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Computations of the Hill Functions of Higher Order

By A. J. Jerri

Abstract. In this note, we express the hill function ¢,(x) of an order n as a Fourier
cosine series which is of simple form that allows proving the function’s basic proper-
ties. For the hill functions of higher order (15 < n < 50) the form of the coeffi-
cients makes the series ‘‘essentially” self-truncating. For such high order hill functions,
this truncated series (with thirty terms) computes the hill function with the same ac-
curacy as the method of Legendre polynomials with local coordinates, but without
the latter required n? coefficients which are to be computed in advance. The pre-
liminary time analysis indicates that the time for the two methods starts to be the
same at n ~ 15, changes slightly for the cosine series for n > 15 and varies roughly

as n3 for the localized Legendre polynomial method. In comparison with the most
recent efficient methods which require a storage of order n, this note’s method re-
quired a storage of the order 25—40 for n < 60, executed with almost the same speed
and accuracy and stayed stable as long as the above methods did.

I. Introduction. Consider the function

) Fw) = % 7 st aar

and its Fourier transform

) f@ = Jt; Flw)e'“ dw.
We note that the Fourier transform of the gate function (the hill function of order
one),
1, lwl<a,
(3) $,@@ w) =
0, lwl>a,
is (2 sinat)/t.
The hill function ¢g , ,(a(R + 1), w), of order R + 1, is defined as the Rth
fold Fourier convolution of ¢, (a, w); and hence, it is the Fourier transform of
[(2 sin ar)/t]R 1. The exact explicit form of bp +1@R + 1), w) is given in [1] for
each of the (R + 1)/2 and (R + 2)/2 subintervals of [0, a(R + 1)] for R odd and R
even, respectively. The hill function ¢ , ,(@(R + 1), w) is an even function in w, a
polynomial of degree R with continuous derivatives up to R — 1 and vanishes outside
the interval [-a(R + 1), a(R + 1)]. Unless otherwise indicated, we will write
Pg +1(w) for ¢p . (@R + 1), w).
The hill functions of higher order have proved important in the finite element
method [2] of approximating the solutions by a finite sum. For such high orders
the computations of the explicit form [1] show an extreme instability, so Legendre
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polynomial expansions [3], with localized coordinates for each of the R + 1 subinter-
vals, and other more efficient methods [4], [5] were recently employed to eliminate
this instability. The method in [3] is an accurate finite sum but, for large R, it does
put a constraint on the storage locations, required for its precomputed (R + 1)? coef-
ficients. This is not the case for the most recent methods [4], [S] where the required
storage is of order R + 1. Also, neither the exact explicit form [1] nor the localized
Legendre polynomial [3] form seem to be suitable for proving some basic properties
of the hill function which we plan to illustrate.

In the next section, we will express ¢p , ; (w) as a Fourier cosine series on the
whole integral [-a(R + 1), a(R + 1)] with a simple form for the coefficients that
makes the series “essentially” self-truncating. In the last section, we will use this
series to prove the basic property of the hill function, that the average of ¢p , | (w)
over the whole interval [~a(R + 1), a(R + 1)] is equal to the average of its R + 1
midsubinterval values. Such property sheds a light on the importance of the hill func-
tions, since it simply states that one point weighted by the hill function ¢z, , of
order R + 1 is equivalent to R + 1 points weighted by the hill function ¢, of order
one.

II. Computations of the Hill Functions. The hill function ¢ , ,(w) is expres-
sed as a Fourier cosine series,

_4 1 & | 2sinnn/(R + DR _nmw
Pr+1(W) =3 +a(R+ I)El[ nnja(R + 1) :' S AR+ 1)’

-aR+ 1N <w<aR +1),

where 2, = 2a)R*!/a(R + 1) = 2a¢p , | and ¢p ., is the average value of ¢p . ;(w)
over the interval [-a(R + 1), a(R + 1)], with value of (2a)R /(R + 1). In (4) we note
the simple form of the coefficients and their advantage in making the series a self-
truncating one for large R. We may also mention that this property of the hill func-
tion’s Fourier coefficients has been used [6] indirectly to make the cardinal (sam-
pling) series, in communication theory, a self-truncating one.

For large R (R > 10) the Nth (N ~ 30) partial sum of (4) gives as accurate an
approximation of the hill function as that of the Legendre polynomial expansion [3]
with local coordinates. Such N term computations may be compared with R + 1
terms for each of the (R + 1)/2 subintervals (R odd) a total of (R + 1)?/2 terms,
required by the localized Legendre polynomials method to describe ¢, ,(w) on the
whole interval. This is in addition to the latter method storage constraint for the
(R + 1)? coefficients that have to be computed in advance. The preliminary compu-
tations done on IBM 360/44—S show that for R = 10, with the same accuracy, the
exact explicit form [1] takes the least time followed by the Legendre method. As R
reached 15, the explicit form suffered from instability while the Legendre and the co-
sine method computations took approximately the same time. As R increased to 20,
the cosine series time (V = 30) changed very slightly while the time for the localized
Legendre series varied roughly with R3. For R > 20 we could not compare our
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results to the Legendre expansions one since the latter coefficients storage require-
ment exceeded the storage capacity of the IBM 360/44—S. This is an obvious dis-
advantage to the localized Legendre method when we consider the availability of only
fair-sized machines. However, this is not the case for most recent efficient methods
[4], [5] where our preliminary computations show that for R < 60, with double pre-
cision, such methods require a storage of the order of R + 1 coefficients compared to
N = 25-40 coefficients for the note’s method. Also for R < 60, our method executes
with about the same speed, almost the same accuracy with trailing off at the ends, and
stays stable as long as the method in [4] does.

III. A Basic Property of the Hill Functions. Here we will use the Fourier co-
sine series (4) of the hill function ¢z, ,(w) to show that $R +1 the average value of
®g 4+ 1(w) over the interval [-a(R + 1), a(R + 1)], is equal to the average of its R + 1
values at the middle of each of the R + 1 equal subintervals of [-a(R + 1), a(R + 1)].
We will first consider the case of R odd where ¢p , ,(w) is defined on R + 1 = 2m
equal subintervals. The case of even R will follow in the same way with R + 1 =
2m + 1 equal subintervals. Let p,(w) be the part of ¢, ;(w) defined on the two
symmetric subintervals (—2(k + 1)a, —2ka) and (2ka, 2(k + 1)a). p,(F(2k + 1)a) are
the values of the hill function ¢ , ,(w) at the middle of two such symmetric kth
subintervals. The sum of these 2m = R + 1 midsubinterval values is obtained from
@)as

(R-1)/2
> p(F2k + Do)
k=0
(%) v . R+1
_(R"'l)ao_I_ 1 2 sin nm/(R + 1
- 2 aR+1) =, | nr/a®R+1)
(R-1)/2 2k + 1)
2y coserk L .
P2 R+1
But

(R-1)/2 i
z cos (2k + l)a == w

—=o 2 sin o

which makes the double series vanish since the finite sum over £ vanishes when
n/(R + 1) is not integer, and every term in the infinite series vanishes when n/(R + 1)
is an integer. Hence

| ®=Dp2 _
(6) Rl 2 PGk +1)a) = o,
k=0

is the desired result. To show (6) for even R the same steps would be followed ex-
cept that we now consider R + 1 = 2m + 1 equal subintervals.
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