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Certain Pure Cubic Fields With Class-Number One

By H. C. Williams

Abstract. A description is given of the results of some calculations performed to deter-
mine the class number of each of the pure cubic fields Q(\3/¢_1), where g (=— 1 (mod 3))

is a prime and q < 35,100. The stability of the percentage of these fields having class-
number one is examined.

Let g be any prime such that ¢ = — 1 (mod 3). In his review of [1] Shanks [7]
noted that for primes < 10,000, the fraction of the pure cubic fields Q(\?’/c_z) with class-
number one tended to remain about 48%. In this note we present some results ob-
tained from evaluating the class number A of Q(\3/(_1) for each ¢ < 35,100. The calcula-
tions were performed by using the methods of [1, Section 5]. Our main purpose is to
study the constancy of this “about 48%”, since it remains unknown whether or not
infinitely many algebraic number fields have A = 1.

In Table 1 we give the values of ¢, the regulator R(q) of Q(\/q), and J the
length of Voronoi’s algorithm period for /g, such that

R(@) > R(
for all primes r (r = —1 (3)) such that 8429 <r <gq.

TABLE 1
q R(q) J q R(q) J
10037 17941.60487 15972 21839 47361.35191 42122
10067 18150.81288 16318 22469 47942.75017 42716
11621 25661.99636 22908 26417 56816.82041 50385
14897 28630.01878 25280 28517 57091.82492 50671
15527 31541.56340 27991 29063 63398.84106 56707
17669 32388.80366 2851 32213 71481.68242 63674
19391 42811.86808 383 34607 75693.99813 66931

Since so many of the fields have & = 1, the regulators are becoming very large; and
consequently, the length of time the computer needs to evaluate them is also greatly
increasing. It is because of the very large amount of time that the machine was spend-
ing in evaluating the regulators that the calculations were suspended when g > 35,100.

In Table 2 we give for the 1880 primes g < 35,100, each class number # that
occurs, the frequency f(h) with which this A occurs, the value of 100f(h)/1880, and
the smallest value of g such that A is the class number for Q(\Yq), when this # does
not occur in Table 1 of [1].

Received July 9, 1976; revised July 29, 1976.
AMS (MOS) subject classifications (1970). Primary 12A50, 12A30, 12—-04.

Copyright © 1977, American Mathematical Society

578



PURE CUBIC FIELDS WITH CLASS-NUMBER ONE 579

TABLE 2

h f(h) Percentage q h f(h) Percentage q

1 890 47.34 56 2 0.11

2 486 25.85 64 1 0.05

4 186 9.89 68 1 0.05

5 49 2.61 70 2 0.11

7 39 2,07 71 3 0.16

8 72 3.83 74 1 0.05
10 17 0.90 80 1 0.05

11 10 0.53 92 1 0.05 15131
13 3 0.16 95 1 0.05 15795
14 11 0.59 100 1 0.05 31547
16 28 1.49 104 2 0.11 11549
19 1 0.05 110 1 0.05 17333
20 5 0.27 127 1 0.05

22 6 0.32 128 1 0.05

23 1 0.05 33149 136 2 0.11

25 2 0.11 10181 154 1 0.05

26 2 0.11 175 1 0.05

28 12 0.64 181 1 0.05 12251
29 2 0.11 13331 200 1 0.05 12197
31 1 0.05 16553 214 1 0.05 16823
32 4 0.21 230 1 0.05

34 2 0.11 262 1 0.05 28979
37 3 0.16 284 1 0.05 24137
40 4 0.21 340 1 0.05 18257
41 1 0.05 358 1 0.05 27329
44 4 0.21 389 1 0.05 24023
49 1 0.05 748 1 0.05 17573
50 1 0.05 22259 920 1 0.05 17579
52 2 0.11 1442 1 0.05 32771

Let n(x) be the number of primes ¢ (¢ =—1 (mod 3)) which are less than or
equal to x, and let g(x) be the number of those primes such that the class number of
O(W7q) is one. For x = 1000, 2000, ... , 35000, we give in Table 3 the value of
100g(x)/n(x).

TABLE 3

x 100g(x) /n(x) x 100g (x) /n(x) x 100g (x) /n(x)
1000 51.72 13000 47.69 25000 47.37
2000 49.35 14000 47.90 26000 47.42
3000 47.30 15000 48.31 27000 47.56
4000 46.76 16000 48,28 28000 47.50
5000 48,82 17000 48.23 29000 47.60
6000 48.74 18000 47.69 30000 47.70
7000 49.01 19000 48.11 31000 47.50
8000 49,51 20000 47.76 32000 47.68
9000 48.40 21000 47.68 33000 47.33
10000 47.65 22000 47.09 34000 47.46
11000 - 47.55 23000 47.29 35000 L7.31
12000 47.11 24000 47.69

The class number for each of the first 5000 fields Q(\/ﬁ), where p = 1 (mod 4)
has been obtained by Kloss, Newman, and Ordman (see [6]). In [6] Shanks presented
a table giving the number of values of p in intervals of 1000 which have a particular
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class number. He noted that, for each successive group of 1000 of these primes, about
80% of the corresponding fields have class-number one. The apparent steadiness of
this ratio prompted him to enquire as to whether it might be a fixed number as p
tends to infinity.

The data of Hendy [2] seem to indicate that the ratio of the number of Q(+/d)
(d is any square-free positive integer) with class-number one to the number of such
fields with genus one is about 80.5%. Hendy suggests that this ratio is 8/ in the
limit. Although the figure of 80% given above is for a somewhat different population
than that considered by Hendy, he notes that the distributions of [6] and [2] are
similar.

Lakein [3], [4] has obtained class numbers for 10000 quartic fields K, = F,(v/),
where F; = Q(i) and m = 1 + 4a is a prime in F, and for 10000 quartic fields K; =
F3(\/m), where F3 = Q(p), (p = %(-1 + v/~=3)), and m = a + bp is a prime in F, such
that @ = 1 (mod 4), 4|5, b > 0.. The distributions he obtains for the number of each
type of field having a particular class number are very similar to that of [6]. He also
gives in [4] a distribution for Q(/p) (® = 1 (mod 4)) obtained from previous results of
Kuroda (see [5]). Kuroda extended the computations of Kloss, Newman, and Ordman
to 100811 values of p. The percentage of these fields with class-number one is 77.65.
This seems to indicate that this percentage is slowly decreasing as the number of values
of p increases.

On examining Table 3, it appears as if the value of 100g(x)/n(x) is tending to stay
between 47 and 48; however, with x so limited it is impossible to say whether this trend
will continue. The analogous ratios for the real quadratic fields and the special quartic
fields mentioned above also seems to be stable within the limits of the tables presented
in [6], [3] and [4]. However, we have seen that when more data for the real quadratic
fields became available, the corresponding ratio decreased. This suggests that perhaps
the value of 100g(x)/n(x) might also decrease as x gets large.
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