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On Maximal Finite Irreducible Subgroups of GL(n, Z)
II. The Six Dimensional Case

By Wilhelm Plesken and Michael Pohst*

Abstract. All maximal finite absolutely irreducible subgroups of GL(6, Z)
are determined up to Z-equivalence.

1. Introduction. As promised in Part I [7], we determine all maximal finite
irreducible subgroups of GL(6, Z) up to Z-equivalence. There are 17 Z-classes. A
set of representatives of these classes is described in Section 4,.Theorem (4.1). Here,
and in the following, irreducibility always means absolute irreducibility unless other-
wise stated. A detailed description of the methods and definitions can be found in
Part I [7].

In Section 2 we compute the minimal irreducible finite subgroups of GL(6, Z)
up to Q-equivalence. This turns out to be more complicated than in the seven
dimensional case, which is due to the fact that six is no prime number. We get 33
groups whereas there were only two minimal irreducible finite groups in the five and
seven dimensional cases. The Z-classes of the natural representations of the 33 groups,
respectively the <-maximal centerings of the corresponding representation modules,
were electronically computed on the IBM 370/158 at the California Institute of
Technology. They and the quadratic forms fixed by these groups under the computed
representations can be found in Section 3. The Z-automorphs of these forms form a
full set of representatives of the Z-classes of the maximal finite irreducible subgroups
of GL(6, Z). They are described in Section 4.

We herewith want to thank the Mathematics Department of the California
Institute of Technology for the generous grant to finance this project. In particular,
we thank Professor H. Zassenhaus and Professor D. B. Wales for valuable suggestions.

2. The Minimal Irreducible Finite Subgroups of GL(6, Z). Let G be a minimal
irreducible subgroup of GL(6, Z), A the natural representation of G, and N a maximal
abelian normal subgroup of G. Applying Theorem (3.1) in [7] (an integral version of
Clifford’s Theorem), we may assume that the restriction Ay isequalto I'; + - - - +

’1",, where T';, . . ., T, are integral representations of NV satisfying I} ~Q kA (=1,
...,r;k€N)and I''(V) = - - =T, (V). (Transform A rationally if necessary.)
The A; (i =1, ...,r) are inequivalent Q-irreducible integral representations of N
all of the same degree m.
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Therefore, we have to consider all possible solutions of 6 = krm (k, r, m € N).
They are:

k m r
@1 1 6
Gg) 1 6 1
Gi) 1 3 2
vy 1 2 3
v 2 1 3
(i) 2 3 1
(vi) 3 1 2
(viii) 3 2 1
ix) 6 1 1.

But m = 3 is impossible because of

(2.1) LEMMA. GL(n, Z) has no finite abelian Q-irreducible subgroups if n is
odd and greater than one.

Proof. (Compare the proof of Theorem (4.1) in [7].) The enveloping algebra
of such a group would be a cyclotomic field of degree n over Q. But then n had to
be even. Q.E.D.

Therefore, cases (iii) and (vi) do not occur. We discuss the remaining cases in
succession.

Case (i). G is a subgroup of the full monomial group H,. By Theorem (3.2)
in [7] the image of the associated permutation representation ¢: G — s 6 (85) ™
(lg;D is a minimal transitive permutation group of degree 6. An elementary compu-
tation shows that there exist three such groups up to equivalence:

P, = (D((123456)) (= Cy),
P, = (D((135)(246)), D(14)(3(6)) (= S),
P, = (D((135)(246)), D(12)(3D) (= 4,),

where D denotes the natural permutation representation of S¢, D: S¢ — GL(6, Z)
with D(m)e; = €n(i) formesS,,i=1,...,6,e,,...,e, the standard basis of
Z%*1, In each of the corresponding three subcases we have to determine the kernel
of ¢. The action of ¢(G) on the diagonal matrices in H, is the same as its natural
action on Z$*!. The subspace ¥ in Z$*!, which corresponds to ker p, has the
following properties: the coordinate projections m;: V — Z,: (a,, . . ., a6)T —a;
are pairwise different (i = 1, ..., 6), and V is invariant under ¢(G). All the sub-
spaces, which are invariant under (G) = P, P,, P;, respectively, can easily be
obtained from the lattice of centerings of G, G4, and G4 in Chapter 3. We find the
following possibilities for V := ker ¢:

@ 9(G) = Py,

Ny =(gdiag—1,1,..., g g € Py,
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N, =g disg— 1, 1,-1,1,1, )g" ' [g P,
Ny = diag(-1,1,-1,1,1, )g" ' Ig € Py,

N, =(@diag(-1,-1,1,1,1, Ng! lg € P,).
Note: Ny CN, CN, and N, CN,.

®) AG) =P,,
Ny =(@diag-1,1,...,1)g tg€EP),
Ny, =(diag(1,1,-1,-1,1,-1)g7 ' IgeP),
N, =(gdiag(-1,1,1,-1,1,- 1)z~ ' |gEP),
Ng =(gdiag(1,1,-1,-1,-1,1)g" ! |gE P,
N, =(diag(-1,1,-1,1,1,1)g7 | g€P)),

Ny, =f(gdiag-1,-1,1,-1,1,-1)g" g€ P).
Note: Ng, N,, Ng are contained in N, and Ny C N,, C N,.
™ ‘P(G)=P3,

Ny, = (g diag--1,1,1,1, 1, 1)g~! |g € P,

Ny, = (gdiag(-1,1,1,- 1,1, 1)g7 ! |g € P)),

N,; = diag(-1,1,-1,1,-1,1)g" ' g E Py,

Ny, = (gdiag(1,-1,-1,1,-1,1)g" L |gE Py,

N,s =(gdiag(—1,-1,1,1,1,1)g" |gEP).

Note: Ny, CN,|,N;3CN,CN,|,N;,CN, CNy,.

