The above lemmas are established in [6], proofs also appear in [5]. Lemmas 1.2,1.3
and 1.5 have been first proved for the case of cubic Hermite polynomials by Douglas
and Dupont [3].

2. Approximation Theory. In [6] we show that R, (x) = D’;(l - x))kt2 k=
0,1,...,on (-1, 1) are orthogonal polynomials. By Rodriques’ formula we see that
D2R,(x) = D¥*2(1 = x*)**2 is a multiple of the Legendre polynomial on the interval

(=1, 1). We now establish some properties of these polynomials.
LeEmMMA 2.1. Ifk = 3,

(2.1) (DER,_,,x"), =0, u=0,1,2,p<p.

Proor. Since D¥R,_,x" is a polynomial of degree K + 2 — u + », we have
for k = 3,

1
DRy, x"), = [ DR, _,x"dx.
-1

Lemma 2.1 now follows by using integration by parts and the fact that DR, _, van-
ishes at x = 1 and chRk_2 vanishes at the Gaussian points. Note that for k = 2,

(D Ry_p, 1)y = (D3R, _,,x"), = 0.

We define an interpolation operator
T,: C'(I) — Priza, N clin
such that
(Thv) )= u(x,),
(DxThv)(xl)=(va)(xl)’ l=09 13"‘3N’
(To) (1) =v(r;p), i=1,...,kj=1,...,N,

where 7; ; = x; + 0;(x;4+1 — x;) and the ¢;’s are the roots in the interval (0, 1) of the
orthogonal polynomials R, _,(x).

LEMMA 22. Assume that u € H**4(I) and let e = u — T,u. Then thereis a
constant K independent of h so that

|D§e|h <I<hk_l+2"1*‘"}_1](4.2 1=0,1,

ay’
D2 <th—l+l
|Ds el IIuIIHk+3(I),

2k+5/2
|(Dxea l)hl < Kh / "u"Hk+ 3(1),

2k+5/2
I(DZe, 1), < Kh / "““Hk+4(1)-

PrOOF. It follows easily from Lemma 2.1 and Peano’s Kernel Theorem [9].
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3. Collocation on Lines. In this section we consider the problem of approxi-
mating the solution of the nonlinear hyperbolic equation

(3.1) pi, ¢, u)Dfu - q(x, t, u)Diu =f(x, t,u,D u), (x,t)€(0,1)x(0,T],
subject to the initial conditions

3.2 u(x, 0) = a;(x), D,(x,0)=a,(x), 0<x<1,

and the boundary conditions

(3.3) u0,0=0, u(l,H)=0, O0<t<T.

Assume that the coefficients satisfy

(3.9 0<c, <p(x,t,uy)<C;, ¢c,<q(x t,u)<C

for0<x<1,0<¢<Tand - <u <+ o, Also,we assume that p, q, f are con-
tinuously differentiable functions of their arguments and uniformly bounded.
Throughout, we assume that this problem has a solution, u.
Let S, =P, AN Cland § A N H be spanned by the basis functions
{B,}kN We seek an ap;roxnnatlon uh(;c t) to u of the form

uy(x, ) = }_:1 B; (1) B;(x).

The coefficients {; @)} i=1 as functions of time are the solutions of the nonlinear
ordinary differential equations

{p(uh)D?uh - Q(uh)Diuh - f(uh, Dxuh)}(gi, =0

0<t<Ti=1,...,kN,

(3.5

and

(B6) w0 =&(¢), Dy, 0 =aE), k=1,..., kN,

where &, a2 are the S A, -interpolants of «; (x), &, (x) respectively.
Although these are the equations which one solves in practice, the analysis is

more conveniently made if one considers the equivalent problem of finding
u, €S, NH} such that
x

G (p(uh)Dfuh - ‘I(“h)D:“h - f(uha Dxuh), Bi)h =0,
0<t<T, i=1,...,kN,

and

(3.8) ";.(E,-, 0)= &1(21')’ D,uh(ii, 0) = &2(21), i=1,...,kN

LeMMA 3.1.  The collocation method (3.5), (3.6) and the discrete Galerkin
method (3.7), (3.8) each possess a unique solution for 0 <t < T. Moreover, these
solutions are identical if the processes are started from the same initial values.

