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On Maximal Finite Irreducible Subgroups of GL(n,Z)
I. The Five and Seven Dimensional Cases

By Wilhelm Plesken and Michael Pohst*

Abstract. General methods for the determination of maximal finite absolutely irredu-
cible subgroups of GL(n, Z) are described. For n = 5, 7 all these groups are computed
up to Z-equivalence.

1. Introduction. By the Jordan-Zassenhaus Theorem [5], [14] there is only a
finite number of conjugacy classes of finite subgroups of GL(n, Z), the group of all in-
tegral n x n matrices with determinant * 1. For n = 2, 3 they were already classified
in the last century. They are used for describing symmetry properties of crystals.
Recently, the groups in four dimensions were determined in two steps. Firstly, E. C.
Dade [6] found the maximal finite subgroups of GL(4, Z) in 1965. Then R. Biillow,
J. Neubiiser, and H. Wondratschek [2] computed all finite subgroups by means of
electronic computation. Later on the maximal finite subgroups of GL(5, Z) were de-
termined independently by S. S. Ryskov [11], [12] and R. Bilow [1]. Our aim is to
give a list of the maximal finite irreducible subgroups of GL(7, Z) which can be found
in Section 6, Theorem (6.6). We also give a short derivation of the corresponding
groups in five dimensions in Section 7. Other dimensions, e.g. n = 6, will follow later
on.

Prior to the exposition of our method we remark:

(1) Let A be an irreducible integral representation of a finite group G. If the
degree of A is an odd prime number, A is irreducible over Z if and only if A is irredu-
cible over C, i.e. every irreducible representation is absolutely irreducible [5]. Unless
otherwise stated, irreducibility means always absolute irreducibility in the following.

(2) Every finite subgroup G of GL(n, Z) fixes a positive definite integral n x n
matrix X: gTXg = X for all g € G. For instance, X := Zoce gTg will do. By
Schur’s Lemma X is uniquely determined up to scalar multiples in case G is irreducible,
i.e. its natural representation A: G — GL(n, Z): g + g is irreducible. On the other
hand, the Z-automorph of an integral positive definite matrix X is finite since it is a
discrete subgroup of the compact R-automorph. Hence the irreducible maximal finite
subgroups G of GL(n, Z) are the Z-automorphs of each integral positive definite n x n
matrix which is fixed by G, and G is uniquely determined by each of its irreducible
subgroups.
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Therefore, we proceed in the following manner. We derive all minimal irreduc-
ible subgroups of GL(n, Z) up to rational equivalence. So we must look for all finite
groups which have a rational irreducible faithful representation of degree n = 7 such
that this representation becomes reducible for every nontrivial subgroup. Next we
compute the integral equivalence classes into which the rational equivalence classes of
these representations are divided. This is done by means of the centering algorithm
[10] which will be described in the next section. Together with the representations
the fixed forms are computed also. In a last step we obtain the maximal irreducible
subgroups of GL(n, Z) as the Z-automorphs of those forms.

We find seven groups up to integral equivalence. They are listed in Section 6.

All computations were carried out on the IBM 370/158 at the California Insti-
tute of Technology in Pasadena. We herewith want to thank the Mathematics Depart-
ment for the generous grant to finance this project. In particular, we thank Professor
H. J. Zassenhaus and Professor D. B. Wales for valuable suggestions.

2. The Centering Algorithm. The algorithm was developed in [10] to find all
integral classes into which the rational class of a given irreducible Z-representation
splits. We give a brief account of part of the results and describe the corresponding
computer program.

Let G be a finite group and L a ZG-representation module, i.e. a ZG-module
which is also a free abelian additive group of finite rank. By a centering of L we
mean a ZG-submodule of L of finite index in L or, equivalently, of the same rank as L.
Two ZG-modules say L, L' are called Z-equivalent (Q-equivalent), if L and L' are ZG-
isoniorphic (QL and QL' are QG-isomorphic) [5]. Hence every centering of L is Q-
equivalent to L. If two ZG-modules L and L' are Q-equivalent, then there exists a
centering L" of L such that L' and L" are Z-equivalent. For let ¢: QL' — QL be a
QG-isomorphism. Because L is of finite rank there is a natural number k such that
ko(L') C L. Clearly, y: L' — ko(L'): I > ky(l) is a ZG-isomorphism and ke(L') is
a centering of L. The Q-equivalence class of a ZG-module L splits into a finite number
of Z-equivalence classes (Jordan-Zéssenhaus Theorem, [5], [14]). By our remarks a
set of representatives of the Z-classes can be chosen from the centerings of L.