We now determine the groups G. If the extension of ker ¢ by ¢(G) splits, it follows
from Theorem (3.2) in [7], that ker ¢ has to be minimal with the properties listed
above. N,, N, N, consist of all diagonal matrices implying, that G splits over
ker ¢. Since they are not minimal, they cannot occur as ker ¢. In the remaining
cases we must look for the inverse images of the generators of P, = o(G) (i = 1, 2, 3)
under ¢. They are of the form g = dd ,p(g) with a fixed diagonal matrix d,, and d
an arbitrary element in ker ¢.

In order to find a set of generators for G let o(G) = ¢, . . ., g,) together with
defining relations r,(g,, . . ., g,) ( =1, ..., s) be a presentation of ¢(G). Choose
one inverse image g, = dyg; of g;, where d, is taken from a fixed set of representa-
tives of the group of all diagonal matrices over ker ¢ (i = 1, . .., k). The choice of
the d, is restricted by the conditions 7, (g,, ... ,g) Ekerp(I=1,...,s). Then
G is given by g, . . . , g, n) with a diagonal matrix n such that ker ¢ = gng~!|
g € o(G). Of course, this procedure usually yields many Q-equivalent groups G. In
general, this can be avoided by a conjugation of the g; (i = 1, . . . , k) by elements,
which normalize ker ¢.

As an example, we consider an inverse image g of D((135)(246)) under ¢ in
the cases o(G) = P, and ¢(G) = P5. By the Schur-Zassenhaus Theorem (g, ker ¢)
splits over ker ¢. Hence g = diag(a,, . . . , ag)D((135)(246)) can be chosen to be of
order 3. The conjugation by diag(1, 1, a,, a,, a,a5, a,a,) yields g = D((135)(246)).
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Similar computations lead to the following complete list of groups. .
(2.2) LEMMA. The minimal irreducible finite subgroups G, of GL(6, Z) in
Case (i) up to Q-equivalence are
(@ «G;) =g, =D((123456)) (i=1,2,3),
G, =g, diag(—1,-1,-1,1, 1,10 (ker p = N,),
G, = (g, diag(— 1, 1, 1, 1, 1, 1) (ker p = V),
G, = (diag(— 1,1, 1,1, 1, 1)g,, diag(=1,—- 1, 1,1, 1, 1)) (ker p = N,).

B «G,) = (g, = D((135)(246)), g, = D(14)(23)(S6)» (=4,...,8),
G, =4, &, diag(1,1,-1,-1,1,—- 1) (ker ¢ = Ng),
Gs =@, 8,,diag—1,1,1,-1,1,= 1) (ker p = N,),
Ge =g, &,,diag(1,1,-1,-1,= 1, 1) (ker ¢ = Ny),
G, =g, &, diag(—=1,1,- 1,1, 1, 1) (ker ¢ = Ny),
Gy = (g,, diag(—1,1,1,1,1,1)g,, diag(=1,-1,1,- 1, 1,= 1))
(ker ¢ = N ).

(1) w(G) = &, = D((135)(246)), g, = D(12)(34)) (=9, ...,15),
Gy =€, 8,,diag(=1,1,1,- 1,1, 1)) (ker ¢ =N,
Glo = @1’ &> diag(=1,1,-1,1,—- 1, 1) (ker ¢ =N13)’
G, =@, diag(1,1,1,1,1,—- 1)g,, diag(- 1, 1,—- 1, 1,—- 1, 1)
(ker 90 = Nl 3)’
G, =€, 8, diag(l,—1,-1, 1, -1, 1)) (ker o = N,,),
G5 =, diag(1, 1,1, 1,—-1, 1)g,, diag(1,- 1,—- 1, 1,— 1, 1))
(kel‘ 30 = N14)’

Gy, =, diag(1,1,1,- 1,1, 1)g,, diag(1,— 1, - 1, 1, = 1, 1)

(ker Q= N14)’
G,s =(g,,diag(1,1,1,-1,1,- 1)g,, diag(1,—-1,—-1,1,- 1, 1)
(ker ¢ = N,,).

We remark that some of these groups may still be Q-equivalent.

Case (ii). In this case our normal subgroup N is Q-irreducible. Hence the
enveloping algebra E(NV) of N in Q6 is simple and commutative, i.e. a field by
Wedderburn’s Theorem. Then N must be cyclic and E(V) a cyclotomic field. Its
degree is six, since E(V) C Q®*® is irreducible. The degrees of cyclotomic fields are
given by the Euler p-function. So we must find all solutions of ¢(|N|) = 6. They
are |[N| =7, 14,9, 18.

Let NV be generated by an element g. There exists a matrix x € GL(6, C) with
xgx~ 1l = diag($y, . . ., §g), where the ¢, (i = 1, . . ., 6) are primitive rth roots of
unity, r € {7, 14, 9, 18}. Therefore, xGx~1! is an imprimitive group. Because of
the irreducibility of G the {; must be permuted transitively under conjugation by the
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elements of xGx~!. Hence G is isomorphic to an extension of the cyclic group N by

the full automorphism group of N, which is cyclic of order 6. But there exist only
the splitting extensions. Each of them has exactly one representation of degree 6.

(2.3). LEMMA. The minimal irreducible finite subgroups of GL(6, Z) in Case
(ii) up to Q-equivalence are

00 00 0 -1
1 0 0 0 0 -1
010 0 0 -
Coo={ &= o o 1 o o -y |/DW32645)) oforder -6,
0 0 1 0 -1
00 0 0 1 -1
00 B, B, 00
Gi,=(& =, 0 0}gy=| 0 0By of order 9 - 6,
01, 0 0B, 0

where

0 -1 1 -1 0 1
I -1 0 -1 10

Proof. The maximal abelian normal subgroup NV of G, 4 is generated by g, and
is of order 7. D((132645)) conjugates g, into g5 and corresponds to a generator of
the automorphism group of V. Similar relations hold for G, ,, where N has order 9.
Clearly both groups are irreducible.