ProoF. It follows from Lemma 4.1 in [5].
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4. Error Analysis. In this section, we find a priori error bounds for the col-
location on lines procedure. We consider the problem of finding u, €§, N H(;
X
such that

4.1 (p(u,)D?u, — D2u, — f(u,, D uy,),v), =0, O0<t<T,

forallv €S, N Hy.

In order to find estimates for the error u — u,, in the L -norm, we assume that
u(*, t) € C'(I) and define w(-, £) = T,u which is in SAx’ Then we find a priori
bounds for the difference w —u, €8 A and applying known approximation results
to the difference u — w, we obtain bounds for the error of the collocation on lines

procedure.
If X is a normed space and y: [0, T] — X, define
T
- 2 =
1,200 gy = J WO dts W0 = i 1@y

THEOREM 4.1. If
(i) the coefficients in (3.1) have bounded third derivatives and satisfy con-
ditions (3.4),
(i) u €L=(0, T; H***), Du € L2(0, T; H***) and D*u € L*(0, T; H** %),
(i) u,(x, 0), Du,(x, 0) are the SAx interpolants of u(x, 0) and Du(x, 0),
respectively, then for the error of approximation we have

S K[llull + 1D, ull

u-—u o
I nll L0, T;HE T 4(1))

L®(0,T;L%) L%0,1;:H T 4(1))

+ |1 D?ull 1HFt?

k+4

b

L2(0,T;H T4 (1))

where K is a constant independent of h and u.
PrOOF. Let n =u —wand { =w —u,. Then (3.1), (4.1) imply that
(p(u,)D%s — D25, v), = (—pLsD?w — p(w)D}n = p2nDZu, v),
(4.2 + (D21, v), + ([f(w, Dyu) = f(w, D, w)], v),
TS0+ F2E 1D WDy Dy
In (4.2) we choose v = D,{ and in [6] we show that
BINV D) D517 + 1517 — (D2, §),]

t t t
<K["0¢R + D8R 3ar + [ (nl} +1Dbni} dr + K[ 1050

4.3) .
+ K{I512(0) — (D%¢, ©),(0) + 1vp(,) D, £ 12(0)}

t t
+ [ @20, D5y, dr + [(fOv, Do) = f(w, Dyw), DSy dr.
Integration by parts gives

t t
fo (D2n, D,¢), dr = (D20, O),lh - fo (D,Dn, §), dr,
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and
fo *(fw, D) - f(w, Dow), D,%), dr

= (SO0, D) = £O%, Do), Oyl = [ @, F0w, Do) = £ v, D)}, 8, dr.

Using Poincaré’s inequality, the elementary inequality |cd| < G4p)c? + pd? and
Lemma 2.2 in [6] we have obtained

Ifo’(D,D,%n, Ondr|< e[ (-2, 0, + 1871 dr

4.4)

N ‘ :
+K ¥4I Du( , DI? dr.
gl 7 0 e )Hk+4(ll-) T

Using Taylor’s theorem, we can easily show that
(f(w, D, u) — f(w, D, w), w — uy),
N
=,-§1 U, u® DyWllyeg, 1y, et + D1 Oy s

where w is bounded independent of ;. It follows from Lemma 2.2

l(fDx“|"=£k(i_1)+ len, f)hjl

k+2 . . .

2
L2y
and

k+2 .
Dy, O ) < KA HUC, Olra,

m"i'

Moreover, we obtain

I(f (w, Dyu) = f(w, D, w), )yl

N
1 2 2 2k+4 2
<= [- i : .
T =380 + K1)+ K T AP Dl
Following similar arguments as above, we show that
t
[ @, 170w, D,w) = fOv, Dyw)}, )y dr

0
“s) <igf 1-@5.0, +1xiRlar

N t
+K p2kt4 u(+, DI? + ID,u(+ , NI dr.
P J Mikragy 1P Moers)]

It follows from (4.3)—(4.5), (1.3) and Gronwall’s Lemma [6] that
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_ 2
[ S,
<KW = ) (- Oy o+ 1D, 0w = )+, Ol 2 ]

(4.6)

N
+ R2K+4 102
TG g ks,

+ID.ull? 212
[ tu”Lz(O,T;H"‘L“(Ii)) + “Dtu”LZ(o,T;H"*“(Ii))}'

It is an elementary consequence of Peano’s Kernel Theorem that

N
o2 < R2E41 412
(4.7) llu w"L°°(0,T;L°°) <K j§1 i ”u”L""(o,T;H"*“(Ii))'
Finally, from (4.6), (4.7) and assumption (iii) it follows that
llw — u,,IILw(Lm(I))
k+2 2
< Kh [”“”L“(Hk“(m + ||D,u||L2(Hk+4(I)) + IID,ulle(Hk+4(,))] .