To find such a set of representatives we define a partial ordering on the set
3(L) of all centerings of L: for M, N € 3(L) let M < N, if there is a natural number k
with kN =M. If M < N for M, N € 3(L), then M and N are Z-equivalent. Every
centering of L is contained in a uniquely determined <-maximal centering. For a
proof let ME3(L) and ey, ..., e, and a,e,, . .., a,e, a pair of compatible Z-bases
of L, M, respectively (4 €Z,i=1,...,no4leq, ,,i=1,...,n—1). The <-
maximal centering M, M < M, is given by M = o' M. Note, that M is itself <-maxi-
mal if and only if @; = +1. This also implies the uniqueness. We always consider L
itself to be < -maximal.

(2.1) THEOREM. Let L be an (absolutely) irreducible ZG-representation mod-
ule. Then the <-maximal centerings of L form a set of representatives of the Z-
classes contained in the Q-class of L.

Proof. By our remarks it suffices to show that two <-maximal centerings
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cannot be Z-equivalent. Let, therefore, M and N be two <-maximal centerings of L
and ¢: M > N a ZG-isomorphism. For all g € G and all m € M we have w(gm) =
gp(m). Since L is an irreducible ZG-module, there exists an r € Q\{0}, p(m) = rm
by Schur’s Lemma. This implies N = rM C L. From the < -maximality of M we
derive r € Z by choosing a pair of consistent bases for M and L. But then r has to
be £ 1 because otherwise NV would not be <-maximal. Q.E.D.

Now let M be a centering of L. Then the ZG-composition factors of L/M are
irreducible Z,G-representation modules for prime numbers p dividing the index of
Min L. Let

0=My/MCM/MC---CM,_,/MCM/M (kEN,M,=M, M, =L)

a G-composition series of L/M. Then the M; (i = 1, ...,k — 1) are also centerings
of L. In our algorithm we will obtain M;,_, from M, (i=k k-1,...,1)as the
kernel of a ZG-epimorphism of M; onto an irreducible Z,G-module for suitable p.
Which irreducible Z,G-modules can actually occur as such composition factors?

Let p,, ..., Dp, (s €N) be the different prime numbers dividing the index of
Min L.

(2.2) LEMMA. The irreducible Z,,G-composition factors (p € {p,, ..., p.}
of LIM occur already as ZPG-composition factors of L/pL.

Proof. Let K be an arbitrary centering of L. By a theorem of Brauer and
Nesbitt [5, p. 585] the irreducible Z ,G-composition factors of L/qL and K/qK are
the same for every prime number q. Let M,/M,_, be a composition factor of L/M
A<i<k)and pl[M;:M,_|] p €{p,,...,ps}). Then M;/M,_, is also a compo-
sition factor of M;/pM;, hence of L/pL. Q.E.D.

(2.3) LEMMA. If M is a <-maximal centering of L, then the irreducible ZPG-
composition factors of LM have a Zp-rank which is smaller than the Z-rank of L
@€y, p)

Proof. Assume M,/M,_, is a Z,G-composition factor of L/M of Z,-rank equal
to the Zrank of L (€ {1, ..., kL, pE{p,,... , Dg ). Hencep'lMi__l =M,J§ L,
implying p~!M C L. But this is a contradiction to the <-maximality of M. Q.E.D.

Therefore, the index of a < -maximal centering M of L in L is divisible at most
by those prime numbers p for which L/pL is reducible. A useful criterion for the ir-
reducibility of L/pL is given in [5]:

(24) LEmMA. Let p be a prime number. If the order of the p-Sylow group of
G divides the Z-rank of L, then L[pL is an irreducible ZpG-module.

Hence in order to find the <-maximal centerings of L, we need only consider
those prime numbers which divide the order of G.

The centering algorithm works as follows. By M we always denote the < -maxi-
mal centering of our given irreducible ZG-representation module L.

(@) Let M= L.

(B) By solving systems of linear equations compute all centerings M; of L with
the following properties:

Q) M, CM,
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(ii) M; is <-maximal in M,

(ili) M, is maximal in M.

This step requires the knowledge of the G-composition factors of L/pL for each prime
number p dividing the order of G.

(v) For each M; obtained in (8) check whether M; is <-maximal in L. In this
case store M;. If M, is not <-maximal in L, look for the previously obtained < -
maximal centering of L which is equal to p"lM,. where p is the unique prime number
dividing the index of M; in M.

(8) Take the next centering out of the storage for which (8) was not yet carried
out, call it M, and go back to (). If no such M is available, the algorithm terminates.

Now let us describe the details necessary for the execution of the algorithm.