If N is of order 14 or 18, then G can be chosen as (G, 4, — Ig), (G4, — Ig),
respectively. These groups are not minimal irreducible. Q.E.D.

Case (iv). We shall need

(2.4) LEMMA. The Q-irreducible abelian finite subgroups of GL(2, Z) are up
to Z-equivalence

0 -1 0 -1
J’=<<1 0 >>(E ) J2=<<1 —1>> & Co)r and
0 1
" =<<— 11 >> = Co)

Proof. Let N be such a group. Similar arguments as in Case (ii) show that N
is cyclic of order r = 4, 3, or 6, which are all solutions of the equation ¢(r) = 2. As
generating matrices, we can choose the accompanying matrices of the corresponding
cyclotomic polynomials. Because the class number in the rth cyclotomic field is one,
a theorem of Latimer and McDuffee [11] proves that there is only one Z-class for
these cyclic groups. Q.E.D.

The normalizers of J,, J,, J5 in GL(2, Z) are
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Bl o) mene (1)

respectively. An easy computation shows, that the normalizers of these groups J_,
in GL(2, Q) already induce the full automorphism groups of the J

Next we describe our group G in terms of the maximal abelian normal subgroup
N and the factor group G/N.

(2.5) LEMMA. G/N is isomorphic to one of the groups P, = (D((145236)),
P, =(D((135)(246)), D((14)(32)(56)), P, = (D((135)(246)), D((12)(34))). N is
contained in J, +J, +J, (i € {1, 2, 3}), and G is a subgroup of (J; +J; +J) - P,
(G € {1, 2, 3}). Moreover N satisfies:

(1) N is invariant under conjugation with P,

(2) the projections A,: N —J;: diag(4,, 4,, A3)—> A, (v =1, 2,3)are
surjective and pairwise Q-inequivalent.

If G splits over N, then N does not contain a proper subgroup with properties
(1) and (2). (Ifi = 3, it may be changed to i = 2.)

Proof. Since we are in Case (iv), Lemma (2.4) implies that NV is a subgroup of
J; :I-Ji -i-Ji (i € {1, 2, 3)) with property (2) and that the normalizer of N in GL(6, Z)
is contained in J; v S,. Therefore, G is a subgroup of J; v ;. Let M be the CG-
module belonging to the natural representation of G. As CN-module M decomposes
into the direct sum of six one dimensional inequivalent CV-modules M; (i =1, .. .,
6). These are permuted by the elements of G. G is irreducible if and only if it per-
mutes the M, transitively. The kernel of this permutation representation is NV and
because G is minimal irreducible G/N has to be isomorphic to one of the groups Cg,
S3, A, listed as Py, P,, Py in Case ).

For g € G <J; "v §; we have the unique factorization g = gg with

oo /0 1
g€, +J;+J;(i€{1,3) and g€<< >>'\,S3,
1 0.

The first two assertions and property (1) of N follow easily. If G splits over V, then
N is certainly minimal with properties (1) and (2). Q.E.D.

Since D((135)(246)) is contained in P,, P,, Py we first determine all subgroups
NoflJ, -'!-J + J; (i =1, 2, 3) which are invariant under conjugation by
D((135)(246)). They are:

(2.6) (@) N<J, +J +Jl,

= (diag(4, 4, — 1,), diag(4, — 1,, A) of order 16,
= (diag(* 4, * 4, £ A)) of order 16,
N, = (diag(l,, 4, A), diag(4, I,, A), diag(4, A4, I,)»  of order 32,
Ny=J,+7, +J, of order 64,

where 4 = (% o) generates J .
® N<J, +J, +J,,
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N = (diag(B, B, B), diag(B, B, I,)) of order 9,
Ny =J, +J, +J, of order 27,

where B = (] 1) generates J,,.
(n) N<J, +J, +J,,

N, = (diag(B, B, B)) - U; of order 3 - 4,
Ng = (diag(B, B, B)) - U, of order 3 - 8,

Ny =Ny - (=1 of order 32 - 2,
Nio =Ns - U, of order 32 - 4,
N, =Ns-U, of order 32 - 8,
Ny, =Ng - (=19 of order 33.2,
Niy =Ny - U, of order 33 - 4,
Nyg=Jy+J,+J, of order 33 - 8,
where U, = diag(~ 1,, — I, 1), diag(— 1,, I,, — I, ) and U, = (diag(* I, ,* I,, + I, )).
Note Ny C Ny CN,, Ny CN,, Ng CN, (€ (6,9, 10, ...,14), N, CN,
(i€ {8,10, 11, 13, 14}).
All these groups V; (i = 1, . . . , 14) turn out to be invariant under P, and P,.

Under Py only N,, N3, N,, Ng, N, 5 N3, and N, , stay invariant.
Using (2.5) and (2.6), the groups G can be determined in the same way as in
Case (i). (J; +J, +J,, respectively, J; +J, -i-Js take the place of the group of
all diagonal matrices.) Our remark about the normalizers of J_, i=1,2,3)in
GL(2, Q) enables us to detect some Q-equivalent groups. We also eliminate groups,
which are obviously Q-equivalent to one of the groups G, ..., G,,. We end up
with the following list:
(2.7) LEMMA. The minimal irreducible finite subgroups of GL(6, Z) in Case
(iv) are Q-equivalent to one of the groups G, (i=1,...,30;i#16). Gg,...,
G, are given by
() GIN=P, and N<J, +J, +J,,
Glg = @1’ &> diag(A’ A' _12)> (ker v = Nl)’
G,y = g,,diag(4, 1,, I,)g,, diag(4, A, - L,)) (ker ¢ = Nl),

G,0 = €, &,, diag(4, — 4, A)) (ker p = N,),

where g, = D((135)(246)), g, = D((14)(32)(56)), and 4 = ((1) ‘01) generates J | .
() GIN=P; and N<J +J +J,

G,, =&, 83, diag(4, — 4, A) (ker p = N,),

G,, = (diag(4, 1,, I,)g,, g3, diag(4, — 4, A) (ker ¢ = N,),
where g3 = diag(4, I,, 1,)D((12X(34)) and g, A as in (8,).
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(@) GIN=P, and N<J,+J,+1J,,

G, 3 = (D((145236)), diag(B, B>, I, (ker ¢ = Ny),
where B = (3 _1) generates J,.
(3) GIN=P, and N<Jy+J;+1Js,

G,q = (D((145236)), diag(— B, = B, B) (ker ¢ = N;).

