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A Continued Fraction Expansion
for a Generalization of Dawson’s Integral

By D. Dijkstra

Abstract. A continued fraction expansion for a generalization of Dawson’s integral is
presented. An exact formula for the truncation error in terms of the confluent hyper-
geometric function is derived. The expansion is shown to have good convergence prop-
erties for both small and large values of the argument.

I. Introduction. The function

@1.1) F(p, x) =" f : efdt, (x>0,p>0)
is a generalization of Dawson’s integral

_x2 X 42
(12) FQx)=e* [ e at

A graphical representation of F(p, x) for p = 2(1)6 and a table of values of F(2, x)
can be found in Abramowitz and Stegun [1]. The function F(3, x) occurs in viscous
fluid mechanics and F(1/n, z") is (apart from a numerical factor) an exact represehta-
tion of the remainder in the n-term Taylor series for exp (—z). Dawson’s integral
arises frequently in several branches of physics and various numerical methods have
been developed for its computation. Wynn [3] obtained a particular continued frac-
tion expansion for F(2, x) which appeared to converge fast for both small and large
positive values of x. This property was further exploited by McCabe [2] who gave
an exact expression for the truncation error of this continued fraction for Dawson’s
integral. He also discussed other methods used in the past for the computation of
the function (1.2).

In this paper we will generalize the results of Wynn [3] and McCabe [2] to ar-
bitrary positive values of p. In other words we will derive the truncation error of a
particular continued fraction expansion for the function (1.1). The expansion will
be shown to converge fast for both small and large positive values of the argument.
Further, a table is provided showing the number of convergents needed for the evalua-

_tion of F(p, x) with an accuracy of 10 significant digits.

II. Expansions of F(p, x). The following notation will be used:
2.1) z=xP, a=1/p, x=0,p>0).

The function M(a, B, z) denotes the confluent hypergeometric function in the notation
of Abramowitz and Stegun [1], viz.
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= (@ 2"
M 6.2 = 3

(@, =oa+1)" --(a\+n— 1, (o, =1

Expanding the integrand of (1.1), we obtain in terms of the variables (2.1) with the
aid of Kummer’s transformation

B#0,-1,-2,...;
2.2)

(2.3) Fp,x)y=xe*M@,a+1,2) =xM(1,a + 1,-z).
. The convergent Taylor series of F(p, x) is given by
= 2
24 F(p, x) =x Z - @T D,

and its divergent asymptotic expansion at infinity reads
(2.5) Fp,x)~ax Y (1-a),z "', z=xP —o,
n=0

The Taylor series (2.4) can be used to compute F for small values of z; but as z be-
comes large, a disastrous loss of digits is encountered. The expansion (2.5) has also
its limitations since the development diverges for all z if @ # 1, 2, 3, . . . ; hence it
is useful only if z is sufficiently large.

Corresponding to each individual expansion (2.4) and (2.5), there exist contin-
ued fraction expansions which, for the case p = 2 (Dawson’s integral), were given
by McCabe [2]. As regards numerical properties, these continued fractions have vir-
tually the same limitations as the expansions to which they correspond. A third con-
tinued fraction expansion for F(p, x) is

z 2z nz
F(px) a+z—a+1+z—a+2+z— a+n+z ’
(2.6)
z =xP, a=l,
14

and this expansion corresponds to both the Taylor series (2.4) and the asymptotic
expansion (2.5). The special case p = 2 was considered by McCabe [2]. The expan-
sion (2.6) is certainly convergent for the values of z considered here (i.e. z = 0) and
the convergence is fast for small as well as large values of z. In Section 4 we will

give an elementary derivation with truncation error of the expansion (2.6). The proof
is based on properties of the function M(q, B, z).