Let G =(g;, ..., g and A: G — GL(n, Z) be an irreducible representation of G
with the corresponding ZG-representation module L = Z"*!'. Letp,, ..., p, be all
prime numbers for which L/p,L becomes reducible ( =1, ..., k). By A;; we denote
the irreducible Z,, -constituents of the representation belonging to L/p,L with j running
from 1 to s(i). The corresponding degrees n; are smaller than n.

As input data we have

nr, A(gy), Ag,), . .., Ag,);

fori=1,...,k: p, s(), ny, 8;(8,), Dj(gr), - - -, Bylg,) (1 <j <s(i)).

The output consists of bases of all <-maximal centerings M, of L (expressed
in the standard basis of L) in the form of an integral n x n-matrix U,, further of U,
the invariant factors of U,,and A,(g,) := U IA(g“)U,, (w=1,...,r) with A, denot-
ing the integral representation of G belonging to M,,. (The A, form a full set of repre-
sentatives of all integral representations of G which are Q-equivalent to A.) v runs from
1 to h = h(A), the class number of A. The output also provides the lattice of center-
ings. The computer program is composed of the following steps:

(2.5) (1) M=1L, Ay, = A, store L (i.e. I, the unit matrix representing a basis
of L).

(2) for every prime number p; (i =1, . . ., k) and the corresponding constitu-
ents A, G=1,...,s(@)) proceed as follows.

(3) Determine all solutions ¢ € (Z,,)"¥ X" of the system of linear equations
goAM(g#) = Ay(g, )¢ (u=1,...,r). Bach nontrivial solution represents a G-epimor-
phism from M onto an irreducible finite G-module, the kernel of which is a maximal
centering of M. If two nontrivial solutions are linearly dependent, they yield the same
centering. If there is no nontrivial solution, go back to (2).

(4) Choose one vector ¢ # 0 out of every one dimensional subspace of the space
of all solutions of (2) and go on.

(5) Compute a Z-basis of the centering N of all x € Z"*! satisfying ¢x = 0,
express it in terms of the basis of L, and determine the invariant factors of the at-
tached matrix.

(6) If the greatest common divisor of the invariant factors is greater than one,
go to (8).
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(7) Check, whether the computed new centering N is identical to one already
stored. If it is not, store it. Go back to (4).

(8) Determine the stored <-maximal centering which is Z-equivalent to N that
is identical to p;?lN. Go back to (4).

(9) Take the next centering M (that is the matrix U of its basis) out of the
storage, for which (2) was not yet carried out. Compute Ay (g,) = U "IA(g”)U =
1,...,r)and go back to (2). If no centering M is left, the program terminates.

Remarks. (2.6) If some constituent A; of the modular representation belonging
to L/p,L is not absolutely irreducible, the algorithm can be shortened at step (4). In-
stead of choosing a vector ¢ # 0 out of every one dimensional subspace it suffices to
choose one out of certain mi]--dimensional subspaces with trivial intersections, where
m;; denotes the dimension of the commuting algebra of Ai]-.

(2.7) Clearly, every <-maximal centering of L is the intersection of uniquely
determined centerings with prime power index in L. This can be used to modify the
algorithm in the way that one computes the <-maximal centerings of prime power
index for each prime p; (i = 1, . . . , k) separately and forms the intersections after-
wards.

(2.8) As,we mentioned in the introduction, we are also interested in the qua-
dratic forms which are fixed by A,(G), i.e. we compute the symmetric matrices X, €
Z"*" satisfying A,(g)7X,A,(g) = X, for all g € G and 1 < v < h(A). Since X, is
unique up to scalar multiples, it suffices to determine one X, forevery v =1, ...,
h(d). Let A; = A, then X, = U,,TX 1U,. This computation can easily be implemented
into the computer program.

3. Preliminary Considerations About Integral Representations. Since we want
to determine the minimal irreducible finite subgroups of GL(n, Z) up to rational equiv-
alence for certain n the following version of Clifford’s Theorem [5] will be useful.

(3.1) THEOREM. Let G be a finite group, A: G — GL(n, Z) be an irreducible
(not necessarily absolutely irreducible) representation of G, and N a normal subgroup
of G.

(1) There exist natural numbers k, r, m with n = krm and r rationally inequiy-
alent Q-irreducible integral representations A, . . ., A, of N, all of the same degree
m, which satisfy A;(N) = - -+ = A(N); and the restriction Al is rationally equivalent
to k(A +---+4).

(2) There exists a representation A' of G, which is rationally equivalent to A,
and A'l, =T, +ooo 4 T,, where 'y, . . ., T, are integral representations of N satis-
fying Ty ~q kA (i=1,...,nand T)(N) = - - - = T,(N).