(6,) GIN=P, and N<J,+J, +J,,
G25 = @1’ g23 dlag(B’ B2: 12)> (ker ‘p = N5)>
G,¢ = €, diag(B, I,, I,)g,, diag(B, B, ,)) (ker ¢ = Ny),

with g,, g, as defined in (B,).

B) GIN=P, and N<Jy+Jy+1J;,
G,; = (¢, &, diag(~ B, = B, B) (ker ¢ = N,),
G,g = (diag(/,, 1, B)g, , diag(l,, 1,, B)g,, diag(— B, — B, B) (ker ¢ = N,).

(r,) GIN=P, and N<J,+J,+J,,
G,q = (g1, D((12)(34)), diag(B, 1,, 1)) (ker ¢ = N ),
G0 = 8, diag(l,, — I, = 1,)D((12) (34)), diag(B, I,, I,)) (ker v = Ng).
Some of these groups may still be Q-equivalent.
Case (v). Clearly there are only two possibilities for our normal subgroup NV:
N, =(diag+ I, + I,, = L)),
N, = diag(~1,, — I,, 1,), diag({,, — I,,, — I, )).

It is well known that there exist only two irreducible maximal finite subgroups of
GL(2, Z) up to Z-equivalence:

SEC) w0 D)

So G has to be Z-equivalent to a subgroup of either J; ~ S5 or J, v §,. First, we
show that G <J, ~v §; cannot occur. We consider all (2 x 2)-block diagonal
matrices in G <J_2 " §,. The inertia group of A, (defined at the beginning of this

~i

chapter) contains the group of all block diagonal matrices as a subgroup of index 1
or 2. On the other hand 3 has to divide the order of the inertia group (| J_2I =12).
Hence there is a diagonal matrix or order 3. So

. 0 1
Ua+J,+J)NG with], =
3 3 3 3 —1 1

contains N = N; or N = N, properly and is an abelian normal subgroup of G, since
J3 is a characteristic subgroup of fz. This is a contradiction. In case G <J, L VS,
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after a suitable conjugation G must contain the matrix D((135)(246)). For G
certainly contains a matrix & = diag(a, b, ¢)D((135)(246)) of order 3 with @, b, ¢ €
J, . Conjugation by diag(,, b=, a~') leaves NV invariant and transforms 4 into

D((135)(246)).
Next we assume that there is no element diag(4, x, y) in G with 4 = (} ')
and x, y € J, 1~ Then the inertia group of A, (see above) must contain two elements

0

1
h, = diag(4, u, v)_D((35)(46)) and h, = diag << 0>, u', v'> D((35) (46))

1

with u, v, u', v' €J,. The product h,h, is the block diagonal matrix

-1 0
diag ,wo', ol ).
0 1

According to our assumption uv' or vu' cannot be equal to 4 or A=, So wv' and

RS i

Since all diagonal matrices in G form an abelian normal subgroup, uv' and vu' are

certainly not in
1, .
" \o 1

Inspecting the remaining possibilities, one easily gets a contradiction to the maximality
of N=N,orN=N,.
So there must be an element diag(4, x, y) in G with x, y € J,. Similar

vu' must be contained in

considerations as above lead to one group G.
(2.8) LEMMA. The minimal irreducible finite subgroups of GL(6, Z) in case
(v) are Q-equivalent to one of the groups G, . ..,G3q or to

0 -1\ (-1 0\ /0 1
Gy = <D((135)(246)), diag(( > < >< )
, 1 0 o 1/ \1 0

Case (vii). N must be the group (diag(* I3, £ I;)). Then G is Q-equivalent to
a subgroup of H; ~v C,, because there is only one maximal finite irreducible subgroup
of GL(3, Z) up to Q-equivalence. (Note H is the full monomial group of degree 3.)
The inertia group I of A, (defined at the beginning of this section) consists of
matrices diag(4,, A,) with 4,, 4, in an irreducible subgroup S of H;. Iis a sub-
direct product of S with itself. So there exists an automorphism 7 of S such that
I contains diag(A4, 7(4)) for all A € S. The irreducible subgroups of Hy = C, x S,
are isomorphic to C, x §,, C, x 4,, S,, or A,. Therefore each automorphism of
S maps the diagonal matrices of S on diagonal matrices. S certainly contains a
diagonal matrix d # * I, but then diag(d, 7(d)) & (diag(+ I, + I, ), which is a
contradiction.
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(29) LEMMA. In case (vii) there are no minimal irreducible finite subgroups
of GL(6, Z).

Case (viii). By Lemma (2.4) N must be Z-equivalent to one of the three
groups

0 -1
N, = (diag(4, A, A)) with 4 = < >,
1 0

0 -1
N, = (diag(B, B, B)) with B = < ),
1 -1

N, = (diag(—~ B, — B, = B)).

