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Uniform Convergence of Galerkin’s Method
for Splines on Highly Nonuniform Meshes

By Frank Natterer

Abstract. Different sets of conditions for an estimate of the form
- r+1, (r+1
Iy -y “Lw(a,b) <C miax h; My( )"Loo(li)

to hold are given. Here, y’r is the Galerkin approximation to the solution y of a

boundary value problem for an ordinary differential equation, the trial functions

being polynomials of degree < r on the subintervals I; = [x;, xi+l] of length h;.
The sequence of subdivisions m: x( <x; <--- <X, need not be quasi-

uniform.

1. Introduction. This note is concerned with the numerical solution of the
boundary value problem

2m—1
Ly =y®m + 3 4,y =f in@b),
(1.1 v=0
y?@) =yM®) =0, v=0,...,m-1,
a,€C"a b), v=0,...,2m-1,

by projection methods such as Galerkin’s method or collocation using splines as trial
functions. By splines we mean the elements of

S(r, k, ) = {vEC¥a, b): v E P, in each subinterval of 7}.

Here, r > k > 0 are integers, P, denotes the set of polynomials of degree <7, and
ma=x,<x, <---<x,=bis asubdivision of [a, b]. With each m we associate
the quantities

by =Xppg =% 1= Py X441, l7'r|=miaxhi.

By Il we denote a set of subdivisions, and we put I, = {m € II: || < h}.

If r, k, TI are suitably chosen, then a typical error estimate for an approximate
solution y™ calculated by some projection method reads as follows: There are & > 0,
C < oo such that y" is well defined for all y € C"*!(g, b) and all 7 € I, and

(12) ”y _yﬂ”Lw(a,b) < C|7T|r+l|b’(r+l)”Lw(a,b)’

Such results have been obtained by de Boor-Swartz [3] for collocation methods and
by Wheeler [8], Douglas-Dupont-Wahlbin [4] for Galerkin methods. The correspond-
ing multidimensional results are due to Scott [7] and Nitsche [6].
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458 FRANK NATTERER

The exponent r + 1 of |n|in (1.2) is best possible. This follows from the fact
that the estimate

. _ r+17.,(r+1)
vGS:Irl,f;c,w) b v”Loo(a:b) < Cll™ 1y “L‘”(a’b)

with C independent of , y is optimal as far as the exponent of || is concerned.
However, it has been shown by de Boor [1] that the sharper estimate

(13) vestrem ¥ TV (ap) < € max B O,

holds with C independent of =, y, if either r = 2k + 1 or the mesh ratio h;/h;,

[i =7l <1 remains bounded. This estimate makes sure that local refinement of 7 at
points where ¥("*+1) is large reduces the overall error. Thus it would be highly de-
sirable to sharpen the estimate (1.2) in a corresponding fashion, i.e. to prove that we
can replace (1.2) by

(1.4) b = 5"l 0,0y < € max RFHPCEDIL_p,.

For the Galerkin method, (1.4) follows easily from the work of Wheeler [8] in the
case m = 1, k = 0. We will obtain (1.4) for arbitrary m, r =22m -1,k =m — 1.
Forr=2m -1,k =2 m — 1; we will prove (1.4) under some mild assumptions on IT
which are satisfied e.g. for the highly nonuniform family of subdivisions of [0, 1]
given by x; = (i/n)®, i =0, . .., n with « > 1 arbitrarily large. This proof will be
based on estimates in weighted Sobolev spaces as used in Natterer [5] and Nitsche
[6] in connection with L -estimates for the finite element method.

The estimate (1.4) follows immediately from (1.3) if the projection method is
quasi-optimal in L (a, b), i.e. if there is a constant C independent of =, y such that

Iy = »"li <C inf -v )
V="l @) < veome W 7Yz @)

Unfortunately, there are many quite reasonable projection methods which are not
quasi-optimal in L (a, b). We therefore introduce in Section 2 a weaker condition,
called local optimality, which still implies (1.4). In Sections 3 and 4 we give differ-
ent sets of conditions for the local optimality of the Galerkin method. ‘

We will show by an example (see Section 2) that, in general, collocation fails
to be locally optimal. This matches with the fact that the best estimate for colloca-
tion methods obtained so far is

b =77 a5y < € max B HyCH Ol g+ (i +2)

(see de Boor [2]). We therefore feel that for highly nonuniform meshes (as needed
e.g. in an adaptive code), Galerkin’s method may be superior to collocation. How-
ever, the numerical experience available so far does not allow any definite conclusion.

