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On a Boundary Extrapolation Theorem by Kreiss

By Moshe Goldberg*

Abstract. A hardly known and very important result of Kreiss is proven explicitly:
Outflow boundary extrapolation, which complements stable dissipative schemes for
linear hyperbolic initial value problems, maintains stability. In view of this result,
the Lax-Wendroff and the Gottlieb-Turkel schemes are applied to a test problem.
As expected from the rate-of-convergence theory by Gustafsson, global order of ac-
curacy is preserved if outflow boundary computations employ extrapolation of
(local) accuracy of the same order.

1. Introduction. The initial value problem
a.n u,=au,; a>0, x>20,t20;, u(x, 0)=7rf(x),

is well posed in L2(0, =), and requires no boundary conditions at x = 0. Yet, it is
impossible to approximate the solution of (1.1) by a difference scheme, which is not
right-sided, without specifying boundary values at some points in a left neighborhood
of x =0.

In this paper we consider general two-sided dissipative schemes which are stable
for the pure Cauchy problem for —o0 < x < eo, Our main purpose is to provide a
proof for the following important result which was stated by Kreiss in 1965 [4, Theo-
rem 5], but no detailed proof has been published. We show that if the required bound-
ary values are defined by extrapolation of arbitrary order of accuracy, the numerical
algorithm remains stable.

Of course, one may have instead of (1.1), the equation u, = au, with a <0,
which defines a well-posed initial value problem in the quarter plane {x < 0, ¢ = 0},
rather than in {x = 0, t = 0}. However, by employing the transformation x ——x
it is clear that this problem goes over to the previous one. Consequently, we would
find that the process of extrapolating to grid points at some right neighborhood of
x = 0, is stable.

To summarize, our aim is to show that by using a stable two-sided dissipative
scheme together with an outflow extrapolation, to approximate a well-posed initial
value problem in the proper quarter plane, overall stability is maintained. Again, since
the cases ¢ > 0 and a < 0 are analogous, it suffices to prove stability for difference
approximations of (1.1), and the proof is given in Section 2.

The tool by which we carry out the analysis is Kreiss’ stability theory for dis-
sipative finite-difference approximations of mixed initial boundary value problems.
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This theory is given in [5], and we assume that the reader is familiar with this work.
In Section 3 we present numerical evidence to support the theoretical results.
We use two dissipative approximations: The well-known centered 3-point Lax-Wendroff
scheme, [7], and a centered 5-point scheme by Gottlieb and Turkel, [2]. In particular,
our computations verify that by using extrapolation of local order of accuracy which
equals the global order of accuracy of the difference scheme, the global accuracy is
preserved. The important question of convergence rate for mixed initial boundary value
problems is discussed by Gustafsson, [3].
The computations reported in this work were done on the IBM 360 machine, at
the Campus Computing Network of the University of California, Los Angeles.

2. Stability Analysis. In order to solve the initial value problem (1.1) by a finite-
difference scheme let us introduce a mesh-size Ax > 0, At > 0, such that A = Az/Ax
= constant, and use the standard notation x, = vAx, v,(f) = u(x,, ). Now consider a
dissipative consistent approximation to (1.1) of the form

2.1 vt + A =Qu,(H), v=1,2,...,
where
p )
2.2 Q= Y qEl, Ev,=v,,,,
i=r

and initial values are given by
(23) vu(0)=fp’ v= 1,2, LR

Here the fixed coefficients a; depend on a and A, such thata_,,
The assumption of dissipativity (in the sense of Kreiss) means that there exist
a constant 6 > 0 and a positive integer.w, so that the amplification factor

a, do not vanish.

@4) 0B = 3 get, -n<g<m,

j==r

of the difference scheme, satisfies

2.5 10 < 1-818%°, VIE<m.

Condition (2.5) guarantees, of course, the (strong) stability of the approximation,
should it be applied to the puré initial value problem for —o0 < x < o,

Our final assumption, as indicated in the introduction, is that the scheme is
two-sided, i.e., r > 0, p > 0. In fact, having dissipativity, our scheme must be two-
sided if we simply require that the difference operator Q will be consistent with
u, = au,, for an arbitrary value of a—positive or negative. This result is given in Cor-
ollary 1 of [1].