This concludes the proof of Theorem 4.1.

5. Computational Considerations. In this section, we discuss the question of
actually solving the system of ordinary differential equations (3.5), (3.6).

Let
uf =ul(x) = uj(x, '), Y =jAt, At=TIN,
5.1 VR =/t 02, ob% E‘lTvi'“ + é-vi + ‘lTv"—l,

3 U = WAL, 820 = (/! — 2 + v )/(An2.
Then the Crank-Nicholson-Collocation approximation {u{, }3’ is defined such that

G) {p(t, Wj*)o2u) — q(t’, ul,")D2uf — F(t, ulp™, D ul &) = 0,
(5.2) i=1,...,kN,j=0,...,N—1,

() uj(®)=uj()=0, j=0,...,N
At the end of this section we discuss the choice of ug, u}. In order to analyze the
convergence of the solution of (5.2) we consider the equivalent to (5.2) normalized
problem

(p(!, uf;")aufy v), — D2uf*, vy, = (FA, uf®, Duf™), V),
(5.3)

VES, NHy,0<j<N.
x

Also, we introduce the notation

, _ .

My o= 2 IR AL
At o<ti<T

||u||zm ©.75%) = max IIu"II},
At sd s

o<t<r
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lleeli2 = 3 Wzt
2 . X="
Lao T o<ti<r
THEOREM 5.1. Assume the hypotheses (i), (ii) of Theorem 4.1 hold. Further,
assume D3u, D¥, u are in L™ (0, T; L*(I)) and
% N — pk+2

“HI(I) + 119, (u, —w) “L2(I) O(h*™*).
For At sufficiently small there exists a unique solution of the Crank-Nicholson-
Collocation equations (5.2) and for the error of approximation we have

< CH*F*2? + (AD)?),

(), — w)

le — upll o -
L3 (0,T;L%)

where C depends on u and is independent of h, At.

PROOF. It is easily seen that a unique solution of (5.2) exists under assumption (i)
and (3.3) for At sufficiently small. Throughout this proof we use the notation w =
Tyu,m=u—wand { =u, —w. First, we observe that u satisfies

G4 (p@M)diul), — (DEu*, vy, = (fFl*, D u¥%), v), + (e, v),

forv €S, N Hg, where [l , = O@AIDPull 5 .

After straightforward calculations and the application of the Mean Value Theorem,
we obtain

(P} )02, vy, — (D2¢, v)
= (p*P%3}wl, vy, + (p(W%)d2 4!, v),,
(5.9) + (p**n) %02l v), + (!, v), — (D2n'%, v),
+ (I + IR+ £ D%, ),
X
% 1B Y Y
+(f(w ’wa )—f(W ’Dxu )’ v)h‘
In (5.5), we choose as test function v = ({71 — ¢/~1)/2¢ and then we obtain
3a7 (IVPGERDR A 4 167 — @21+, g4, )
= VP 81415 + 51417 — (2=, 6%, 1}
SCOERE + 1720 + 1020/ + 12 + 10, 07442

(5.6) +10, 877712 + 1D, ¢%2 + |ef|2]

gt it ’
2, j,% 2 %
<D"n ’ 2At h

fwh% D_wiy — f(wi%, D_ul%) i sl ,
4 X ’ x E} 2At N

+

+

where C is a generic constant.
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Following the same arguments as in Section 4 and using Lemma 2.2, we get

< i >
2, i -
At Z Dyn”", 2At h

i=1

S L @IEmTA eI, 1R - O2E%, 6, + 182

N-1
+K max Y h3k+4||uf||Hk+4(”+ max |le]?

. 2
5.7 o<t/<r =1 o<iicy @

1 n—1 Y it -y i1,
Foc A Y - DT R, - (DRI T,
i=1

+ AR 15T )

—
+ KAt }: Z h2"+4IID2u’II2k+4(I)
j=1 i=0

N=1 )
+ At ]gl IIe2IIL 2y

where IIeA{' IIL2(I) = O(Atz) for s = 1,2, K is a generic constant and € a constant that
can be small enough.

