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On Projective Representations of Finite Wreath Products

By John R. Durbin and K. Bolling Farmer

Abstract. The theory of induced projective representations is applied to finite wreath
products, yielding algorithms which add to the collection of groups for which projec-
tive representations can be computed systematically. For finite Abelian and Abelian-
wreath-cyclic groups, the factor sets are determined explicitly by establishing a one-
to-one correspondence between certain lower triangular matrices and the inequivalent
factor sets of these two classes of groups. This correspondence is used to determine
the number and degrees of the inequivalent, irreducible projective representations.

1. Introduction. The problem of determining a complete set of inequivalent ir-
reducible linear (ordinary) representations of a finite group is difficult unless the group
is extremely uncomplicated; this has been discussed in a number of works, including
the paper by Dixon [5], for example. The case of projective representations is all the
more difficult. In this paper we add to the list of groups for which projective repre-
sentations can be computed systematically by applying the theory of induced projective
representations to finite wreath products. The corresponding application for linear
representations has been considered by several authors; see, in particular, Kerber [9],
[10] and Durbin [6].

In Section 2 we describe in detail an algorithm for constructing explicitly the
projective representations of wreath products, including several remarks concerning
computational efficiency. In Section 3 the factor sets of Abelian and Abelian-wreath-
cyclic groups are derived in terms of matrices. Expressing these maps as arrays is a
crucial step in programming the algorithm. This correspondence is further used to
obtain information about the number and degrees of the irreducible projective repre-
sentations. In Section 4, we illustrate the procedure for the specific group Z5 v Z,.

Groups are assumed finite and representations are over the field of complex
numbers. We discuss only standard wreath products; this reduces notational difficulties
but still brings out the essential ideas. The symbol ~ denotes equivalence of repre-
sentations. In addition to the various specific references we mention the general
references [4], [8] and [11].

Let A and B denote groups, and K = A2 the set of functions from B to A4,
made into a group by componentwise multiplication. For k € K and b € B, define
k® € K by k() = k(yb~!) for all y € B. Then, for each b € B, the mapping
k > kP is an automorphism of K, and the extension of K by the group of all such
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automorphisms is the wreath product of A and B, A~ B. We identify K and B with
the obvious subgroups of A ~ B. Then K 1A VB, KN B = {e},and KB=A4 " B;
typical elements will be denoted by kb.

2. Construction of Projection Representations of 4 v B. We describe an algorithm
for constructing a complete set of inequivalent, irreducible projective representations of
A "V B, based on the method of induced representations, following Mackey [12] and
Backhouse [1].

I. We first express a factor set of 4 ~v B in terms of the following theorem:

THEOREM 1. Every factor set w' of A v B is equivalent to a factor set w of
A ~ B which may be uniquely represented in the form

(*) w(klblr k2b2) = 7(k11 blkzb;l)ﬁ(bly kz)a(blr b2)s

where v is a factor set of K, a is a factor set of B, and B: B x K —> T (the circle
group) satisfies:

G) B(b, kyky) = B(b, k,)B(b, ky)v(bk b1, bkyb~ V(K ky)
and
(ii) B(byb,, k) = B(b,, bykbs )B(b,, ).

Moreover, for every choice of v, o, and f satisfying (i) and (ii), the function w defined
by (*) is a factor set of A"V B.

The results in Section 3 are useful in generating a complete set of inequivalent
factor sets of A v B decomposed according to Theorem 1.

II. The next step is to construct a complete set of inequivalent irreducible w-
representations of A v B for the factor set w decomposed in.terms of the factor sets
v of K, a of B, and the function S.