Proof. (1) This is essentially Clifford’s Theorem on the restriction of irreducible
representations to normal subgroups. That the A, (i =1, ..., 7) can be chosen inte-
gral follows from [5, Theorem 73.5].

(2) Let V be a QG-representation module belonging to A and U the inertia
group of A}, U= {g € GlAf ~q A, }, where A{: G — GL(m, Z): h —> A, (ghg™").
Let ¥ be an irreducible QU-submodule of V. If g,, ..., g, form a system of (right)
representatives of Uin G, then V' =g,V ® - - - ® g,V is a direct sum of the irreduc-
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ible QU-modules g,V(z =1,...,r) by Clifford’s theory By [5 Theorem 73.5] V
contains a ZU-module ¥ with QV V. Clearly, £ Ve - - ® g,V is a ZG-representa-
tion module. Let A' be the correspondmg integral representation of G. Then A’ o A
holds and A’ Iy =T, $--4 I', where the ZN- module for T is given by g,V for
i=1,...,r. QED.

The Z-automorph of the unit matrix /,, is called the full monomial group H,, of
degree n. Clearly, H,, is irreducible and, therefore, a maximal finite irreducible sub-
group of GL(n, Z). To determine certain minimal irreducible subgroups of H, the
following theorem is useful:

(3.2) THEOREM. Let G be a minimal irreducible subgroup of H, with natural
representation A, and ¢: G — S (&) — (lg,ll) a homomorphism of G into the
group S of all permutation matrices of degree no If Alye, 0 =4, 4.4 A, with
pairwise inequivalent representations A; (i = ., n), o(G) ylelds a minimal tran-
sitive permutation group of degree n, that is a transitive permutation group which has
no proper transitive subgroups. If G splits over ker ¢, then ker o is characterized by
the following three properties:

(i) ker ¢ C{diag(a,,...,a,)la,=%1(@G=1,...,n)},and ker g is invari-
ant under conjugation by ¢(G).
(ii) The projections A;: ker ¢ — {£1}: diag(a,, ...,qa,) > a;(=1,...,

n) are pairwise unequal.
(iii) ker g is minimal with the properties (i) and (ii).

Proof. Since the A; (i =1, ..., n) are pairwise inequivalent, A is irreducible if
and only if ¢(G) is transitive. Hence, if G is minimal irreducible, ¢(G) is minimal
transitive. Forg€ Gandg;=%1(=1,...,n) we have g - diag(a,, . .., a,,)g"1
= (g) diag(a,, - - . ,a,) W(g)~'. The charaet\erization of ker ¢ follows immediately.
Q.E.D.

4. The Minimal Irreducible Finite Subgroups of GL(7, Z). First we consider
the solvable case.

(4.1) THEOREM. Let G be a minimal irreducible finite subgroup of GL(7, Z).
If G is solvable, G is Q-equivalent to

-1 0 0 0 0 0 O 0000O0O01
0-1 0 0 0 0 O 100000O0O0
0 0-1 0 0 O O 0100000
G,={g=|0 0 0 1 0 0 O}, g,={0010000
0O 0 0 0-1 0 O 0001000
0 0 0 00 1 O 0000100
0 0 0 0 0 0 1 0000010

G is isomorphic to A(1, 8) the full affine group on Fg, the galois field of eight ele-
ments.
Proof. Let N be a maximal abelian normal subgroup of G and A the natural
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representation of G. Applying Theorem (3.1), we get three natural numbers k, r, m,
7 = krm and a decomposition of A in the form Al =T, Foood T, (wlog. A=A").
The assumption m = 7 leads to a contradiction:

In this case N = A(Y) is an irreducible abelian group. Then the enveloping alge-
bra E(N) of N is a simple commutative Q-algebra. By Wedderburn’s theorem E(IV) is a
field. Because N is finite, E(V) is a cyclotomic field of degree 7 over Q. But the de-
grees of the cyclotomic fields are given by the values of the Euler-p-function which are
even or equal to 1. Therefore, m has to be 1. The assumption k = 7 also leads to a
contradiction: k = 7 implies N = (I,) or N = (~1,), hence N is contained in the
center of G. So NV cannot be a maximal abelian subgroup since G is solvable. Thus,
Aly =T, +o0 4 r, =4, +oo4 A, with pairwise inequivalent representations
A;(i=1,...,7), and the premises of Theorem (3.2) are fulfilled. As a minimal
transitive permutation group we can choose ((1 2 3 4 5 6 7)), which is the only one
up to equivalence by Sylow’s theorem, and get ¢(G) = (g,). ¢(G) operates on D :=
{diag(a,, ...,a,)la;,=x1(G=1,...,7)} by conjugation. D is a Z,-vector space,
and g, induces a linear transformation with the characteristic polynomial xT-1=
(¢ + 1)x3 + x2 + 1)(x® + x + 1). The corresponding decomposition of D as a ¢(G)-
module is given by D = N; & N, ® N, with irreducible Z,p(G)-modules