At first we consider the centralizer C(NV) of N in GL(6, Z). An easy computation
yields that C(V) consists of all matrices (al])l j=1,2,3 Where the a; are in the
enveloping algebra E5(N) of N in Z**? and det(s;)) = £1. (Note E(N) are the
algebraic integers in the fourth respectively sixth cyclotomlc field.) We conclude that
the centralizer C;(IV) of N in G has a faithful representation Q: C;(N) — GL(3, C).
This representation has to be irreducible, because G contains C; (V) of index 1 or 2
and the natural representation of C(/V) is C-equivalent to Q +Q. (Q is the
complex conjugate representation of §2.) The values of the character of € lie in the
fourth respectively sixth cyclotomic field. Moreover, C;(N) is nonsolvable, since N
is central in C;(V) and a maximal abelian normal subgroup of C;(N) over N. An
inspection of the character tables [9], [10] of the nonsolvable complex linear groups
of third degree [1] shows, that there are no groups with these conditions.

(2.10) LEMMA. In case (viii) there are no minimal irreducible finite subgroups
of GL(6, Z).

Case (ix). In this case we get N = () or N = (= I, for our maximal abelian
normal subgroup NV of G. Hence N is the center of G, and G is nonsolvable.

At first we assume that SL(6,Z) N G =: G is reducible. By Clifford’s Theorem
G is C- equivalent to a group of the form {diag($2,(g), 2,(g))lg € G}, where the
Q;(i=1,2)are 1rredu01ble faithful representatlons of degree 3, such that the natural
representation of G is C-equivalent to + Q,. The center of Q(G) (i =1,2)is
of order 1 or 2. From [1], [9], [10] we get G = Ag or G = PSL(2, 7). While the
first possibility leads to a minimal irreducible group G, = S5, the second contains
the irreducible group G, 4, as we shall show in Section 4.

Now let G be contained in SL(6, Z). If G has a proper normal subgroup U,
such that the natural representation A of G splits into k irreducible nonequivalent C-
representations: Al ~» Q,; Fooo 4 Q,, then k has to be 2, 3, 0r 6. Fork =6
the group G must be solvable (G is minimal irreducible!). For k = 3 the normal
subgroup U cannot be solvable. But there is only one nonsolvable finite subgroup of
GL(2, C) [1], which is isomorphic to the icosahedron group. The corresponding
representation of the icosahedron group has a nonrational character, which leads to a
contradiction. For k = 2 we conclude as in the first part of this case. At last we
must consider the possibility that G is quasiprimitive as defined in [5]. From the
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complete list of these groups in [S] we have to take only those, which are minimal
irreducible and whose natural representation can be made rational. By [6] the order
of G must divide 219345 - 7. Further the center of G must be of order 1 or 2, and
G must not contain an abelian normal subgroup unequal () or (- I). There are the
following groups left:
I. G/N=Ag x V where V = PSL(2,7), A5 or A,
Il. GIN=Ag or S5, N=<( 1),
II. GIN=A, orS,, N=Jy),
IV. G/N = PSL(2,7), N = ),
V. G/N= PSU,(2), N = ),
VL. G/N = U4(3), N = ).
We can eliminate most of the cases.

Ad I. These groups have no rational characters.

Ad II. The corresponding characters are of the second kind, hence these groups
cannot be subgroups of GL(6, Z). ‘

Ad III. Since the group PSL(2, 7) has a doubly transitive permutation represen-
tation, 4, has a subgroup isomorphic to PSL(2, 7). So G = A, or S, cannot be
minimal irreducible subgroups of GL(6, Z).

Ad V. We shall prove in Section 4 that this group contains a proper irreducible
subgroup.

Ad VI. From the character table of this group [3] we see that G = U,(3) has
no rational irreducible representation of degree six.

In the remaining cases we get new groups G.

(2.11) LEMMA. The minimal irreducible finite subgroups of GL(6, Z) in case
(ix) are Q-equivalent to one of the following groups:

00 10 00 -1 00000
00 00 10 000100
00 00 01 000010
“2\& 1 1010 102 010000])
' 01 -10 01 001000
00 01 -1 1 00000 1
G32—S5’
0 01 -1 0
1 000 -10
0100 -10
G33 = | D((1237)(46)), 83 = . Gsy =PSL(2,7).
0000 -1 1
0010 -10
0 000 -1 0



MAXIMAL FINITE IRREDUCIBLE SUBGROUPS. II 563

33) yield a set of representatives of the Z-classes of the natural representations of the
G; as we described in [7]. These representatives fix uniquely determined positive
definite primitive integral quadratic forms F. At first, we list the matrices of all
occuring forms. The Z-automorphs of these forms are the maximal finite irreducible
subgroups of GL(6, Z).

There are 17 forms F. J,_ denotes the n x n matrix with all entries equal to 1.

3. Computation of the Z-Classes. The centerings of the groups G; (i = 1, . .

2 10 0 0 2 0 0 0 01

1 21 0 00 0 2 00 01

01 21 00 0 02 0 01
Fy=1I, F,= . B3 = ’

001 2 11 0 0 0 2 01

0 001 20 0 00 0 2 1

00010 1 11 11 3

Fo=y+J)+ Uy +J,), Fg=(4,—Jy)+ @I -J,),

2 0 -1 0 0 4 1 -2 -2 1 1
0 2 0 -1 0 0 1 4 1 -2 -2 1
-1 0 2 -1 0 o0 -2 1 4 1 -2 -2
Fa = e o R P e
0 0 0 -1 2 -1 1 -2 -2 1 4 1
0 0 0 0 -1 2 11 -2 -2 1 4
4 2 2 -2 1 1 6 -2 -2 -3 1 1
4 2 1 -2 1 -2 6 -2 1 -3 1
2 2 4 1 1 -2 ~2 -2 6 1 1 -3
Fo=l_, v 1 4 2 2 Fa=i_3 1 1 6 -2 -2
1 -2 1 2 4 2 1 -3 1 -2 6 -2
11 -2 2 2 4 1 1 -3 -2 -2 6
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4 -1 -2 1 1 -2
-1 4 -1 -2 1 1
Fi,=TMg~Jg, Fz3=Ig+Jg, Fiu= —2 ot 1,
1 -2 -1 4 -1 -2
1 1 -2 -1 4 -1
-2 1 1 -2 -1 4
3 -1 -1 1 1 0 41 2 21 0
-1 3 -1 -1 0 1 14 1 22 1
-1 -1 3 0 -1 -1 21 4 1 2 -1
Fis 1 -1 0 3 -1 1 Fle=ly 2 1 a1 -1
1 0 -1 -1 3 -1 12 2 1 4 1
0 1 -1 1 -1 3 01 -1 -11 4
5 1 -1 -1 1 2
1 5 1 -1 -1 2
-1 1 5 1 -1 2
A I
1 -1 -1 1 5§52
2 2 2 2 25

The determinants of F,, ..., F,, are 1,22,2%,2% 28 26 33 3 35 2233 7433
75,7, 73, 53, 2253, 2453 respectively.