2. Locally Optimal Projection Methods. We begin with some:notation:
E, F are normed linear spaces. We always assume that £ C ((q, b) is defined
by smoothness and boundary conditions only. E is normed by
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W= 1l @ p = max p(x)l.
a<x<b
For each subdivision 7 of [a, b] we define the spaces
Ck={veClE b:veC(),i=0,...,n—1}

and the seminorms, respectively, norms

!
Wl = max hélb’(l)”Lw(l,-)’ Wil = 3 Wl
v=0

A projection method for the approximate solution of Ly = f, L: E — F being a lin-
ear map, is defined by a set of subdivisions II, integers r > k = 0, and a family of
linear maps (V") ey, ¥": F — R™M, d(7) = dim (S™), where S™ = S(r, k, 7) N E.
If for arbitrary f € F there is a unique y™ € S™ such that y"Ly™ = y"f, then we
take y™ as an approximation to y. In that case we put Py = y™. It is obvious that
P™: E— ST is a projection.

Definition 2.1. A projection method is said to be locally optimal of order / if

(@) vrenECC,

(ii) there are constants C < oo, & > 0 such that

Vo€, Vy€EE ||P"y —y|<C inf |z -yl .
ze8™ !

Remark. A projection method is locally optimal of order O if and only if it is
quasi-optimal in L.

Definition 2.2. A set II of subdivisions is called locally quasi-uniform if there
is a constant C such that

Vr eIl h,-/hj<C ifli—jl<1.

The proofs of the following lemmas are based on Hermite interpolation in the
case ¥ = 2k + 1 and on the use of a local basis for S(r, k, 7) in the general case.

LEMMA 2.1. Assume that 11 is locally quasi-uniform or r > 2k + 1. Then the
norms ||°|l, 1|l 1,n are equivalent on S(r, k, m) uniformly for m € 11, i.e. there is a con-
stant C such that

Vrell Yy €Sk m) Wi, <l

LemmA 2.2. If WL is locally quasi-uniform or r = 2k + 1 and if a projection
method for Ly = f is locally optimal of order | <r + 1, then there are constants C
< oo, h > 0 independent of y such that

Vi€, Vy € C™* (e, b) Iy —y™Il < Cmax BTN, .
i o

Remark. The proof follows from Lemma 2.4 if y € C"*1(a, b). A more care-
ful analysis along the lines of the proof of Lemma 4.3 shows that y € C™ (g, b)
N CI*1 s sufficient.

Lemma 2.3. Assume that E C Cﬁ, for each m € Il. Then a projection method is
locally optimal of order 1 if and only if there are constants C < oo, h > 0 such that
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Vo eIl IPyIl < bl ,.

As an easy consequence of Theorem 4.1 of [1] we obtain
LEMMA 24. Let 11 be locally quasi-uniform and 0 < u < v <r. Then there are
constants t, C such that for all g € C¥(a, b), n € Il there is z € S(r, k, ) satisfying

Vi g — Z)(”)le(I,.) < Ch,'.’_“w(g("), h, 1,()’

where I,'. is the union of 1; and at most t adjacent intervals, and

w(f, h, 1) = sup{1fGe) —FEI: e —x'| <h x,x" €1}

The idea for the proof of the following lemma is well known and can be found e.g. in
de Boor-Swartz [3].

LEMMA 2.5. Assume that 11 is locally quasi-uniform orr = 2k + 1 and E C C,i
for each m €. Let L =L, + L, and assume that

(i) Ly', L™! are defined on F,

(i) There is a constant C such that with K = L'L,

VrnellVy €E

v—1
KN PNy qy SC{ T WMy gy + I, »=0,..., 1+ 1
u=0

Then, a projection method is locally optimal of order 1 for the operator L if this is
true for L.

Proof. Denote the projections associated with the projection method for L, L,
by P, P{, respectively. We first show that there are constants C < o, h > 0 such
that

2.0 vr€ll, VyeS" |IPgKy — Kyil <Clrlliyll.