III. Properties of M(a, B, z). The confluent hypergeometric function M satisfies
the recurrence relations

(3.1) BB-1M(e, - 1,2) +p(1 =B~ 2)M(e, B, 2) + z(B— )WM(a, B+ 1,2) =0
(32)pB-1M@—-1,8-1,2) +B(1 — B+ 2)M(a, B, 2) —azM(a + 1, + 1,2) = 0

Differentation of M(a, B, z) with respect to z can easily be performed as follows

(3.3) M(a, B, 2) =aM(a+ 1,8+ 1, 2)/B.
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Another relation between functions M is
B(B - I)M(O', B» “Z)M("C!, 1- ﬁ: Z)
—zM(1 -a,2 -8, 2Ma+1,+1, —2) =pB 1),

where B #0, +1,£2, ... .

The formulas (3.1)—(3.3) can be found in Abramowitz and Stegun [1] but the
nonlinear equation (3.4) has not been listed there.

Proof of Eq. (3.4). At z = 0 the equation is correct. Differentiating the left-
hand side of (3.4) with respect to z, we find, using (3.3),

(3.4)

(3.5) (d/dz)(LHS)=-aM(a+1,+1,-2)S+oM(1 -a,2 -8 2)T/(B + 1),

where

S=@-1M(-a,1-B2)+M1-0a,2-62)+z(1 —-aM2 —a,3 -8, 2)/(2-p),

T=pB+ 1), B, —2) + z(a + IM(a + 2,8 + 2, -2).
Rewriting the quantities S and T by means of an adjusted form of (3.2), we obtain
S=@+2M1 -a,2-82); T=@+1)B+z2Ma+1,+1,-2).
Substitution of these results in Eq. (3.5) yields
(d/dz) (LHS.) =0,
which proves (3.4).

IV. The Continued Fraction Expansion. With the notation (2.1) we can write
(2.3) as '

4.1) F(, x)/x =e¢*M(@a, a+ 1,z) =M(a, a + 1, 2)/M(a, a, z).

Instead of this particular ratio of two functions M, the following generalized expres-
sion will be considered:

“4.2) K(a, b, z2) =M(a, b+ 1,2)/bM(a, b,z), a, b>0,z=>0.

The factor b has been inserted for convenience. Throughout this section it is assumed
that the variables a, b and z satisfy the inequalities (4.2). In terms of the variables
(2.1) the function K satisfies the relations

4.3) F(p, x) = axK(a, a, 2)
and
4.4) 0<K(a, b, 2) <1/b.

In order to obtain a continued fraction for K we take a =a and § = b + 1 in the
recurrence relation (3.1), whence

K@, b,z)=1{(b +z)—z(b + 1 -0a)K(a, b + 1, 2)}.
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An immediate consequence of this equation is the finite continued fraction

1 z(b+1-a)

Ka, b’z)=b+z— b+1+:2
4.5)
o zZb+N-1-4a) z(b+N—-a)(a, b+ N, 2)
-b+N-1+z — . ] -
The right-hand side is an exact representation of the left-hand side for all N =1, 2,
3,. ... With N = o we get the expansion
_ 1 2(b+1-a)  zb+n-a)
“6)  Keb)=prr Privz - b+n+z -

This expansion was given by Wynn [3], but the terminating continued fraction (4.5)
contains useful information about the truncation error of Wynn’s expansion. In the
following the integer V in (4.5) will have a fixed value N > 1. If P, denotes the
numerator and Q,, the denominator of the nth convergent of the continued fraction
(4.5), then

L zb+1-a) z(b+n-1-a)

Pn
- = <n<N.
“.7) Q, b+z-b+1+z - btn-1+4z° LSPsH

The convergent P,/Q, is an approximation to (4.5) and the next convergent is exact:
4.8) K(a, b,z) =Py 1/Qny ;-

Hence, the error in the Nth convergent is

(4.9) K(a, b, 2) ~ Py/Qy = Py 1 /1Qn 41 — Pn/Qn-

Using a well-known result from the theory of continued fractions we find

(4.10) K(a, b, 2) — Py/Qy = (b —a + )yK(a, b + N, 2)2 |Qp0n 4 1

To proceed further we need information concerning the denominators Qp which
satisfy the recurrence relation