Now we give a description of the <-maximal centerings of the minimal irreducible
groups G; (i =1, ...,33). We start with the centerings of G, G,, G;. The
numbers in brackets in front of the bases of the centerings are the numbers of the
corresponding quadratic form F;.

G,, G,, G5 have the <-maximal centerings M\, . . ., Mg in common. Beyond that
the lattice of centerings of G, contains Mg, M 4, that of G, contains My, M,,. All
occurring indices are powers of 2.
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Bases of the centerings:

1) B(Ml) = I,

(2) B(M,) = (x,, hyx,, ..., hix,, y) withx] =(1,1,0,0,0,0),y] =
(0,0,0,0, 1,- 1), and h, = D((123456)),

(4) B(M,) = (x,, hyx,, h3xy, v,, hyy,, Wiy,) with xI' = (1,0, 1,0, 0, 0),
¥3=(0,1,0,1,0,0), and h, = D((135)(246)),

(1) B(Mg) = (x5, hyxs, h3xy, v, hyy,, h3y;) with xT = (1,0, 0, 1,0, 0),
y¥=(1,0,0,1,0,0),

(3) B(Mg) = (x4, hyx,, .- ., hix,, y,4) with xJ =(2,0,0,0,0,0), yF =
1,1,1,1,1,1),

(3) B(M;) = »B(M)B(My),

(2) B(M7) = B(Ms)B(Mz)y

(5) B(Mg) = (x5, hyxs, hixs, ys, hyys, h3ys) with xI' = (= 1,0, 1,0, 1, 0),
yI'=(0,-1,0,1,0,1),

(4) BMy) = (xg, hyxg, hixg, ye, h Ve 2g) with xT = (1,1,0,1,1,0), yT =
(-1,-1,0,1,1,0),and zI' = (- 1,0,-1, 1,0, 1),

(5) B(M' o) = (x4, h x4, h3xq, yo, W2y, z) with xT = (= 1,1,1,-1, 1, 1),
yW=c1,-1,1,1,1,-Dand I = (1,-1,-1,-1,1,- 1),

(6) B(M,) =

1 1 1 1 -1 -1
1 1 1 1 1 1

(6) B(M,,) = diag(-1,1,1,1, 1, DB(M,).
We proceed to the <-maximal centerings of G,, . . ., Gg.
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G,, . .., Gg have the <-maximal centerings Ny,...,N,, in common. Furthermore,
the lattice of centerings of G, contains N, , N, ¢, that of G contains N' 5, V',
that of G¢ contains N{5 , Ny, and that of G, contains N,';, Njs. All occurring
indices are powers of 2. Bases of the centerings:

(1) B(NV)) = I, B(Ng) = B(My), B(N,) = D((12)(34)(56))B(Ny), B(Ny) =
D((165432))B(N,),

() B(Nz) = B(Mz), B(le) = B(N7)B(N2), B(Nl 3) = B(Ng)B(Nz)a B(Nl D=
B(Ng)B(NV,),

(4) B(Ny) = B(M,), B(N\'s) = B(My), B(N, 5) = D((12)(34)(56))B(N’5),
B(N; ) = D((165432))B(N, ),

3) B(N14) = B(M3)7 B(N3) = l/zB(N7)B(N14), B(N4) = %B(Ng)B(N14),
B(Ns) = %B(Ng)B(N14),

(5) BWN,o) = B(My), BIN{s) = B(M} ), BN, ¢) = D((12)(34)(56))BWV,'),
B(N1¢) = D((165432)B(V, ),

(6) B(NYs) = B(M,), B(N{') = B(M, ).

We continue with the <-maximal centerings of Gy, ..., G|, G4, ..., G,,, Gy, -

® 0
14
Ggs .-, Gy5,Gug, ..., Gy, Gy allhave Oy, ..., O as <-maximal centerings.
Moreover, the lattices of centerings of Gy,...,Gs, Gig Gy, G5, contain Og,

0y, those of Gy, G5, G3; contain O ,, O, 3, those of G, G,,, G, contain O, ,,
0,,4. In addition, the lattice of centerings of G, contains O, and O,,. All occurr-
ing indices are powers of 2.

Bases of the centerings:

(1) 3(01) = 16» B(04) = B(N9),

(2) B(0,) = B(M,), B(O5) = B(0,4)B(0,),

(3) B(O¢) = B(My), B(03) = %B(04)B(0y),

(4) B(0;) = B(M,), B0, ;) = B(N5),

5) B(Olo) = B(Ms)a 3(014) = B(Nl6)a

(6) 3(012) = B(Mg)s 3(013) = B(M10)7 B(Os) = 1AB(04)B(012)5 B(Og) =
%B(0,)B(0, 3).

The <-maximal centerings of G, ,, G, 3, G, 5, and G, ¢ follow.
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\. ,
Pg

P
3p, 38
G117, Gy3. Gy5, G, have the <-maximal centerings P, . .., P, in common. Beyond
that the lattices of centerings of G, 5, G, contain P,, Pg, the lattice of centerings of
G, ¢ contains P, Pg. All occurring indices are powers of 3.