N, = (diag(~1,-1,-1,-1,~1,-1,~ 1)),
N, =(diag(-1,-1,-1,1,-1, 1, 1), diag(1, -1,-1,~1, 1, —1, 1),

diag(1, 1, -1, -1, -1, 1, -1),
Ny = (diag(~1,1,-1,~1,~1, 1, 1), diag(1, =1, 1,=1,~1,- 1, 1),

diag(1, 1, -1, 1, =1, =1, 1)),

Hence we find Ker ¢ is equal to N, or Nj.

By the Schur-Zassenhaus Theorem N has a complement in G which can be chosen
to be generated by g, (after conjugation by a monomial matrix). So we get two groups
(N,, g,), (N3, g,), which turn out to be rationally equivalent. Indeed, an easy compu-
tation shows that both groups are isomorphic to the full affine group on Fg, which has
only one irreducible representation of degree 7. Q.E.D. o

For the derivation of the nonsolvable groups the following lemma is useful.

(42) LEMMA. Let G be a minimal irreducible finite subgroup of GL(n, Z), n
odd. Then G is already contained in SL(n, Z). In particular, the center of G is trivial.

Proof. This is an easy application of Clifford’s theory. The last statement then
follows from Schur’s Lemma and det(—1,) = —1 for odd n. Q.E.D.

(43) THEOREM. The minimal irreducible finite subgroups G of GL(7, Z), which
are imprimitive as subgroups of GL(7, C), are solvable or isomorphic to PSL(2, 7),
Wwhich in fact is isomorphic to a subgroup of H,.

Proof. Because 7 is a prime number G is Cequivalent to a complex monomial
group. Let G be given in this form, and let
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~ 0 forg; =0,
¢p: G — 8y (gi,') = (P(gii)), p(gij) =
1 otherwise,

be the associated permutation representation of the natural representation A of G. The
restriction of A to ker ¢ decomposes into seven one dimensional representations:

Alger o =4y + - -+ + A;. By Clifford’s theory the 4; (i =1, . . ., 7) are either all
pairwise inequivalent or all equal. In the first case we conclude as in (3.2) and (4.1)
that ¢(G) is isomorphic to the cyclic group of order 7 and hence G is solvable. In the
second case ker ¢ < (—1I,) holds, but because of (4.2) ¢ has to be injective and so G

is isomorphic to a transitive permutation group of degree 7. The transitive permutation
groups of degree 7 are either solvable or isomorphic to one of the groups PSL(2, 7),
A,, or S,;. Among these only PSL(2, 7) has an irreducible representation of degree 7.
The corresponding linear group can be chosen as a subgroup of H,. Since the orders
of the proper subgroups of PSL(2, 7) are smaller than 50, it is a minimal irreducible
group. Q.E.D.

The primitive finite subgroups of SL(7, C) were determined by D. B. Wales in
[13]. From his results we conclude

(44) THEOREM. There are no minimal irreducible finite subgroups G of
GL(7, Z) which are primitive (as subgroups of GL(7, C)).

Proof. Because of (4.2) all groups G, which we are interested in, must be con-
tained in Wales’ list. By a result of Minkowski [9] the order of a finite subgroup of
GL(7, Z) divides 2' 1345 - 7. Thus G must be isomorphic to one of the following five
isomorphism types:

(I) PSL(2, 8), (I1) A, (II) PSL(2, 7), (IV) PSU(3, 9), (V) S4(2).

Ad(I). PSL(2, 8) contains A(1, 8), the affine group on Fg. A(1, 8) has exactly
one faithful representation of degree 7, and this representation is irreducible ((4.1)).
Hence there is no minimal irreducible finite subgroup of GL(7, Z) isomorphic to
PSL(2, 8).

Ad(IT). In this case the same argument as in (I) applies.

Ad(III). Compare Theorem (4.3).

Ad(IV). PSU(3, 9) has three irreducible representations of degree 7, only one of
them can be made rational. (For a character table see [7].) From the representation
theory of PSL(2, 7) one can easily conclude that PSU(3, 9) has a subgroup which is
isomorphic to PSL(2, 7). An inspection of the character tables of both groups shows
that G (=PSU(3, 9))is not minimal irreducible.

