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Existence of a Solution to the
Discrete Theodorsen Equation for Conformal Mappings

By Martin H. Gutknecht*

Abstract. The discrete Theodorsen equation is the basis of efficient numerical methods
for conformal mappings of the unit disk onto Jordan regions that are starlike with re-
spect to the origin. Applying Brouwer’s fixed point theorem we show here that there
always exists a solution to this equation.

Let D denote the unit disk (in the z-plane) and G a region (in the w-plane) with
boundary T', where I is a Jordan curve that is starlike with respect to the origin and
thus defined by polar coordinates 7, p(7), p being a 27-periodic positive continuous
function. (Note that ‘starlike’ sometimes is defined slightly more general.) Then
there exists a unique mapping function f: D—> G that is continuous in D, conformal
in D, and normalized by f(0) = 0, f'(0) > 0. fis already determined by a real 27-
periodic function 8 satisfying f(e’®) = p[6(¢)]€®(®). For one of these functions
Theodorsen’s integral equation holds [2, p. 65]:

1) 0) = 6 + 5= PV.f; "log p[0(0)] cot £=2 do.

The existence of f implies that this nonlinear singular integral equation always
has at least one strictly monotone continuous solution. One can show [2, Theorem
1.3, p. 66] that there exists only one solution with these properties. Moreover, if
I satisfies a so-called e-condition with € < 1, then (1) cannot have additional non-
monotone continuous solutions.

Definition. A starlike Jordan curve defined by polar coordinates 7, p(7) satis-
fies an e-condition if p is absolutely continuous and

AG)
p(r)

For numerical computations Eq. (1) needs to be discretized. The easiest and
most useful way to do this [2], [3] leads to what we call the discrete Theodorsen
- equation:

o

?) € := esssup
0<7<2m

€)) 0 = ¢ + K log p(6).

Here ¢, 6, 1og p(6) are n-dimensional vectors (n even) with components ¢, : =
2kn/n, 6,,and log p (6;), k =1, ..., n, respectively, and K is Wittich’s matrix:
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0, ifj— k even,

4) (K)k],;= k,j=1,...,n).
%cot g—;m, if j — k odd,

Of course, 0, is supposed to approximate 0(¢;).

Again, it can be shown [2, Theorem 3.2, p. 87] that Eq. (3) has exactly one
solution if I' satisfies an e-condition with e < 1. Moreover, in this case the solution
can be computed by direct iteration or by variants of Newton’s method. These num-
erical methods are very efficient even for large n (i.e. fine discretization) because the
fast Fourier transform can be applied [3]. In addition, for a quite general class of
boundaries I', which must be symmetric about an axis but may have an arbitrary
large €, the local convergence of the iteration method modified by underrelaxation is
established in [3] supposing the existence of a solution. Surprisingly, it is possible
to prove this existence assuming only the continuity of p.

THEOREM. If p is continuous, the discrete Theodorsen equation (3) has a
solution.

Proof. We define r: D — R by

p(Arg 2)lz| + 1 - [z], if0<|z|<1,
s) @)=
1, ifz=0.

(Arg denotes the principal value of the argument, —7 < Arg z < 7. But since p is
2n-periodic, we could use an arbitrary branch.) The function r is continuous. Using

the notation n(z) : = (1(z,), . . ., r(zn))T, exp(w) = (exp(w,), . . ., exp(wn))T, etc.,
we define ¥: D" — (aD)" by

(6) ¥(z) : = exp [ip + K log(z)].

¥ is a continuous function mapping a convex compact subset of C” into itself.
According to Brouwer’s fixed point theorem [1, p. 454], ¥ has a fixed point z* €
W(D™) C (3D)". But for z € 3D we simply have 1(z) = p(Arg z); thus

™ z* = exp [ip + iK log p(Arg z*)],
(8) Arg z* = ¢ + K log p(Arg z*) — 27l

for some integer vector . So, we set 6* : = Arg z* + 27l implying
&) 0* = ¢ + K log p(6*),
i.e. 0* is a solution to (3).**

**Note Added in Proof. Another easy proof can be based on Schauder’s more powerful
second fixed point theorem [1, p. 456] (or an analogic theorem for finite-dimensional spaces) in-
stead of Brouwer’s theorem.
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Remarks. (i) If T is symmetric about an axis (or about several axes), then one
can similarly prove that there exists a solution with corresponding symmetry. Of
course, one has to assume that the point set {exp i¢, |k =1, ..., n}is also symmet-

ric about the axis.
(ii) Examples in [3] show that solutions to (3) are not necessarily monotone.
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