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Estimates of the Speed of Convergence
of Continued Fraction Expansions of Functions*

By David A. Field

Abstract. The best recently published methods of obtaining a priori and a posteriori
truncation error estimates of continued fractions are reviewed. The applicability of
these methods is discussed and a numerical example with tables of their actual
estimates is provided.

1. Introduction. In 1967 Blanch [4] published her well-known paper
“Numerical evaluation of continued fractions”. An important aspect of her paper
was estimating the speed of convergence of continued fractions. Since then many
articles have been published on estimating the speed of convergence, giving a priori
error estimates [6], [7], [12], [18], [19], a posteriori error estimates [3], [7],
[10], [11], [13], and asymptotic error estimates [5], [14]. This paper compares
the best a priori and a posteriori methods by presenting a brief account of their
usefulness and idiosyncracies in applications, and a comparison of numerical estimates.
In order to better assess their relative merits, these methods are all applied to the
same continued fraction Blanch used. A goal of this paper is to provide enough
qualitative and quantitative information to enable one to make efficient choices
among these methods without laboriously applying each method.

2. Error Estimate Methods. The dilemma of deciding which truncation estimate
method to employ is facilitated by Table 1. The table includes the most useful papers
and omits those which have narrow applications or for which improvements have
been published. Since these papers are easily obtained, pertinent definitions and
terminology will be omitted here. Good general references are Wall [21], Perron [17]
and Thron [20].

The choice of employing an a posteriori or an a priori estimate should depend
on the information desired. In general, a posteriori methods are more easily applied
but require more computer time whenever estimates are required at more than a few
points. These error estimates are of the form

2.1 lf = fl <M fy = fry s

where fis the value and f, is the nth approximant of the continued fraction. On the
other hand, a priori estimates normally yield estimates which are uniform over some
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region in the complex plane. A priori estimates are usually expressed in terms of the
elements or parameters associated with the elements of the continued fraction. Both
methods are easily coded for computerized calculations.

A Priori Methods

Hayden: Critical points and tails 1965 [9, p. 296 last line
of continued fractions and p. 301 line (6.10)]

Hayden: Contraction mappings and 1965 [9, Theorem 6.2]
tails of continued fractions

Gragg: Series of Stieltjes and 1968 [7, Theorem 3]
w-fractions

Jones-Snell: Parabolic element 1969 [12, Theorem 2.1]
regions for K(a, /1)

Field-Jones: Complements of disk 1972 [6, Theorem 2.1]
element regions for
K(1/b,)

A Posteriori Methods

Hayden: Critical points and 1965 [9, p. 296 last line]
tails of continued
fractions

Merkes: Chain sequences and 1966 [15, Theorem 2]
Euler’s algorithm

Gragg: Series of Stieltjes and 1968 [7, Theorem 3]
w-fractions

Jones-Thron: Nested lens-shaped 1971 [13, Theorem 2.1]
regions

TABLE 1

Methods of Estimating Truncation Error

A Posteriori Estimates. The simplest method to apply is the Jones-Thron
method. This method is applicable to many types of continued fractions and it is
easy to verify whether or not the elements of the given continued fraction can define
a prescribed set of parameters. When arg a, = a in K(a,/1), a corollary [13, p. 699]
further simplifies this method. Error estimates are not improved by using equivalence
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transformations. M,, in (2.1) is remarkably simple.

In Hayden’s a posteriori method (2.1) is an equality with M, expressed in terms
of the remainder and critical points of the continued fraction. Although this
expression for M, applies to all continued fractions, a significant difficulty lies in the
need to estimate the remainder and critical points. Crude estimates of the remainder
can be supplied by the Worpitski or Parabola Theorems. Hayden provides general
theorems for estimating the critical points. When the elements a,, or b, of K(a, /b,)
are functions of z, the above theorems on the critical points and the remainder impose
severe restrictions on z. Estimating the value of the critical points via mathematical
induction tailored to the given continued fraction expansion often relaxes these
restrictions. Despite the estimates of the remainder and critical points, Hayden’s error
bounds can be very sharp.

The a posteriori estimates of Gragg and Merkes apply to g-fractions. The first
step in either method is to verify that the given continued fraction is a g-fraction. If
the theoretical considerations, such as the theory of series of Stieltjes, does not provid«
an immediate answer, mathematical induction on the elements of the continued
fraction may be helpful.