Ad(V). In Section 6 we shall see that the group S¢(2) has a subgroup, which is
isomorphic to the symmetric group Sg. This subgroup has only two faithful represen-
tations of degree 7 both being irreducible. Hence similar to (I) we conclude, that G
(=S54(2)) is not minimal irreducible. Q.E.D.

5. Computation of the Z-Classes. We proved in the last section that there are
exactly two minimal irreducible finite subgroups of GL(7, Z) up to rational equivalence.
As representatives, we choose G, = A(l, 8), given in (4.1), and G, = PSL(2, 7), given
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in the form
0 0 0 0 0 01
1 000 0O00O0
01 0 0 O0O00O
G,=(g=]0010000],

00 01 0 00O
0 00O0T1O0TO0
0000 O0T10O0

-1 0 0 O o0 O o

o o0 1 0 o0 o0 o

o 1 0 0 o0 o0 o

&= |0 0 0 0 0 0 -1

o 0 o O 1 o0 o0

o 0 0O 0 o0 -1 o0

o 0O o0 -1 0 O o

An isomorphism of G, onto PSL(2, 7) is:

1 1 0 -1
gl—>i s g3-—>i< )
0 1 1 0

The form fixed by G, and G, is the unit form in seven variables. As input data we
also need the modular constituents of the natural representations A, A, of Gy, G,,
respectively. Both representations become reducible only modulo 2. For G, the 2-
modular constituents of A, are:

A“:Gl—-)Z;:ng;

0 01 1 00
815G, —GLB,Zy):g, —|1 0 1), g |0 1 0}
01 0 0 0 1
0 01 1 00
A13: Gy —GLB,Zy): g, — |1 0 0}, g +— 1 0)
01 1 01
(Note: A,,, A, 5 are not absolutely irreducible.)
For G, and A, we get:
X
Ay: Gy, —Zy: g1,
0 01 1 00
Ay,: G, —GL3,Z): g, (1 0 1) g+r—>|0 0 15}
010 010
1 01 1 00
A3 G, —GL(3,Zy): g, —|1 0 0), g+>|0 01
010 010

The lattice of centerings for G, has the form



MAXIMAL FINITE IRREDUCIBLE SUBGROUPS. I 545

R

and for G,

The bases of the centerings M;, N; expressed in the basis of M,, N,, respectively, are
the columns of the following matrices A, B;. They are ordered according to the cor-
responding forms )\A,T A;, 7\B,T B, respectively, (A € Q).

Quadratic form: F; =1,.

Bases of corresponding centerings: 4, = B, = I, and
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Bg = (x, g%, g%, ... ,g}x) where xT=(,1,1,-1,0,0,1).
Quadratic form:

21 00000
1210000
0121000
F,=1001 20 00
0001211
00O0OT1?20
0000102

Bases of corresponding centerings:
Ay =B, =(x, 8%, ... ,gfx,y) with xT =(1,1,0,...,0),
yT=(,...,0,1,-1) and B, = BgB,.

Quadratic form:

o

i
VMO OO oo R
N OO OO RO
M OO o ~OO
MO O SO OO
N O~ O O OO
N A OO O OO
QRN RN

Bases of corresponding centerings:
A, =By =(x,8x,... ,gix,y) with xT = (2,0, ...,0),
yT =(,...,1) and Bg = %BgB,.
Quadratic form: F, = 81, —J, where J, € Z7*7 has all its entries equal to 1.
Bases of corresponding centerings:
Ay =(x, g%, ... ,8x) withx" =(-1,-1,-1,1,-1,1,1) and
By =8V -..,8 withyT =(-1,1,1,-1,1,-1,-1).
Quadratic form: Fg =1, + JL7.
Bases of corresponding centerings:

Ag = (% g%, . . .,8%x) withx” =(1,0,0,1,1,1,0) and

B, =, 88 with yT = (1,1,0,0, 1,0, 1).
Quadratic form:

2 010000
0201000
1 021000
Fe=1011210 0
0001210
00001 21
000O0OT1 2/
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Bases of corresponding centerings:

2 01 0 0 0 0 2 010 0 0 0
0 2 0 1 0 0 0 00 1 1 0 0 0
001 0 -1 -1 -1 0 0 1 1 1 1 1
B,=A;,=|00 11 0 0 0| ad 4= {0 0 0 1 1 -1 -1
0 0 1 1 1 1 1 001 0 -1 -1 1
0 0 0 1 1 -1 -1 0 2 01 0 0 0
0 0 0O 1 1 -1 0 0 0 O 1 1 1
Quadratic form:

3 1 1 1 1 1 1

1 3 1 1 1 1 1

1 1 3 1 1 -1 1

F, = 1 1 1 3 1 -1 1

1 1 1 1 3 -1 1

1 1 -1 -1 -1 3 -1

1 1 1 1 1 -1 3

Bases of corresponding centerings:

Ay =By =(x, g;x,... ,g‘}x, ¥, g?x) with xT = (1, 1,0, 1,0, 0, 0),
»T'=(0,1,0,0,0,-1,-1) and B, =(x, g;X,...,g1% ¥, gix) with
x¥T'=(1,0,1,1,0,0,0), »7=(0,0,0,1,0,—1,-1).