Indeed, as the projection method is locally optimal of order [ for L, we have with
suitable C < oo, B > 0 for m € II,,

(2.2) IPGKy = Kyl < C inf iz = Kyll, .
z&S
From Lemma 2.4 we see that

2.3) inf ||z = Kyll, , < CKYly, o
ze8T

By assumption (ii) and Lemma 2.1 we obtain
24) Kylppy o < Clrllyll, , < Clallyll.

Now (2.2)—~2.4) combine to yield (2.1).
Consequently, the operator T: S™ — S™ defined by

T=(+PK)l,

possesses for |7] < k', h' > 0 suitably chosen, an inverse because I + K = LEIL does;
and there is C < oo such that
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(2:5) Yr €M, Vy €S™ T !yl <Clpll.

We now show that the operator Q = T—ng(I + K) coincides with P" for |n| <h'.
Using YL Pg = YL, and the identity

Py + K)Q = Pg(l +K)
which can be verified by direct calculation, we get
YTLQ = YLy + K)Q = YL Py + K)Q
= Y"L Py + K)=y"L,(I +K) = YL,

Thus P" exists for || <A’ and P" = Q. By (2.5), Lemma 2.3 and assumption (ii)
we obtain fory € F
WPyl = IT~ Pyl + Kyl < QIPGI + Kyl

<CIU + KWl < Cllly

with C independent of #, . The lemma follows by Lemma 2.3.
Example. In order to solve y' = f, y(0) = 0 by collocation with piecewise lin-
ears at Gaussian points, we put r = 1, k = 0 and

E = {v € ((0, 1): v' piecewise continuous, v(0) = 0},
F = {g: g piecewise continuous in [0, 1]},
VeEF (Y"g);, =gX; 1y~ 0), i=0,...,n-1,

where x;, ;5 = (x; +x;,,)/2. We obtain

i—1
(Pﬂy)(xi)zzhjy'(x]'.'_l/z_o), i=0,...,n_1.
j=0

For a uniform mesh, o, =h, i =0,...,n— 1, n even, define y € E by
x/h, 0<x<h,
¥ =1, h <x < 5h/3, y(x + 2h) = y(x).

6 —3x/h, 5h/3 <x <2h
Then
P y)x,) =4 =1, APl =3,
hence an estimate of the form [|P"y|l < Clyll, . with C independent of y, 7 cannot

hold. Thus, collocation is not locally optimal of order 1. Using a smoothing proce-
dure, it is seen that it is not locally optimal of any order.

3. Local Optimality of Galerkin’s Method in the Case Kk = m — 1. In order to
apply the results of Section 2 to the Galerkin method for (1.1), we put

E=Hg(, b), F=H (@, b),
2m-—1
Ly = y(2m) Ly= 3 apy(").

v=0
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If Kk =m— 1, then S™ = {v € 8@, k, 7): v (a) = v (b) =0, » <m — 1}. For each
g € F we define (Y"g); = (s;, 8), i =1, ...,d(m), where (,) denotes the pairing be-
tween E, F and {s,, ..., sd(ﬂ)} is a basis for S™.

Assumption (ii) of Lemma 2.4 for / = m — 1 is an immediate consequence of
the following lemma, the proof of which is left to the reader.

LemMA 3.1. For y € H{'(a, b) let z € H{'(a, b) be the solution of Lyz = L,y.

Then there are functions Cppr € € C(a, b) such that for v<m + 1

-5 e, ™ +e,,
u=0
where Cou independent of y and ||c, || < Clly|l with C independent of y.

THEOREM 3.1. Assume that the homogeneous problem (1.1) has only the trivial
solution. Then, the Galerkin’s method for the solution of (1.1) is locally optimal of
orderm—1fork=m-1,r=2m-1.