Let D be an irreducible y-representation of K of degree d. We associate with D
two subgroups of A ~v B: the inertia group Hp, = {x € A~ B: D* ~ D}, where for
al k €K

D*() = (™", kak, )/w(x™", x)) * Dx~ k),

and the inertia factor H B = {b € B: D> ~ D}. We note that the x-conjugate D* of
D is defined so that it has the same factor set oy as D, It is easily shown that H, is
the semidirect product of K and H}. To extend D to a representation of Hp,, we use
the fact that for each b € H}, there exists a nonsingular matrix, say T, , such that
DP(k) = Ty *D(K)T, for all k € K. The irreducibility of D implies that the map
b > T, is a \-representation of H}, for some factor set X of H}. To find the equiv-
alence operators T, it is sufficient to consider only generators of K and B, thus yield-
ing a smaller set of equations. Furthermore, Backhouse [1] gives a formula for com-
puting T,. To determine the factor set A of T, we need only compare a corresponding
entry in the matrices T 152 and T, lTb ) for all by, b, in H}.

Let {V:1<j< n} be a complete set of inequivalent, irreducible aA-representa-
tions of Hf,. The set {Uz:1<j< n}, where U;: Hp — GL(d, C) is defined by
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U(kb) = DK)T, ® V(b),

is a set of w-representations of H,. By induction we lift this set to a set of irreducible
w-representations {Uj t A~ B} of A v B. Again, care must be taken to preserve
factor sets; see [2].

To obtain a complete set of inequivalent w-representations of 4 ~ B we must
consider orbits of the y-representations of K. The orbit of the irreducible y-repre-
sentation D of K is the set

Op = {D': D' is an irreducible y-representation of K
and D' ~ D® for some b € B}.
Then a complete set of inequivalent, irreducible y-representations of K is the union of

disjoint orbits, say ODI Ueee U ODm. By carrying out the method given above for
each D;, 1 <i < m, we obtain

{UjtA~VB: 1<i<m 1<j<np},

a complete set of inequivalent, irreducible w-representations of 4 v B.

As a final remark, this step begins with a y-representation of K. To construct
such a representation, the algorithm outlined in I and II is applicable. We note that
for a direct sum the steps simplify considerably.

III. We obtain all irreducible inequivalent projective representations of A ~ B
by repeating I and II for each factor set in a complete set of inequivalent factor sets
of 4 ~ B.

3. Abelian-Wreath-Cyclic Groups. We now apply the preceding algorithm to
obtain specific information about the irreducible projective representations of finite
Abelian and Abelian-wreath-cyclic groups. We prove that the factor sets of these two
classes of groups can be explicitly described in terms of matrices. This expression en-
ables us to determine the number and degrees of the inequivalent, irreducible projec-
tive representations.

Let A be finite Abelian,say 4 =Z, ®---®Z, withn;[n;, for 1 <i<
s — 1, and B finite of order #. We first consider the base group of 4 v B. If (a) =
Zn,-’ then{a;: 1 <i <s} generates 4 and K has a set of generators {x, ..., x},
where x, corresponds to a; for i =1 (mod s). Thus each element x of K can be ex-

pressed as
= U142 . .. . U
X = XX, X5t
0<u,<n;— 1, where i =1 (mod s5). We identify x with the vector (u,, ..., ust)T.

We have the following theorem about the factor sets of K.

THEOREM 2. Let G be the direct sum of m cyclic groups, say G =G, ® - - -
® G,,, with corresponding generators x; of order n; such that n;n;,,,1<i<m-1.
The elements of G are identified with m-tuples as described above. Let v' be a factor
set of G. Then v' is equivalent to a factor set <y with a corresponding m x m lower
triangular matrix G7 such that

¥(x, ¥) = exp(— 2171’xTny).
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The i, jth component & of Gy, for i > j, is an element of the set
G;= {l/Nl.’j: 1€27 0 SISN; -1, N;; =, n].)}.

Furthermore, if the values of the i, jth entries range independently over C for 1<y
<i < m, then the G s correspond to a complete set of inequivalent factor sets of G.

Operations 1nvolvmg these matrices are done modulo 1. In order to prove this
theorem and several others, we need the following fact proved by Backhouse.

LEMMA (BACKHOUSE [1, p. 278]). Let w be a factor set of an Abelian group
G. Then w is equivalent to the trivial factor set if and only if w is symmetric, that is,
w(x, y) = w(y, x) for all x and y in G.

Now let us prove Theorem 2.

Proof. Let x, y, and z be elements of G. Let G be an m x m lower triangular
matrix with its 4, jth entry from C (1 <j<i<m). If v: G x G — ( is defined by
1, y) = exp(— 21ixG, ),

then it follows that +y is a factor set of G.