Finally, by arguments similar to those of Section 4 we can show that

n—l 1 1, 71 §I+l/z {J %
At Z f(w”/‘ D, uls V‘) fwh o /‘) -
i=1 At h

< [-@2Em %, 60, + 1R - (D2E%, 1%, + 187,

N-—-1
+K max ) h2k+4||u’|| (1)+ max “e1”22(1)
o<t/<r i=0 P o<
(5.8) + At Z[ (D2 jt% §-1+‘/z) +|§-]+Vz|2

=1
— DL TRy, + 1

+ At z llefii?

gkt 3(1)

+ 2k+4 in2 2
KAt ,2_:1 ?;o R2EH4 (i) 3y * IR ||H,,+3(I)

1,

where e:’; = 0(At?). From (5.6)—(5.8) and the discrete form of the Gronwall
Lemma we derive in [6] the relation
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- _1 1
Iatg-n—VzI’ZI + |§-n Vz|’21 _ (D:?t g-n /2’ S-n /z)h

<C{-(D2¢%, ¢, +1572018,5 %17}

n—1 N-—-1
2k+ary 012 2, in2
+ KAt ];l ;0 hi [”u “Hk+ 3(Ii) + ”Dtu "Hk+4(1i)]
(5.9)

n—1

n—1

. _y i in2

+Cat Y (1R 10l R+ Aar T (lledll7 5 )+ lledll;
=1

2(1)]
j=1

N-1 . .
tK| max 3 R, 4+ max [Py B
0<tj<T i=0 t 0<tj<T

Finally from Lemma 1.4, 2.2 and inequality (5.9), we conclude that

151, w SOOI 0 )+ 138705 )]

Ly ,(0,T5L™) L)

k+2 ~ + 2,00
(5.10) K ["u”Lit(o,T;H"“u)) “D‘““L2(0,T;H"+“(1))

+
”“”th(o,r;n"*"(z))]
+ cu)At?,
where C and K are generic constants independent of u, 4, At and c(x) independent of
h, At. From the results of Section 2 we easily see that

5.11 .
G.11) ""“LZ,(O,T;L“) Ly 0, T;:Hk+2)
Therefore, the inequalities (5.10) and (5.11) imply

< CHFF2jul)

llu — upl <c@)H**? + (AD?),

L3 (0,T;L%)
provided

Y% Y,
i ”Hl(j) + uag/HL <chk*?,

2w

where c(u) is independent of 4 and A¢. This concludes the proof of Theorem 5.1.
It remains to discuss the choice of u) and uj,. We choose up = T,u(x, 0) and
uj, = T,u where

(ar)’®
6

(An?
2

u=u(x, 0) + AtD,u(x, 0) + D?u(x, 0) + D} u(x, 0);

the derivatives D?u and D}u are evaluated using the differential equation.

6. The Superconvergence Phenomenon. Consider thg linear hyperbolic problem

(6.1) p(x, t)Dfu - D§ u=f(x1, (xHe@,1)x(0,T7),

subject to initial conditions
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(6.2) u(x, 0) = ¢,(x), Du(x,0)=¢,(x), 0<x<1

b

and boundary conditions

6.3) u0,=0, u(1,n=0, O0<t<T
Also, we assume for all (x,#) € [0,1] x [0, T],

6.4) 0<m<px, )M, 0<m<qx t)<M.

Let u,, denote the collocation on lines approximation defined from (3.5) and (3.6)
where p, q and f are independent of u. Throughout we denote by L = pr —Di, IIuIIi’i =
sup {D;‘C‘Dfu(x, Dx€lLa<j,p<i}andx; ;, =(~- %)h;. By Peano’s Kernel Theo-
rem [9] we obtain

L — Tyu) §gjpir 1)

s—2
= 1;1 {D§+l+ lDfu(xi_l/z) ‘1’1(/3,-) - D’;+l+ 3“(xj_ 1/2) ‘I/;’+ 2(Pi)}h;c+l+ !

= DUy )W (o)A OGF [l g g5 0 + Nl s gz 51),

where

S S
l1/,'(3") = G+it1)! Ai(x)Rk..z(x)

with 4; a polynomial of degree i — 1. In order to cancel the term of h}‘ +1 accuracy
we make a correction to T,u defined locally by the following relations, §4(+, £) €
Pyis o NC!with

[ 4

RTIDE8o(bjis ) = DE 3ulx,_y)Wy(p), i=1,...,kj=0,...,N—1,

60xj,t)=Dx8(x].,t)=0, j=0,1,...,N.