Proof. By Lemma 2.4 and Lemma 3.1 it suffices to consider the equation Ly
= f. Generalizing an idea of Wheeler [8], we construct the Galerkin approximation
" to y locally. For each z € H™(I;) we define Q,z € P, by

(3.2) z-Qz€ H:)n(li),

(3.3) Vv € P, N HT(I) f (z - Qi)™ ax = 0.
I;

Q;z is well defined. Indeed, as r = 2m — 1, the dimension  + 1 of P, coincides with
the number of conditions in (3.2), (3.3); and if z = 0, then the choice v = Q;z in
(3.3) yields (Q,-z)('”) =0, hence Q;z = 0. Furthermore, there is a constant C inde-
pendent on /;, z such that

m—1
(3.4) “QiZ”Loo(Ii) <C zo h;)”Z(V)HLw(Ii).
v=

If we can prove this estimate for /; = (0, 1), it follows for arbitrary intervals by homo-
geneity. For I; = (0, 1) it is seen from (3.2) and from (3.3) by integrating by parts
m times that

07 =% (@0 +820) + [ v as,

v=0
where a,, §,, ¥ € P, are independent of z. This proves (3.4).
If z € H{'(a, b), then we may define Q"z by piecing together the functions
Q;z. Ask=m—1,Q" is a projection from Hg'(a, b) into S™. From (3.4) we con-
clude that there is a constant C independent of y, m such that |Q"yIl < CYIl,,_; .-
By Lemma 2.3 the proof is complete if we can show that y™ = Q"y, ie.

(3.5) Yo € 8™ fa”(y = Q™)™ gx = 0.

For each v € P, we can findv; € P,,,_, such that v —v; € P, N Hy'(I;). We now
apply the definition of Q7, integration by parts and (3.3) to get for each v € S
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b n—1
L(y — Q)M g = S ffi(y RGN CIPN
i=0

n—1
T Em f o - 0ppem™ ax
i=0 i

n—1
> 0 f - 0@ ax
i=0

n—1
= Z fl‘(y — Qiy)(m)(v - v,-)('")dx
i=o !

=0.
This proves the theorem.

4. Local Optimality of Galerkin’s Method in the Case kK = m — 1. For general
r, k, we prove the following result, which is slightly milder than the preceding theo-
rem.

THEOREM 4.1. Assume that the homogeneous problem (1.1) has only the trivial
solution. Let 11 satisfy the following assumptions:

(4.1) For each € > 0 there is an integer I such that

Ve €M Vi, j hfx,—x|<e ifli—-jl=L

_(4.2) There are constants C < =, a < 0 such that

n—1 [(p\"2at2m-1 h. —2a
VrenVj Z(h—’) < ! ) <C

i=oa2i\ b = x;l
Then, the Galerkin method for the solution of (1.1) is locally optimal of order m for
kzm-1,r=2m-1.

Examples. (1) Define a set IT of subdivisions IT,: 0 = x, <x, <:--<x, =1,
n=1,2,...,as follows: Choose a > 1 and put x; = (i/n)*, i =0,...,n. Then
the hypotheses (4.1) and (4.2) of the theorem are satisfied.

(2) If we putx, =0,x; =q¢""i=1,...,nwith 0 <gq <1, then it is easily
seen that (4.1) is not satisfied.

Theorem 4.1 will follow from certain estimates in weighted Sobolev spaces, the
weight functions being defined by

43) pax) = (p* + (x - %)%,

where a is a real number, p > 0 and x € [a, b]. The only estimate on p, we need is

(4.4) I <cp,_, /2"

Note that the constant in this estimate depends neither on p nor on X, but only on a, v.
If 7 is a subdivision of [a, b], we put

K= max h,-“P-] /ZIIL.,O(I,').
1
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Let j be the index defined by x; <Xx <x;, .
Lemma 4.1. If 11 satisfies (4.1) and is locally quasi-uniform, then for each € > 0
there is K > 0 such that with p = Khj

VreNl k<e.

Proof. If € > 0, then by (4.1) there is > 0 such that for x € I
Rip_ (x) < (/X —x)? <e€* if li—j|>1

If i —jI </, then h; < C’h]- with C independent of /, i, j, m because II is locally quasi-
uniform; hence

hip_y(x) <K 72(hy/n)? < (C'K)2.

The lemma follows by choosing K = C'/e.
LemmA 4.2. If 11 satisfies (4.1) and is locally quasi-uniform, then for each a
there are positive constants K, C such that with p = Khj

Vr€ENMVi max pa(xymin p(x) <C
xEIi xEIi

Proof. Let p,, assume its maximal (minimal) value in /; at to(t,;). Then by the
mean value theorem and by (4.4),

PaltoPalt) ™ = U <hpo(t) M IpgllL 1
(4.6)

< Cp (o (t)  hyllp_, 12l ay-

By the preceding lemma we can choose K such that Ch,lip_, ), |l Loay S 1/2, where
Cis the constant in (4.6). Then from (4.6) we get p,(¢,)/p,(¢,) < 2. This proves
the lemma.