We now must show that for two factor sets y and § with corresponding matrices
67 and Gy, if 07 # G, then 1 is not equivalent to §. If y ~ &, then the function
(x, ¥) ¥ ¥(x, )/8(x, y) is equivalent to the trivial factor set of G. Thus, G, — G
must be a symmetric matrix and so G, = Gs.

Since the number HIC l of dlstmct matrices is Il(n;, n; ) for1 <j<i<
which Zmud’ [13,p.5] proves to be the order of M(G), we conclude that thls is a
complete set of inequivalent factor sets.

Two corollaries follow.

COROLLARY 1. Let vy be a factor set of an Abelian group G such that for each
xandy in G,

(%, ¥) = exp(—27ixTG, y),

for some m x m matrix Gv' Then vy is equivalent to the trivial factor set if and only
if Gy is a symmetric matrix.

COROLLARY 2. Let A =2, 92,,®---82, withn;|n;, for 1 <i<
s — 1, and let B have order t. If Gy is an st x st lower trzangular matrix whose i, jth

entry g; ; € C; i where
= {I/Ni,].: 1€Z 0 SISNg - LN ;=

ip =i mods, jo=j mod s},

(ni()’ njo)’

(1 <j<i<st), then v: K x K — C, defined for all x and y in K by
v(x, ») = exp(=27ixTG, y),

is a factor set of K. If the values of the i, jth entries range independently over G i
for 1 <j <i<st, then the Gy ’s correspond to a complete set of inequivalent factor
sets of K.

Using Frucht’s result [7], we are able to specify the number and degrees of the
inequivalent, irreducible y-representations of the base group for a given factor set y in
terms of the matrix Gy.
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THEOREM 3. Let G be the direct sum of m cyclic groups G, ® -+ - @ G, such
that G is generated by x; of order n; and n;|n;, ,, 1 <i<m— 1. Let y be a factor
set of G with corresponding matrix Gy. The number of inequivalent, irreducible y-
representations of G is the number n, of solutions of the form (u,, ... ,u,,) to the
following set of m congruences:

U8y, T U383y tuggyy + o0 +u,g, =0 modl
U8y t Uz, T Ugap t oo F+u g, , =0 modl

TU 83,1 TUp83 FUsEy 3ttt Fu,g, 3=0 mod ]

=0 mod 1.

{ TU 1 T U2 T T U1 8mm—1

Proof. We note that the matrix of coefficients appearing in this set () is G, - G;.
Frucht [7] proved that the number of inequivalent, irreducible y-representations
of G is the order of the subgroup

x1v(x, ) = ¥(», x) for all y in G}.

Thus, we want to find necessary and sufficient conditions for x = xJ1 « <+« « xi‘n’" to

be in this subgroup.
Let y = x]! + ««+ + x,7 be an element of G. Then

Yx, y) = exp[—21ri(u2g2,l + Usgy t oo+ umgm’l)v1

+ (u3g3,2 toee +umgm,2)02 toeeet (umgm,m—l)vm—l] s
and
Yy, x) = exp[~ 21ri(v2g2’1 + e+ vmgm’l)u1

T (383,10t 0,8, Juy +ooe+ Wn&mym— 1 M 1 1

If v is symmetric with respect to x, then y(x, x;) = y(x;, x) for 1 <i <m. This fact
implies the following equations:

exp [~ 2mi(u,g, | tuzgy v tu,g, )] =exp[-2mi- 0] =1,

exp[~ 2mi(u 385 5 +*** +u,,8, )] = exp[-2mi(g, u,)],
exp [~ 2miU; 4 184y j T Ui a8ina ;T T U8 )]
=exp[- 27Ti(gj,1“1 tgiuy e +gi,i—lui—l)]

U=exp[=2mi(g,, 1ty + &y 2ty T T8 1l 1))
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So we have the set () of m congruences as a necessary condition.

Furthermore, if x = x| « +«« « x;™ and (u,, ..., u,,) satisfies (*), then
Y(x, ¥) = v(v, x) for all y in G; that is, this condition is sufficient.