Now, in order to cancel the h]'.”"“ order terms we define a new correction in the
following way: first we introduce the function

0, y<0,
wy)= {3y*-2y? 0<y<l],
1, 1<y,

which obviously belongs to C! and define for x € I

X — X

_ i X =X
Ei(x, 1) = )\I,ID’;"'”'lDfu(x]._yz)v<—’7——-> - )\2’,D’;+’+ 3u(xj_%)v<—h—’> ,
i j

where Ny ;== Y(0)/v"(0), Ny 1 = — U1, (0)/V"(0). Also, we define
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N-1
5,06, D=3 WTITSE(x, 1) — xE;(1,1)}
i=o

N-1 ] X — X
- Z:o {)\l’,D’;”“thu(xJ._%) - )\2’,D’;+’+3u(x]._%)}<v< o J> —x).
j= j

In [6] we show that the A, , fora =1, 2 are well defined and easily obtain

L —u) Gjrir )= O(h}c+s['lu"k+s+2,0 Fllully s 542,21

where

§s—2
7= k
u=Tu+h* 3 5.
1=0
THEOREM 6.1. Let u denote the solution of the problem (6.1) to (6.4) such that
u€lL”(0, T,H ktstdy s <kand u,, is the collocation on lines approximation of u
defined by (3.5), (3.6). Then the error of approximation at the nodes satisfies

k+s
SCR T tll g g4 2,0 + Netll g g2 2]

m?x @ — up) (x;, )”L°°(0,T)

+ C[IID,(u,, — ﬂ)IILZ(I)(O) + lluy, — all 0],

H (D)

where C is a constant independent of u and h and s < k.
ProoF. We define

PErjyi> 1) = L(u, —u) Crjris 1),
where
Ip(ékj-H" t)l < Ch],'c+s[”u"k+s+2,o + ”u”k+s+2,2];
and we form the relation
(o, Dt(“h - 17))}, = (D?(uh - u), Dt(“h - ﬁ))h - (Dgzg(“h - u), Dt(uh - ﬁ))h-
We apply the elementary inequality %a® + % b% > ab to obtain
1012 +|D,(u, — u)\2 = D,D,(u, — Wz — D,(D2(u, — %), uy, — Uy,
In the above inequality we add the inequality

1 _ _ _
2Dyl — T2 < 21D, — WIF + 3y — I3

to obtain
|pl2 + lu, — ul? + 21D,(u, — w7
> D, {lu, — @2 +1D,(u, — @)2} - D,(D2(uy, — ), uy, — u),.

We integrate from O to ¢ and apply Gronwall’s Lemma to get



APPLICATION OF METHOD OF COLLOCATION 455
cf "1 pI2 (rydr + 1w, — @I2(0) + 1D, @, — @2 (O) — D2 7 7
o Pl h h tWUp h 2y — ), uy — ), (0)

> |uy, — ul2 + 1D, (uw, — W2 — (D2(u, — u),u, — u),.

It follows from Lemmas 1.3, 1.4, 1.5 that
C {mgxlplh + I1D,(uy, — u)IILz(I)(O) + lluy, — EIIHI(I)(O)}

> llu, — ull +1D,(u, — w)2.

H(I)
In particular, we have

C { max|ply, + 1D, Gty — D 5, (0) + Iy, — (1)(0)} > llu, — all

L=y
It is easy to see that
@ — @), O < CHEF S Tlull gy 5 + Nl g gy o],
where h = max; h].. Consequently, we have
K+
max OgjixN @ — uy) O < CHETF llutlly 4 540 0 F Nl 542 5]
+ C{ID,(u, —u +llu, — @
{IID, (u, u)IILz(O) ll2e;, uIIHl(I)(O)}.

This completes the proof of Theorem 6.1.
Now, we consider the problem of choosing initial values, in order to obtain
maximum accuracy. It is clear that the following

uy(x, 0) = Ty, +h¥*58(x,0), D,u,(x,0)=T,p, +H**55,(x, 0)

yields (u,, — @)(0) = O(h***) in H' norm, and D, (u,, — #)(0) = O(h***) in L?

norm.
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