Since r > 0, it is evident that in order to apply the numerical approximation to
(1.1), we have to specify, at each time step, boundary values v“(t), u=0,—-1,...,
—r + 1. We do this by means of extrapolation, utilizing the Lagrange interpolation

polynomial of degree s — 1, s > 1, which has accuracy of order s.
In order to comply with Kreiss’ formulation in [5], we should use the procedure
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S

(2.6) 0, =3 U, wu=0,...,-r+1,
j=1
where the Lagrange coefficients, Cju> depend on u and are given by
W(x,)
Cin = e — W%} =0,...,—r+1,j=1,...,5,
2.7) i = (e, = X)W u=0 r =1 s

Wx)=(x—x;) =« (x—xp).

The fact that the ¢;,, vary with u causes some numerical and theoretical inconvenience
which we eliminate as follows. Since there exists a unique polynomial of degree s — 1
which coincides with a given function at s given points, (2.6) is equivalent to extrap-
olating from v, (?), . . . , v(¢) to v(), and then from vy(r), ..., v,_, (1) to v_,(2),
etc. That is, (2.6) is equivalent to the fixed coefficient extrapolation algorithm

s
(2.8) vy(t) = 21 c].v#H(t), u=0,...,-r+1,
]:
where
W, (x,)
(2.9) c; = B £ j=1""’S,

Ty — X Py

and

I
o
|
~
+
-

W”(x) = (x —x#H)(x—x#H) R (x—xﬂ“), u

It is straightforward to verify that regardless of u

(2.10) C,~=<]s.>(— ity j=1,...,s

So our boundary conditions are
S

(2.11) v (=2 <]S> CDM 0, w=0,...,-r+ 1,

j=1

and we finally write them in the convenient form

N

(2.12) > <]s,>(—1)fvﬂ+,-=0, W=0,...,—r+1.

=0
Now the approximation to (1.1) is well defined, where the local error at the boundary
extrapolation is O(Ax®).
Next denote by H the space of all grid functions w,,, defined for v > —r, which
fulfill the boundary condition (2.12), and which satisfy

oo

(2.13) > wPAx <o,

v=—r+1

Upon defining inner product and norm by

oo

(2.14) @v= T ayAx, w2 =0, w),
v=—r+1

H becomes a Hilbert space.
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According to these definitions, we may present our difference approximations
in the form

(2.15) Wt + A = Gop), wD), ot + Ar) E A,

where G is a linear bounded operator in H defined by (2.1) together with (2.12).
We say that the algori.thm in (2.15) is stable if there exists a constant K, such
that

(2.16) lo@ll < Kllu(O)ll, Vit =mAt and »(0) € H.

The above description follows Kreiss’ representation in [5], so all the results of
[5] hold, and we first rephrase the Main Theorem of [S] as follows: The finite-dif-
ference approximation is stable if the operator G has no eigenvalues z with |z} > 1,

z # 1,and if z = 1 is not a generalized eigenvalue of G.

The concept of a generalized eigenvalue is discussed in Section 1 of [5], and in
the remainder of this section we shall show that for our problem, the Main Theorem is
satisfied.

In order to check whether a given z with |z| 2 1 is an eigenvalue of G, we con-
sider the characteristic equation of the difference operator Q,

14 .
(2.17) det[zr ajxl - Z] = Q.
j=—

By Lemrﬁa 2 of [5], Eq. (2.17) with z # 1, |z| 2 1, has r + p roots k; r of them with
0 <kl <1 and p with |k] > 1. Moreover, according to the proof of Lemma 7 of [5],
asz — 1 (lz| = 1, z # 1), precisely one root k tends to 1; and this root approaches 1
from inside the unit disc if and only if @ < 0. In our case, the coefficient 4 in (1.1) is
positive, so no root k of (2.17) tends to 1 from inside the unit disc. Hence,z =1 is
not a generalized eigenvalue of G, and it remains to verify that z with |z| = 1,z # 1,
is not an ordinary eigenvalue of G.