6. The Irreducible Maximal Finite Subgroups of GL(7, Z). Let A: G —

GL(n, Z) be a representation of the group G. By A™7 we denote the inverse trans-
posed representation of A defined by A™7(g) = A(g™)T for all g € G. The following
elementary theorem will be useful [10]:

(6.1) THEOREM. Let G be a finite group with representation A: G — GL(n, Z).

Let X € Q"*" be symmetric and nonsingular.
(i) AT is Q-equivalent to A.
(ii) X is fixed by A(G) if and only if X~V is fixed by A~ T(G).

(iiiy The Z-automorph of X is Q-equivalent to the Z-automorph of X~ .

Proof. We already remarked in the introduction that there is a symmetric posi-
tive definite matrix ¥ € Z"*" satisfying A(g)TYA(g) = Y for all g € G. This equa-
tion implies A™T(g) = YA(g)Y ™! for all g € G, which proves (i). By inverting both
sides of the equation A(g)TXA(g) = X (g € G) we get (ii). Then (iii) follows immedi-
ately. Q.E.D.

Assume that M is a <-maximal centering of the irreducible ZG-representation
module L and that A is the according representation of M. For the < -maximal
centering of L belonging to A™T we write M¥. Clearly, WMH* =M.

For the centerings M; (i = 1, ..., 9) of G, derived in Section 5 an easy compu-
tation shows My = M,, M = M,, M¥ = M, M§f = M,, M} = M. For G, we get
N¥ =N, N} =N, N¥ =N, Nf =N, Nf =N, Nf = Ng. Therefore, F]! is
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Z-equivalent to F, 2F; ' ~, F, (det(F,) = 4), 8F, ' ~, F (det(F,) = 8°), 2F !
~4 F, (det(Fg) = 2). Now we can determine all irreducible maximal finite subgroups
of GL(7, Z). Namely they are Z-equivalent to the automorphs of one of the quadratic
forms F|, ..., F,. We already mentioned that the automorph of F| is the full mono-
mial group H., of degree 7. Moreover, the following two theorems hold. They are
special cases of (I11.6) and (II1.3) in [10].

(6.2) THEOREM. The automorphs of F,, F,, and F; are Q-equivalent maximal
finite subgroups of GL(7, Z).

Proof. By (6.1) the automorphs of F, and F; are Q-equivalent. Clearly,

7
(@,...,a.)71a;€Z, Y 4,=0mod 2} <Z7*!

i=1
and
{@y,...,a)"la; €2, g;=aq;mod2(G j=1,...,7)}< z"x!

are centerings of H, and correspond to the forms F),, F;, respectively. Hence H, is
rationally equivalent to subgroups of the automorphs of F,, F; which are in fact
equal to the automorphs. The last statement follows easily since the vectors of short-
est length in the second lattice are of the form (0,...,0, £2,0,...,0). Q.E.D.

(6.3) THEOREM. The automorphs of F, and F are Q-equivalent maximal finite
subgroups of GL(7, Z). They are isomorphic to C, x Sg.

Proof. Define a faithful ZSg-representation module L = @, Ze, by ne; =
€n(i) forallme Sy (=1, ..., 8), which corresponds to the natural permutation
representation of Sg. Clearly, L= Z(Z?=1 e;) is an invariant submodule and L/L' is
a faithful irreducible ZSg-representation module. We write E,. =e; + L' i=1,...,
8). €,,...,e, constitute a basis of L/L' and T¥_ | ; = 0 holds. The scalar product
O: B(e,, Zj) =85, -1 G j=1,...,7)is invariant under Sg. The shortest vectors
of this lattice are te , ..., teg. This implies that the Z-automorph of & is iso-
morphic to {(—id) x Sg, and the theorem follows by (6.1). Q.E.D.

In order to deal with the last two forms we need

(64) THEOREM. The automorphs of Fg and F., are Q-equivalent maximal fi-
nite subgroups of GL(7, Z). They are isomorphic to the Weyl group W(E) of order
210345 7.

Proof. The automorphs are Q-equivalent by (6.1). The form F can also be
derived from the root system £, [8, p. 66], and the automorph of F is equal to the
automorphism group of the root system, in this case the Weyl group W(E,). Q.E.D.