Q.._1=0; Qo=1’
4.11) Q,=(b+n-1+2)Q,_ ,-2(6+n-1-a)Q,, @®=1,2,...,N),

Oyyy = Oy —2(b +N-a)K@ b+ N, )0y,

THEOREM 1. With variables a, b and z in the range (4.2) the functions Q,
satisfy

4.12) 0,=2®),+z" @®=1,2,...,N),
4.13) Oni1 = (b)y +azVK(a, b + N, 2).

Proof. We show by induction that
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(4.14) 0,220, ,+®), @®=01...,N).
For n = 0, 1 this inequality is correct. Assume
0;=2z0, ,+®); @(@=0,1,...,n-1;n<N);
then Q; > 0. Hence

0, =20, , ++n-1)Q,_, -20,,) +aQ,_,
220, , +G+n-1)(b), , =20,_, +(),,

which proves (4.14). The inequality (4.12) is an immediate consequence of (4.14).
To prove (4.13) we use (4.4), (4.12) and (4.14) to estimate Qy ., ,.

1
=20y, + D)y —2(b + N)bTN Oyn—y tazK(a, b+ N, 2)Qp_,
= D)y + azVK(a, b + N, 2),

which completes the proof of the theorem.

The truncation error (4.10) can now readily be estimated. For small values of
z we use (4.4), (4.12) and (4.13) to obtain

(4.15) K(a, b, z) = Py/Qp| < 10 — a + DylzV [(BD)n(B)y 4 ¢ -

For large values of z we can write

(4.16) K@, b, 2) - Py/Qy| < (b — a + Dylla{®)y + 2V},

These estimates show that the expansion (4.6) simultaneously corresponds to the
Taylor expansion of the right-hand side of (4.2) and to its asymptotic expansion as
z —> oo, QObviously, this also applies to the expansion (2.6) since F(p, x) is a special
case of the function K by virtue of Eq. (4.3). For this special case (b = a) we can
derive an exact formula for the truncation error (4.10) in terms of the confluent
hypergeometric function M.

THEOREM 2. With a and z satisfying (4.2) and b = a the denominators Q, de-
fined by (4.11) can be written as

(4.17) 0,=@,M-n1l1-a-nz) @®=0,1,...,N),
(4.18) Ons1 = @MW, a + N, ~2).

Proof. 1t is to be understood that the right-hand side of (4.17) always repre-
sents a polynomial in z of degree n. If we take a =1 —n, = 2 —a — n in the rela-
tion (3.2) then these polynomials are found to satisfy
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@+n-2)@+n-1M-n1-a-n,z)
=@+n-2)a+n-1+zM(1-n2-a-n,z)
—z(n - 1DMQ2 ~n,3-a—n,z).

We multiply this equation by (a),,_, and introduce

4.19) *=(@,M-n1-a-n,z),

whence
*=@+n—-1+ 2)Q¥_, —z(n - DEx_,-

It is seen that both QF and Q,, satisfy the second order recurrence relation (4.11)
since b = a. Moreover, from (4.11) and (4.19) @§ = Q,, 0% = Q, so that

0,=0, (®=0,1,...,N),

which proves (4.17). With the result (4.17) and the definitions (4.11) and (4.2) we
obtain for b =a

Ons1 =@NM(=N, 1 -a-N,2)

Maa+N+1,2) _ o
- ZN(a + MM(a, a + N, 2) @yN_M(1 -N,2-a-N,2).

The quotient of the two functions M can be rewritten with Kummer’s transformation
which yields

On+1 = @n_1VI@+ NMN, a + N, -2),
where v
V=@+N{a+N-1)MN,a+N,-z)M-N,1—-a~-N,z)
—~NzM(1 -N,2-a-N,z2MN +1,a+N +1,-2).
Provided that a # integer, the expression V equals (@ + N)(a + N — 1) by virtue of
Eq. (3.4). Hence
Oni1 =@yMWN, a+N, -2), a+#1,2,3,....