Suppose z, with Izl 2 1,z # 1, is an eigenvalue of G, with a corresponding
eigenvector g € H. That is, Gg = z,g, or more specifically, due to the definition of
G, g must satisfy the relations

(2.18) (@-z.,=0, v»v=12,...,

and the boundary conditions

. s .
(2.19) )> (;) C1Dig,; =0, u=0,-1,...,—r+1.
=0

Take the characteristic equation with z = 'zo, and letk, i=1,...,q,beallits
distinct roots which satisfy |k, < 1, each with multiplicity ;. We know that there
are r such roots, so

(2.20) > nu=r

The most general solution of the ordinary difference equation (2.18), which belongs
to H, is known to be
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q v
(2.21) g, = Z Zl: 0; kvk‘lx}’, v=z-r+1,
=1 k=1

where the r coefficients o, , are arbitrary. We still have to verify that the solution in
(2.21) satisfies the boundary conditions (2.19). So, we insert (2.21) into (2.19) and
after a simple rearrangement we get

q ; s
22 X X [Z <s> 1)/ +f)"“'<$‘+"] 0, =0, wu=0,...,-r+1L
i=1 k=1 Lj=o0 \J ’
In (2.22) we have a homogeneous linear system of 7 equations for the  unknowns
0; - Denoting the coefficient matrix by £, it can be shown, by elementary column
operations, that £ reduces to a generalized Vandermonde. Hence, det E is proportional
to an expression of the form
(2.23) [IgI K=k ”'] [ 1 - Kf)7i7j] ’
i=1 1<i<j<q

where the p; are integers. Since k|, ... s Kq are distinct with 0 < |x,;| < 1, we see
that det E # 0; thus the only solution to (2.22) is the trivial one, namely, 0;x = 0.
Consequently, g, of (2.21) vanishes, which means that we- have failed to construct a
nontrivial eigensolution of (G — z,/)g = 0 that belongs to H. Hence, z, is not an
eigenvalue of G, and Kreiss’ Main Theorem assures stability.

We have proven the following result.

THEOREM (KREISS, 1965). Let the initial value problem

u, =au,; a=const; x(siga)=0,t=>0; u(x, 0)=f(x),

be approximated by a dissipative, strongly-stable, two-sided scheme, which is com-
plemented by outflow extrapolation of arbitrary accuracy, at the boundary x = 0.
Then, the overall approximation is stable.

We conclude this section by demonstrating the cases r = 1 and r = 2, which
cover all schemes of practical importance. In particular, r = 1, r = 2, agree, respective-
ly, with two schemes which we employ in Section 3.

For r = 1, we have to extrapolate only at one point, 4 = 0, and the character-
istic equation has only one root k inside the unit disc. So, an eigensolution of
(G-2)g=0,]|z| =0,z # 1, must be of the form

(2.24) g, =o’, v>0,

and substituting this solution into the boundary condition (2.19), we obtain the
single equatijon

b s . . _
(2.25) I:];) <1> ¢ l)]"’] =0

Here

(2.26) dt5=£=3 (5) e =a-wr o,

and stability follows.
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When r = 2, we use at each time step, v, (¢), ... , vy(t), to compute v, (¢); and
then vy(?), ..., v,_,(#), to determine v_,(f). Equation (2.17) has now two roots
k; with 0 < k;} <1, and we distinguish between two possibilities. The first is k, =
K, = K, where

2.27) g, = 0,k +o,kY, v=-—1.

The insertion of (2.27) into (2.19) yields the system of two equations
s y .
(2.28) 3 (;) 1Yo, + u+1)oy k" =0, p=0,-1.
j=o
Writing (2.28) in the form of Eo = 0, with ¢' = (g,, 0,) being the transposed un-
known vector, we find that

(2.29) det E=—-k"1(1 —k)*S #0.
The second possibility is k; # k,. Here

(2.30) 8 = 0k + 0.k, v=-1

b

which we substitute into (2.19) to obtain
s

s : . .
(2.31) > <]> C (o kM + 0,6t M)y =0, u=0,-1.
=0
The coefficient determinant is

(2.32) det E=k7 k711 —k)"(1 —ky) (K, —Kk,) # 0,
and again, by the Main Theorem, stability follows.
3. Numerical Results. In this section we consider the initial value test-problem
3.1 u,=u,; x20,t20; u(x, 0)=sin 2mx,
whose analytic solution is
3.2 u(x, t) = sin 2a(x + 7).

We begin by writing down the second order accurate Lax-Wendroff scheme
(L-W), [7], which for the linear equation in (3.1), takes the form

1
= 3 gy, o =u,(man),
(3.3) i==1
ag=1-22, a,, =%A2tNX), A=At/Ax.

We recall (e.g. [8, Chapter 12]), that in the above case (¢ = 1),
(3.4 A<l

is a condition which assures dissipativity and strong stability.