Therefore, for 4 Abelian, a complete set of factor sets of the base group K of
A ~v B can be described explicitly. In addition, the number and degree of the inequiv-
alent, irreducible y-representations of K for a given v can be calculated in terms of
this description.

The next question we must answer is this: For a given factor set y of K, when
does there exist a function 8: B x K — C so that (klbl, k,by) = vk, blkzbl_l) .
B(b,, k,)is a factor set of 4 v B? We call such a factor set y compatible. The fol-
lowing theorem gives the answer for 4 Abelian and B cyclic.

THEOREM 4. Let A be finite Abelian with torsion decomposition Z, 69 s
®Z, and B cyclic of order t. Let vy be a factor set of K with correspondmg matrix
G A necessary and sufficient condition for vy to be compatible is that CG cT - G
be symmetric, where C is the st x st matrix

p—

—_S

0 0 0 1
1 0 - 0 0
010 0 0

|0 O c++ 1 0]
Proof. Let b be a generator of B. We note that C is the matrix representing the

action of b on K.

By Mackey’s decomposition, 7y is compatible if and only if there exists a function
B: B x K —> T such that

M) BT, kyky) = BO", kIBB™, kv® e b7, b kb~ ") (ky, Ky,

(i) pEG"p™, k) = ", b kb™™HBD™, k), and

(iii) Ble, k) = BO", ex) = 1,
forall k;, k,,and k in K and for 0<n,m <t - 1.

We first prove that the condition is necessary. Suppose that 7y is compatible.
From (i), we see that the factor set 8 of K defined by

0(k,, ky) = ¥(bk b~ ", bkyb~)v(ky, k)

must be symmetric. The matrix corresponding to 6 is CG7CT -Gy thus, by Corol-
lary 1 of Theorem 3, we have that 6 is symmetric if and only if CG,YCT - G7 is sym-
metric. Hence the symmetry of CGyCT - G7 is certainly a necessary condition for
the compatibility of 7.

To prove that the symmetry of CG,YCT - G7 is sufficient, we construct a func-
tion B which satisfies (i), (ii), and (iii). We define : B x K — T by

(1) B, k) = exp[-mikT(CGCT - G,)k], and

(2) ", k) = =58, blkb h.

It follows that if CG,YCT G7 is symmetric and if we define § in this manner,
then vy is compatible.
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In order to state the resulting corollary, we must introduce notation concerning
the matrices {G,Y: ¥ € M(K)} for 4, B, v, and G, as given in Theorem 4. Consider the
st — 1 subdiagonals below the main diagonal of G,. The subdiagonal whose first com-
ponent is g, .,y g 18 referred to as the complement of the subdiagonal whose first
component is g, ,; ;; that is, the complement of the mth subdiagonal is the (st — m)th
subdiagonal. We see the mth subdiagonal has st — m entries and that its complementary
(st — m)th subdiagonal has m entries for 1 < m < st/2 if st iseven and 1 < m <
(st — 1)/2 if st is odd. If st is even, then the s¢/2th subdiagonal is its own complement.

COROLLARY. The compatible factor sets of the base group K of A v B can be
described in terms of their corresponding matrices (see Corollary 2 of Theorem 1).

(1) Assume s and t are odd. The corresponding matrix G, of a compatible
factor set v of K has the following form: each of the first (st — 1)/2 subdiagonals is
determined by a cycle of s elements. The complementary subdiagonals are obtained by
taking the negatives of the continuation and repetition of the s-cycle. That is, the mth
subdiagonal consists of repetitions of the s-cycle {g,, .| 1, 8m+2.25 > 8m+s, s+ If
the last entry in the mth subdiagonal is g, . ; ;, then the complementary subdiagonal
begins with —g,, . ;+ Lit1s > Bmtss and continues with negatives of the s-cycle.

(2) Assume s is even and t is odd. For a compatible factor set vy of K, the
first st/2 — 1 subdiagonals and their complements are constructed as in (1). The st/2th
subdiagonal has as its s-cycle {8, 1, 8142 25 - 2814s/2,5/20 " &141,10 o —g,+s/2’s/2},
where | = st/2. Thus its s-cycle is determined by s/2 elements.