We now introduce in the Sobolev spaces H”({), I an interval, the seminorms

1/2
lu lu,oz,I = <£pa{u(V)}2 dx> .

If I = [a, b], we drop the index I. These seminorms are not to be confused with
lul, . defined in Section 2, where 7 always denotes a subdivision. We also use the
notation |ul, , yif u € H*(I; N 1) for I; N-I # & in an obvious way.

LEMMA 4.3. Letr > k= m — 1. If N is locally quasi-uniform then there are
constants C, t such that for all g € E N C¥(a, b) N CI*, 7 €1l there is z € S™ satis-
fying

: +1-m
Vi lg'zlm,o,l,- < Chi lgir+l,0,1;.’

where I,f is the union of I; and at most t adjacent intervals.

Proof. The inequality follows immediately from Lemma 2.4 if g € H"* (g, b).
The case considered here requires some extra work.

Approximating g**1) by w € S(r — k — 1, —1, m) and solving v* 1) = w,
we find v € S(r, k, 7) such that
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. _ r—Kki
Vi g Vlkiy,0,5, SCH Bl 00,

Since g —v € H* (g, b), we can use Lemma 2.4 to obtain u € S(r, k, m) such that

. k+1-m, _
Vi g =V = tly,o0, < Ch &~ Vlks1,0,15

<Ol o
Putting z = u + v proves the lemma.

LEmMMA 44. If 11 satisfies (4.1) and is locally quasi-uniform, then for each a
there are positive constants K, C such that with p = Khj

m
Vr e Vu eS™ ggﬂ Pt =2l <SCk 3 Ml gt
z

v=0
Proof. 1t follows from Lemma 4.3 and Lemma 4.2 that there is a z € S such
that

4.7 Vi Pt =zl a1, <CHTTDQUlL 4y oty
Due to Lemma 4.2 we have for u € S the inverse estimate

Iulv’_a,l;, < Chflul, V=

'
= Iy

By Leibnitz’ rule, (4.4) and the inverse estimate we obtain

r
r+1-m r+1—-m (r+1-v),,(v)
h; Pottly i1 a1, < Ch 2 g U o g1
v=0

r
SO Y jul

v,a—r—1+v,I;
v=0

m

r+1-m

< Cghi Z lulu,oz—r—l +v,1;
v=0

r
+ Z h;+l—vlul

m, oa—r—1 +v,I}
v=m+1

m r
r+1-m r+1-v;
< C{k Z Iu',,,a_m.'.,,’];.‘{' Z K WIm,a,I}
v=0 v=m-+1

The lemma follows.

Now let P{j be the projection associated with Galerkin’s method for the solution
of Loy = f where L is defined as in Section 3.

LEMMA 4.5. Let k > m — 1. If 1l is locally quasi-uniform and satisfies (4.1),
then for each « there are positive constants C, K such that with p = Khj
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Vr €11 Yu € H™a, B)  1PTul,, o < CUPUly oy + Ul o}

Proof. As in Nitsche [6], we start out from the identity (integrals from a to b)
Sl 0 = [ Eo) ™ Po)™ dx

m—1
- Z (’;’ )f(pgu)(rn)pgm—w(pgu)(w dx.
With z € ™ it follows from the definition of Pg that the first term on the right-hand

side of this identity becomes

“s) @™ p Py dx = f(pg~u)(m)(p Pt — 2™ dx + [umz0m g

S VPG, o PP ~ 2l g F Wl o1l —o
By Lemma 4.4 we can find z € S™ such that
m
(4.9) IPQPKu - zlm,—a < Ck Z 1P'gulv,oz—m+u'
v=0

Using Leibnitz’ rule and (4.4), we see that z also satisfies

m
4.10) Izlm,—a < k)anu - Zlm,—a + lpapgulm,—a <C Z ngulu,a—m+u'

v=0
The second term in the identity can be estimated by (4.4):