In order to complete the proof of (4.4) we still have to verify the

(6.5) Remark. The Weyl group W(E;) = C, x S¢(2) contains a subgroup iso-
morphic to Sg, hence S¢(2) has a subgroup isomorphic to Sg.

Proof. 1In the terminology of the proof of (6.3) the K, = {Ele ae;la; EZ,
2?;1 a; =0 mod v} for v = 1, 2, 4, 8 are centerings of L/L' K, = L/L". From K,
we obtain the form F (from K, the form F,, from K the form F). Hence the
automorph of F,, which is isomorphic to C, x Sg, is rationally equivalent to a sub-
group of the automorph of Fg (equal to W(E,)). Q.E.D.
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Therefore we have proved:

(6.6) THEOREM. There are exactly seven irreducible maximal finite subgroups of
GL(7, Z) up to Z-equivalence. The automorphs of the quadratic forms F 1s- Fqas
given in Section S form a full set of representatives. (For a description of these groups
see Theorems (6.2) to (6.4).)

7. The Maximal Irreducible Finite Subgroups of GL(5, Z). The results for the
five dimensional case can be obtained very easily by our method. In analogy to (4.1)
we find only one solvable minimal irreducible finite subgroup G, of GL(5, Z), up to
Q-equivalence:

00001 -1 0000

1 0000 0 -1 0 0 0

G,={ g=l0o1000]) g£=| 0 0100
00100 0 001 0
00010 0 00 0 1

By checking R. Brauer’s list of the irreducible finite subgroups of SL(5, C) [3] we see
that there is only one nonsolvable group G, up to Q-equivalence. (Note that the order
of such a group has to divide 28325 [9] ) G, is isomorphic to the alternating group
A, and is obtained by reduction of the doubly transitive permutation representation
of A of degree 6.

1 00 -1 0
010 -10
G,=( g,8=10 0 0 -1 1
000 -1 0
0 01 -10

An isomorphism of G, onto Ay is:
g, —(12345), g, —(12)34).

The forms fixed by G|, G, are I, 615 — J, respectively. The natural representations
AL A, of G,, G, have the modular constituents:
A, becomes reducible only modulo 2:

A Gy — L g1,

Ayy: Gy —GLGA, Zy) 8, — &

o - O O
- O O O
o - O O
- O O O

o © —~ O
—_—
o O o -
o O~ O

A, becomes reducible modulo 2 and modulo 3:
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Ayt G, —Z g1

1 1 1 1 1 01 0
1 0 0O 0 0 1 1
A,,: G, —>GL@4,Z,): — > +
Rzz 2 4.2,): 8 010 0 &' 0010}
0 0100 01 10
A1 G, —>Z g1
-1 -1 -1 -1 10 -10
1 0 0 0 00 -1 1
By4: G, = GL(4, Z5): 8, — o1 0 o) 7 oo -10
0 0 1 0 01 -10

The lattices of centerings are

for G1

M,
Y

In analogy to Section 5 we denote by A4;, B; the matrices whose columns are bases of
the centerings M;, V; expressed in terms of the basis of M, N, , respectively. Again
they are ordered according to the corresponding forms.

Quadratic form: F, = I.

Basis of corresponding centering: 4, = I.

Quadratic form: F, = AzAf with basis of corresponding centering

A, =(x, g,x, 8%, &x,y) and xT=(1,1,0,0,0), y7=(0,0,0,1,-1).
Quadratic form: F; =4 3A§ with basis of corresponding centering
Ay =(x, g% &%, gx,y) and xT =(2,0,0,0,0), y"=(1,1,1,1,1).

Quadratic form: F, = 6I; — J;. '

Basis of corresponding centering: B, = I,.

Quadratic form: Fy,=1, +Js.

Basis of corresponding centering: B, = I + J;.

Quadratic form: Fg = B,(6I; —J 5)32T with basis of corresponding centering
B, =4,.

Quadratic form: F, = B3(6I5 —J 5)ng with basis of corresponding centering
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wQ'J

Il
o O O = N
o O = O N
o = O O N
- O O O N
-0 O O ~

An easy consideration shows Mf‘ =M, Mf =M,, Nf =N,, Nf = N;. Now some
simple computations yield

(7.1) THEOREM. There are exactly seven irreducible maximal finite subgroups
of GL(5, Z) up to Z-equivalence. The automorphs of the quadratic forms F TR
F, as given in this section form a full set of representatives. The automorphs of F,,
F,, Fy are rationally equivalent and isomorphic to the wreath product C, ~v S, Also,
the automorphs of F,, Fs, F¢, F, are rationally equivalent and isomorphic to C, x S6.
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