(3) Assume t is even. The first st/2 — 1 subdiagonals and their complements in
the matrix G for a compatible v are formed as in (1). The st/2th subdiagonal has as
its s-cycle {841 1, 814225 -+ » 14 5,5} Where I = st/2 and &r4ix € Cryy; Such that
E1+ii = 7 &1+i,it

As an example, consider (Z, ® Zg) v Z,. Its base group has 4228 inequivalent -
factor sets, 48 being compatible. The compatibles have corresponding matrices:

0 0 0 0 0O
a, 0 0 0 0O
b, a, 0 0 0 00O
¢, b, a 0 0 0 0 0
dy ¢, b, a4, 0 0 0 0
-¢, dy ¢ by a0 0 0 O
-b, —-¢, d, ¢, by a, 0 0
-a, —b, —-c¢, d, ¢; b, a; 0

where a;, b;, and ¢, belong to their respective C; ; (1<1<2),d, € {0, 2/4}, and
d, € {0, 4/8}.

As we have seen, the compatible factor sets of the base group can be explicitly
determined. If v is such a factor set, then 7y may be extended to more than one fac-
tor set of A ~v B; that is, there may be more than one function satisfying (i), (ii), and
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(iii) in the proof of Theorem 4 corresponding to y. However, in the next theorem, we
see that in certain cases, each compatible factor set need only be extended once to
obtain a complete set of inequivalent factor sets of A v B.

THEOREM 5. Let A = an DD Zns such that n;|n; |, 1<i<s-—1,and
let B=Z, Let cdenote the number of compatible factor sets of the base group of
A~ B. Iftisoddorifn, and t are even, then ¢ = |M(4 ~v B)|.

Proof. Using Blackburn’s theorem [3] to calculate |M(A ~v B)|, we obtain:

for ¢ odd,

‘M(A ’\/B)I — [n(1s+3(s—l))ngs"1+3(S—2)) e eee e n§2—"1'3)ns] (t-1)/2 ,
and for ¢ even,

IM(A ~ B)| = zs[ngﬁ 3(S—1))ngs—1+3(s—2)) ceee s "ﬁ"; 3)”s] (t/2-1)

We determine ¢ by straightforward computation of the number of values which
can appear as components in a compatible matrix. When s and ¢ are odd, ¢ = ¢ ;|
fori>j,2<i<(st +1)/2,and 1 <j<s. If s iseven and ¢ odd,

¢ =G ;| « MCp 4y 41,
and if n, and ¢ are even,
¢ =MC;;l - 25,
where i >j, m =st/2,2<i<m,and 1 <I<s/2. In each case,c = IM(4 ~ B)|.

4. Example. We apply these results to find the irreducible projective representa-

tions of Z; v Z3.

The base group K of Z; v Z; has 3 compatible factor sets v,, v, and 73; 7,,
for example, corresponds to

0 0 O
1/3 0 O
2/3 1/3 0

Using Theorem 3, we see that K has exactly 27 inequivalent, irreducible (linear) v, -
representations of degree 1, 3 inequivalent, irreducible v, -representations of degree 3,
and 3 such vy;-representations of degree 3. We construct these by applying the algo-
rithm given in Section 2.

The factor sets of K are extended to Z; N Z; via functions constructed in the
proof of Theorem 4; let these new factor sets be w,, w,, and w;. By determining
orbits and inertia factors, we find that a complete set of inequivalent, irreducible repre-
sentations of Z; ~v Z; consists of 17 linear c, -representations (9 of degree 1 and 8
of degree 3), 1 w,-representation of degree 9, and 1 w-representation of degree 9.
Furthermore, we can describe these representations explicitly. An irreducible w,-
representation is T+ Z; ~v Z;, where T is an v,-representation of K of the form
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lll u2 u3
1 00 0 01 0 10
T(x?1x22x§3)=au3 0 a O 1 00 0 0 a!
00«2 |O 1 O a? 0 0

for a = exp(2n/3).
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