A continuity argument shows that this result is also correct in casea =1,2,3, ...,
which proves (4.18) and hence the theorem.

With the results of this theorem we can easily find an expression for the trunca-
tion error of the expansion (2.6) for F(p, x). From Egs. (4.3), (4.10), (4.2) and
Theorem 2 this is found to be
Py a)y Mg a+N+1,72) MNa+N -2 n
Oy  (@+NYa)y(@y Ma,a+N,z) M-N1-a-Nz)" °
where z = xP, @ = 1/p as before.

This holds for every a > 0, provided that M(—N, 1 — a — N, z) is always inter-
preted as a polynomial in z of degree N. An application of Kummer’s transformation

F(p, x) —ax
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yields
Py N! M@, a+N+1,2)
F . > —2Z
@, x) = ‘”‘QN @na@ + Dy M-N, 1 -a-N, )xz €
(4.20) "
. xZNe—2z’

T @pa + Dy

where the asymptotic behavior for large values of N follows from the limits

lim M@, a + N+ 1,z)=1, lim M(-N,1-a—N, z) = é°.
N—oo N>

Note that the result (4.20) does not imply that the truncation error is exponentially

small as z — oo since the double limit NV —> oo, z —> o0 js nonuniform. In fact, the

error decays algebraically as z —> o analogous to (4.16). With the restriction a #

integer another application of Kummer’s transformation to (4.20) produces

Fy N! M(a, a+N+lz) _
F - N 2:’
421 ) axQN @pla+ Dy M1 —a, 1-a- —Z) ¢

a¥+1,2,3,....

For the special case a = %, the asymptotic behavior (4.20) and the result (4.21)
coincide with the results of McCabe [2] for Dawson’s integral. McCabe also investi-
gated the quality of the asymptotic estimate (4.20) as compared with the true trunca-
tion error for the case a = %.

V. Applications. Apart from Dawson’s integral (1.2), an interesting application
of the expansion (2.6) is the case p = 3, viz.

F3,x) = e""3f: e dr,

which occurs in viscous fluid mechanics. The continued fraction (2.6) is an efficient
method to evaluate this function for all x > 0 and the convergence of the expansion
is fast for both small and large values of x. Note that the expansion (2.6) can be
calculated without the use of exponential functions. Another application is the accu-
rate computation of the remainder in the Taylor series

n—1 (__\i _
e’ = E(Z) "'L—ILF( ) x=z"n=1,2,3,....

tOl'

A direct evaluation of the remainder as the difference of exp (—z) and the sum will
be incorrect for z small and n large since this is subject to loss of significant digits.
On the other hand, the continued fraction (2.6) for F(1/n, x) converges faster as n
gets large and/or x becomes small.

To demonstrate the efficiency of the expansion (2.6) the following table shows
the number of convergents of the expansion (2.6) which is needed to reach an accu-
racy of 10 significant digits. The table was calculated on an IBM 360/50 working in
double precision.
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Y w

w
w
S
—_
w

13 2 1

01 5 6 6 7 8 8 8 9 9
02 5 6 7 8 9 9 10 10 10
05 6 8 9 10 11 12 12 13 13
1.0 7 9 10 11 13 14 15 15 16
20 8 10 12 14 16 18 19 19 20
30 9 12 14 16 19 21 22 22 23

50 10 13 16 19 22 25 26 27 28
10 11 15 19 23 28 32 33 35 37
20 11 14 16 19 26 34 38 41 44
30 10 12 13 14 15 15 16 16 16
40 10 11 11 12 12 12 12 12 12
60 9 9 10 10 10 10 10 10 10
100 8 8 8 8 8 8 8 8 8
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