Gragg’s method begins by cohstructing another continued fraction, 7-fraction,
whose even part is the original g-fraction. The error estimate is then given in the form
(2.1) where f,,_, is replaced by the (2n — 1)th approximant of the n-fraction. M,
in (2.1) is similar to the Jones-Thron M,. The need to compute the (2n — 1)th
approximant of another continued fraction makes the calculation of error estimates
require significantly greater amounts of computer time. Gragg’s error bounds offer
the important advantage of being easily obtained near cuts and poles in the conver-
gence regions of the g-fractions. These error bounds are ‘“best” in the sense that they
measure the diameter of open convex regions consisting of the (n + 1)th approximants
of all g-fractions and (2n + 1)th approximants of the corresponding 7-fractions where
the g-fraction’s first n elements agree with the given g-fraction.

In the Merkes method it is necessary to construct a chain sequence. Fortunately
it suffices to construct a maximal chain sequence, see Wall [21, p. 81]. It is also
necessary to estimate quantities, p,, which are closely related to Hayden’s critical
points. An algorithm due to Euler provides these estimates. Constructing a maximal
chain sequence and estimating p,, impose severe restrictions on the elements of
K(a,/b,). On the other hand, error estimates are very sharp. Blanch’s estimates are
special cases in Merkes’ paper.

A Priori Estimates. Of the a priori estimates given in the papers listed in Table 1
the easiest to evaluate is Gragg’s which is of the form

K@ =1 +2)/(1 +/1 +2)1" 1,

with z suitably normalized. When z is near a pole or a cut in the domain of conver-
gence of the g-fraction, this estimate is not sharp. As with Gragg’s a posteriori
estimates, consideration must be given to verifying that one has a g-fraction and
finding its domain of convergence.
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The Jones-Snell and Field-Jones methods yield estimates that are given in terms
of the parameters which define regions locating the elements of the continued
fraction. Both estimates can be applied to many types of continued fractions.

The truncation error bounds of Jones-Snell can be vastly improved if in their
original main theorem the constant M is replaced by M, = la, |/(0,,0,_,). The
adjustment requires a slight modification in their proof. The best estimates are
obtained by choosing parameters to define parabolic regions with the numerator
elements of K(a,,/1) on the axis of the parabolas. This allows the advantage of
letting the parameter k equal zero.

The Field-Jones method requires choosing parameters which define sequences of
circles. The best choices of these parameters are not obvious. However, in well-
behaved situations, lemmas, such as their Lemma 3.1, quickly resolve this difficulty.
The error estimates are very sensitive to the parameter §,,. The other parameters can
vary a lot for the same value of §,, and produce negligible differences in the error
estimate. This method is the most useful method of determining truncation error
estimates for continued fractions of the form K(1/b,,).

Hayden’s critical point a priori estimates are derived from his a posteriori
estimates. |f, —f,_,lin (2.1) is replaced by a product whose terms are defined by
the elements and the critical points of the continued fraction. Even though each
term of the product requires an estimate of a critical point, the final error bound is
remarkably sharp.

Hayden’s contraction mapping method applies to all continued fractions. In this
method the error estimate is a product of Lipschitz constants whose values involve the
elements and remainders of the continued fraction. In order to estimate the constants
and remainders, restrictions similar to the restrictions in Hayden’s other methods are
imposed on the elements of the continued fraction. The error estimates may not be
as sharp as Hayden’s other error estimates.

3. Numerical Comparisons. The error estimate methods in Table 1 were applied
to the ratio of successive Bessel functions of integral order and evaluated for m = 1.
The tables of numerical values of these estimates were calculated on a CDC 6400
with double precision arithmetic. Tables 2 and 3 list the error estimates determined
by the methods in Table 1. For those estimates whose calculations involve the
argument z, both the best and the worst estimate are given for z = ¢/, § = 0°(1°)90°.
Table 2 also indicates the region where the error bound is uniform. Only the first
quadrant in the complex plane is considered, since for z # 0

J,(2) J,(=2) . J,&@) [J,@)°
== an — = .
Jo(2) Jo(-2) Jo(Z) Jo(2)
More information concerning the calculation of Bessel Functions and their ratios is
contained in [1], [2], [4], [16].
The Jones-Snell estimates were substantially improved by using M, as suggested

in Section 2. An improvement of Gragg’s estimates by using sec(§ — m/2) rather
than tan 6/2 for 7/2 < § < m was negligible.
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This section concludes with graphs indicating the regions of applicability of
these methods over the first quadrant. It is interesting to note the restrictions away
from the real axis and the first nonzero pole of J, (z)/J 0(z) at approximately 2.4.
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