Here, r = 1; hence, to approximate (3.1), we need to specify only one boundary
value, v'. Extrapolating via v, ..., UJ", we get, according to (2.11), a boundary
condition

S /s .
(3) g =3 (5) e,

j=1
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which is of (local) accuracy of order s. By the theorem of Section 2, the algorithm
defined in (3.3) together with (3.5), remains stable, provided (3.4) is satisfied.

For the numerical computations we set an artificial boundary at x = b, b > 0,
where we use values of the analytic solution. Nevertheless, we restrict attention to
results in the interval 0 < x < 1, so we choose a large enough b, in order to secure that
during the integration period, 0 < ¢ < 1, there will be no interaction between the
boundary at x = b, and the numerical solution at 0 < x < 1. In other words, errors
due to the right boundary, which propagate inward, never reach the region 0 < x < 1.

t=.5 t=1.
Ax N m ”e”(O,l) m ”e"(O,l)

05 2 20 275-2 40 5.57-2

.025 2 40 6.93—3 80 139 -2
0125 2 80 1.72 -3 160 346 -3
05 1 20 5.63-2 40 7.03 -2
025 1 40 1.98 -2 80 223-2
0125 1 80 7.00 -3 160 744 -3

TABLE 1. L-W results with A = At/Ax = %,
m = t/At is the number of time steps;
a—npresentsa = 1077,

The quantity IleII(O,l) in Table 1 is the H-norm of the error, restricted to 0 < x
<1, ie., in our case (r = 1),

3.6) "e”(O n = |e(t)”(0’1) = Z [l) ®- u(xw t)]zAx J= A

v=0

x’

The integer s indicates the order of extrapolation: s = 1 and s = 2 mean constant
and linear extrapolation, respectively. We realize that all the results are stable. As
expected, linear extrapolation maintains the overall second order accuracy of the
L-W scheme, while constant extrapolation reduces the total accuracy.

Our second check relates to a centered 5-point scheme suggested by Gottlieb
and Turkel (G-T), [4]. We consider the family of schemes in (2.4) of [2], set its
parameters to be @ = %, o = 1, and linearize. The approximation we get for Eq.
(3.1)is

m +1 _ zz: a.=1- _7_ )\2
L 0 4

—7\<x+ ) ai2=—%<%i%>, n=2L.

It was shown in [2], that (3.8) is stable if and only if
(3.8) A< \/2—/2’

3.7

wlw
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and if we somewhat sharpen this condition and require

(3.9) : A<V2/2,
we have dissipativity as well.

Unlike the L-W case, which is of second order accuracy both in time and space,
the G-T approximation is of second order accuracy in time and fourth order accuracy
in space. By this we mean that the truncation error € satisfies

(3.10) €=At[O(Ar?) + O(At + Ax?) + O(Ax*)] < At[O(A?) + O(Ax*)].

Such schemes—see also the Kreiss-Oliger approximation, [5]—have advantages when
dealing with problems whose solutions have strong space variations but vary slowly in
time. In particular, this concept fits problems which approach a steady state. These
ideas were discussed in [6].

In the G-T case r = 2, so we need to specify vy (#), v_,(f). Again, by (2.11) we
have
@.11) D

S\ 1yi+1 -0 —
]-—1<j>( 1)’ U;-'_:_“, M_O’ 1’

where it is understood that the evaluation of v’(;’ precedes U™, .

t=.5 t=
Ax A s om el mo el
.05 ) 4 20 942 -3 40 1.85 -2
025 .25 4 80 575 -4 160 1.16 — 3
05 S 3 20 2.14 - 2 40 242 -2
025 25 3 80 1.78 — 3 160 192 -3

TABLE 2. G-T results.

Table 2 shows that the results are stable. Here, in analogy with the previous

case,
J

— 1
(3.13) leli?o, 1) = Zl [, —ulx,, N]Ax, J=5—.

=

Since G-T is of fourth order accuracy in space, it is expected that utilizing a cubic

extrapolation (s = 4), will maintain the 4-space accuracy. As shown, results for Ax

= .05 and At = .025 are compared with those for Ax/2 and At¢/4. Indeed, the error

is reduced by a factor of 16. This ratio is destroyed if we use quadratic extrapolation.
As a final point of reference to the figures in both tables, we mention that the

norm of the numerical solution was for all times 0 <¢ <1,

J
(3.14) Il = 3 u,(?Ax~05, J=7-.
v=—r X
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