. V—O 0 0”Im,a = 0"'v,a—m+vp*

Using (4.8)—(4.11) in the identity yields
'Pgulfn,a < C%'dpgulfn,a + |ulm,angu|m,a
m—1
+ (Ul + PGUlpo) 2 PQUly am v (-

v=0

From this inequality we remove the derivatives of order v, 1 <v <m — 1, by using
repeatedly the estimate

|U|1’ﬁ+1 < C{EIU|2,3+2 +e! lvlo,ﬁ},

which is easily established by (4.4) and integration by parts for all v € H} ola b) N
H?@a, b) and 0 < € < 1, with C independent of v, e. We obtain for each € > 0,

m—1
1-m .
S Pl o sy < CLelPRUly o + € PEulo 0m
v=0
hence

Prul?, , < Cl{(k + WPgul, o + luly, oP5uly, o

+ €' 7"l + PG, )POUlo 0 mm ;-
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By Lemma 4.1 we can choose K in such a way that C(k + ¢) < % in this inequality.
Applying the inequality lab| < 8a%/2 + b?/(28) in an appropriate manner completes
the proof.

LEMMA 46. Letk>=m—1andr>=2m — 1. If Il is locally quasi-uniform and
satisfies (4.1), then for each o there are positive constants C, K such that

Vn €11 Yu € HJ'(a, b) PGl o + WPottly qom < Cllul, o + 1o o m)
Proof. let w € H{'(a, b) be the solution of
(_l)mw(Zm) — pa—mPgu‘
Then, for each z € S™ we have

gul2 - ngu(_ l)mw(2m) dx = f(Pgu)(m)W(m) dx

0,a—m

= I(P”(;u —u)™(w - 2)™ax + fu(m)w(m)dx
4.12)

= J @ - ™ - ™ ax + fp,_uPudx
S IPGU = Uiy, (W =2zl o F My o PoUlg a—m-
By Lemma 2.4 and Lemma 4.2 we can find z € S™ such that
W =2l o1, < Ch" Wlym,—,1; < ChY" WPottlo,a—2m,1;
< Gk \PGutly o—m, 15

Thus, cancelling one factor |Pgul, ,_,, we obtain from (4.12)
o%lo.qem < CklPgu = uly, o +lulg o -

Now we estimate ngulm, o on the right-hand side of this inequality by means of
Lemma 4.5 to get

IPouly qmm < Clluly, o + g oom + kIPoUly qm}-

By Lemma 4.1 we can choose K such that Ck < 1/2 in this inequality. It follows
that

IPz)rulo,oz—m < Iulm,a + Iu'o,oz—m}'

The result follows by Lemma 4.5.
Proof of Theorem 4.1. The above estimates in weighted L,-norms are shifted
to the uniform norm by means of the obvious inequalities

Po(®) (@) G < O Pgulf o < CHE™ ™ PGUIG 0,1,

<™ PGUlG oom-
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We apply Lemma 4.6 to obtain
m
(4.13) Po(%) ((P(';u) )? < Ch,-2'"_l > |u|3,a_m+,,.
v=0

Observing that p,(¥) = p** = (Kh;)** > Ch?® and for a < 0

2 2
Iulu, a-m+v,I; < Chi“pa—m + v”L,,o(I,-)”u(V)”Lw(I,-)
— 1-2p 2
= Chy " *’lpg—m +v||L,,(1,-) lul; -
1—2p _ 2(a—m+ 2
< Ch; (h]. + bx; x;l) (a—m+v) jul?

with |i = i'| <1, [j—j| <1, we obtain from (4.13)
n

—-

_.]J
-
I(Pju) (%)% < C max B2t 2mAR 2 4 ey = xp )22,
=0 =g

By (4.2) the factor of Ilu||,2,,,,, on the right-hand side is bounded independently of u,
7, x if a is chosen such that the series (4.2) converges. Thus, we have obtained the
final estimate

WPoull < Cliull,,,

which shows that Galerkin’s method is locally optimal of order m for L,. Asin
Section 3 we use Lemma 3.1 to verify assumption (ii) of Lemma 2.5 in the case I =
m. Now Lemma 2.5 shows that Galerkin’s method is locally optimal of order m for
L, too.
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