Bases of the centerings:

2 -1\ /2 -1\ /2
™ B(P,) = s, B(P4)=diag<< >< >
11 11 11

10 0 -1 1 -1 0 1 -1 0 1 -1
01 1 -1 0 -1 1 0 -1 1 0 -1
0 -1 0 -1 0 1 1 -1 -1 0

B = 01 -1 1 -1 » B = 1 o o0 -1 -1 1]
10 1 0 0 1 1 -1 1 -1 1 -1
01 0 1 1 o0 0 -1 0 -1 0 -1

B(Pg) = B(P,) - B(P,),

(9) B(P,) = (xg, hyxg, . .., h3xg) with x] =(0,1,-1,0,0,0) and hy =
B(Ps) = B(P4)B(P2),

B(Pg) = B(P,)B(P?)

1
o

1

@8) BPy=

1
0

1
0
0
1

0
1

—

- o O

s B(P6) = B(P4)B(P3)-

The lattices of centerings of G, Gpg, G5 are linearly ordered and consist of P,P,
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in case of G, 4, G5, and of P, P,, P;, P, in case of G,4. We proceed to the <-

maximal centerings of G,, and G, .

The <-maximal centerings of G,, are Q,, ..., Q,,, those of G,, are Q,, Q,, Qs,

Q5. Qy, Qy4-

Bases of the centerings:
(1) BQ,) =1, B(Qs) = B(P,),

0 -1 1 -1 -1 0
(10) B(Qz) = B(M4)» B(Q4) = dlag <<_ 1 0 >: (0 _ 1>: _ 1 1> B(Qz)’

1 -1 01 -1 0 :
B(Q3) = diag << >a < >, < >> B(Qz)a B(Qg) = B(Qs)B(Qz)a
0 -1 1 0 -1 1

B(Qy0) = B(Q5)B(Q)5,  B(Qy,) = B(Q5)B(Q,),

1 -1 01 -1 1
(11) B(Qs) = B(Ma)a B(Q7) = diag << >a < )a < >> B(Qs),
0 -1 1 0 -1 1

' <<o -1 <1 -1 <—1 o>>B
B(Qs) - dlag -1 0 )a 0 - 1>’ -1 1 (Qs),
B(le) = B(Qs)B(Qs)a B(Qla) = B(Qs)B(Q7)’ B(Ql 4) = B(Qs)B(Qs)

The lattice of centerings of G ¢ is linearly ordered. We denote the <-maximal
centeringgby R , ..., Rg (R; C R;,_;andR;_;: R;=7fori=2,...,6).

Bases of the centerings:

(12) BR,)=1I¢, B(R,) = (xg, hyxy, . .. ,h2x9) withxg= a,1,-1,1,-1,-1)
and h, is the element g, in the definition of G, ; in Lemma (2.3).

(13) B(R,) =I5 +Jg, B(Rg) = B(R,)B(R,),
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-1 1 1 -2

0 -1 -1

(14) B(R,) = Lo o
-1 -1 1 -1

1 0 0 -2

Bases of the centerings:

(12) B(Sy) =1¢, B(S,) = (x, 9, hsx 4, - -
and kg = g5 in the definition of G55 in Lemma (2.11),

—

-1
1

)

B(Ry) =

(13) B(S3) = B(R,), B(S,;) = B(S,)B(S3).

Finally the <-maximal centerings of G5, are:

Bases of the centerings:

(15) B(T)) = I,

B(T3) =

TS

3
-1
2
-2

1

4

-5

569

-3 3 -1
1 -1 =2
-2 2 -3
-5 =2 3
-1 1 2
-4 4 1

h3x o) withxT ) =(1,0,1,0,1,0)
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1 0000°1
101010
000011
(16) BT)=1 0 1 101 0/ B(T5) = B(T3)B(T,),
010100
00 1 00

1
(a7  B(T,) = . .t B(T¢) = B(T3)B(T,).

1 1 1 -1 1 1
1 1 -1 -1 1 1
4. The Irreducible Maximal Finite Subgroups of GL(6, Z). If L is an irreducible

ZG-representation module and M a <-maximal centering of L, then M # denptes the
unique <-maximal centering of L, which belongs to the inverse transposed representa-
tion coming from M [7]. By Theorem (6.1) in [7] we know that an irreducible
maximal finite subgroup G of GL(n, Z) with form X yields another maximal finite
subgroup G* fixing the form X ~!. G and G* are Q-equivalent.

For the centerings M,, . . ., T, in the last section the M¥, ..., TF are easily
derived. ,

Mf=M1er=ng M} =M, Mf=Ms’ MY =M, M;#=M;0’ M;#=M10‘
N#=N1’N’f=N14’ N:f=N12’ Nf=N13»,Nf=N11’Nf=N10’

N} =N, N¥ =N,
N# =N, N?s =N N;;"sE =N NI'S =Nis N"# = Ny,
0f =0,, 0f =04 0§ =0, 0f = 0,, 0¥ = 0,,,0§ =0,

0f1=014’ 0#2 = 0y3-

p¥="P,, P} =P, P¥ =P, P¥ =P, P}¥ =Py
0f = 05, 0F =014, 0F =013 0f = 0,5, 0 = 0y, 0F = Q10 2F = 05
R¥ =R, R¥ = Ry, R} =R;.
S¥=s, 8%=5,.
T#=T, T =T, T =T,

From this we conclude immediately that the automorphism groups of F, and F, of
F, and Fg, of Fg and Fy, of F|, and F, |, of F\, and F;, and of F, ¢ and F,
are rationally equivalent.
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(4.1) THEOREM. The Z-automorphs of the forms F,, . . ., F,, defined at
the beginning of Section 3 are a full set of representatives for the Z-classes of the
maximal finite subgroups of GL(6, Z).

(i) Aut(F,), Aut(F,), and Aut(Fy) are Q-equivalent. They are isomorphic to
the wreath product C, " S, of order 266! (Aut(F,) = Hy).

(i) Aut(F,) ~q Aut Fy. Both are isomorphic to the wreath product (O
83) NV C, (= (Cy x 8,) ~ C,) of order (2331)22.

(i) Aut(Fg) is Q-equivalent to the subgroup of the full monomial group Hg
generated by the diagonal matrices of even trace and all permutation matrices. Its
order is 256!.

(iv) Aut(F,) is isomorphic to the wreath product (C, x S3) ~v S5 of order
(2 - 3133

(v) Aut(Fg) ~q Aut(Fy). Aut(Fyg) is the direct product of 1) and the
Weyl group of the root system Eq. Its order is 28345,

(v) Aut(F,o) ~q Aut(F,,). They are isomorphic to the direct product S3 x
S, x C, of order 3!412.

(vii) Aut(F,,) ~q Aut(F,;). Both are isomorphic to C, x S, of order
27N

(viii) Aut(F,,) is isomorphic to C, x PGL(2, 7) of order 2 - 336.

(ix) Aut(F,s), Aut(F,¢) and Aut(F, ,) are Q-equivalent. They are isomorphic
to C, x Sg of order 2 - 5!.

Proof.

Ad (i). Compare Theorem (6.1) in [7] or, for a more general result, (III. 6) in
[8].

Ad (ii). This follows from the main theorem in [2] and the well-known fact
that the Z-automorphs of I; + J5 and 4/, — J; are Q-equivalent to the Z-automorph
H, of I.

Ad (iii). We consider all vectors of shortest length in the centering My (compare
Section 3), which has this form F,. Their coordinates are all equal to +1 with an
even number of minus ones. The subgroup of H, described in the theorem operates
on the set of these vectors. This already yields the whole automorph, since there are
no other permutations of the vectors of shortest length respecting the scalar product,
which follows from elementary considerations.

Ad (iv). The same argument as in (ii) holds.

Ad (v). The form Fg can also be derived from the root system £ [4, p. 66],
and the automorph of Fy is equal to the automorphism group of the root system, in
this case W(Eg) x (= I¢).

Ad (vi). We have F';| = (31, —J,) ® (4I3 —J3). So Aut(F,,) has a subgroup
H consisting of the elements g ® & with g € Aut(3I, —J,) and h € Aut(4l; —J3). H
is isomorphic to (S5 x S,) x C,. (Note Aut(3, —J,)= S5 x C, and Aut(4/; —J3)
=S, x C,.) That H is already equal to Aut(F,,) can be proved as follows. The
lattice corresponding to F,, has 12 vectors of shortest length (up to sign) and H acts
transitively on these 24 vectors. Let x be one of these shortest vectors. Then the
stabilizer of x in Aut(F,,) has a faithful permutation representation on the vectors of



572 WILHELM PLESKEN AND MICHAEL POHST

shortest length whose scalar product with x is equal to 1, because these are six linearly
independent vectors. Considering the scalar products one easily sees that the order of
the stabilizer is 6 « 2.

Ad (vii). This proof is similar to the one of Theorem (6.3) in [7]. For a more
general result see (III. 3) in [8]. Note the vectors of shortest length in R, are up to
sign the unit vectors and the negative sum of these.

Ad (viii). Aut(F,,) contains a subgroup which is Q-equivalent to G,,. Lets
be the number of the 7-Sylow groups in Aut(F,,). From the definition of G, one
sees easily that the normalizer of the subgroup corresponding to G, . in Aut(F,,) is
of order 7 - 6 - 2. Let |Aut(F,,)| = 2°3f577% (a, 8,7,8 €Z27% 2 <10, <4,
vy<1,8§<1by[6]). Thend=1,a>2,8>1and 2*~23~15Y =1 mod 7 by
Sylow’s Theorem. On the other hand there are up to sign 21 vectors of shortest
length in the centering R5 belonging to the form F,,. The subgroup of Aut(F,,)
which is Q-equivalent to G, ¢ already operates transitively on these vectors. Let x be
one of the vectors of shortest length. Then there are exactly four vectors of shortest
length (up to sign) which are orthogonal to x. These are linearly independent. Hence
the stabilizer of x in Aut(F,,) has a monomial representation of degree 4, where the
kemnel is at most of order 2; hence ¥ = 0. Considering the values of the scalar
products of the four vectors one sees, that the order of the stabilizer of x cannot be
divisible by 3 and that the order must divide 2*. So the order of Aut(F,,)is 2 - 21
- 2%~ with « < 5. Considering the congruence 2*~2 =1 mod 7 we get the solutions
a, =2 and @, = 5. One easily finds a permutation of the vectors of shortest length
fixing x and respecting the scalar product which is not induced by an element of
G, ¢ and therefore & = 5 holds. Also the action is primitive. But 21 is no prime
power. So Aut(F,,) has to be nonsolvable and our assertion follows, as the center
of Aut(F,,) must have order 2.

Ad (ix). There are 10 vectors of shortest length in T, (up to sign). An easy
computation yields that Aut(F, ;) is isomorphic to C, x S5. (Note G, is already
isomorphic to S;.) To complete the proof it suffices to show Aut(F, ;) ~q Aut(F)g).
This can be done as in the proof of Theorem (6.2) in [7] by observing that the
vectors of length 12 (respectively 6 if the primitive form belonging to T, is taken) are
already contained in 27,. Q.ED.

In the discussion of case (ix) in Section 2 we did not prove the following two
assertions:

If G <GL(6, Z) is irreducible and

(1) GNSL(6,Z) = PSL(2,7) or

(@) G=PSU,(2),
then G is not minimal irreducible.

This follows now easily from the proof of Theorem (4.1) (viii) or (4.1) (v),
respectively.
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