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Prime Factors of Cyclotomic Class Numbers

By D. H. Lehmer

Abstract. Let p be an odd prime. The “first factor”’ h*(p) of the class number of
the field of pth roots of unity has been the subject of many investigations begin-
ning with Kummer (1861). In the present paper it is shown how the theory of a
function introduced by T. A. Pierce (1917) can be used to find the prime factors of
h*(p).

1. Introduction. Let p be an odd prime with a primitive root g. Let g" =
g, (mod p) (0<g, <p)(0<n<p-1). Denote by F = F, the polynomial

p—2
(1) Fx)= 3 gx".
n=0

Finally, let 0 = exp{2mi/(p — 1)}. Then h*(p), the so-called first factor of the number
of classes of ideals in the field generated by exp{2mi/p}, is given by Kummer’s formu-
la [3, p. 358, formula (5.6)]

@ (2p)® =/ 2h(p) = .

(»-3)/2
I'I Fp(02v+l)
v=0

In Kummer’s original paper [1] the formula appears without absolute value signs.
If these are omitted, it is necessary to include a minus sign in (2) above, as will be
shown below. It is our purpose to show in an elementary way how the theory of
Pierce’s function, as developed in [2], can be used to sort out the prime factors of
h*(p) into arithmetic progressions so as to render feasible the factorization of A*(p)
for .quite large values of A*.

2. Notation and Lemmas. Let M = 2w, w odd, be any positive integer and
let Q(x) be the cyclotomic polynomial whose roots are the primitive kth roots of
unity. Let £,,(x) be the monic polynomial whose roots are the distinct odd powers
of p = exp{2ni/M}.

LEMMA 1. Q,(x) = Il |wQM/ﬁ(x).

Proof. In case M is odd, so that M = cw, the lemma becomes the familiar identi-
ty

HQd(x) =xM -1,

diM

In case M is even we have
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M
Qpx) = H x-pM= n H (x-p") = H QM/.s(x)-
n=1n odd Slw (1,M[8)=1 §lw

We define Pierce’s function Q(P) of the polynomial P by

3) 01 = [ 0.(6), -
i=1

where f; are the roots of P. When P is monic with integer coefficients, it is clear that
O¥(P) is an integer, being a symmetric function of the roots of P.

Before proceeding further, we give a variant of Kummer’s formula (2) which has
two advantages: (a) it is analytic, (b) it replaces F p by a monic polynomial.

LEMMA 2. Let Gp(x) be the polynomial

P2 e
4) G,(x) = > g xP "=z, P

n=0 /

L
Then
_ (r-3)/2
) (2p)® 3)/2h*(p) = H Gp(92v+l)'
v=0

Proof. Comparing (4) with (1), we see that

G,(x) = xP72F,(1/x)

and that

|Gp(02v+l)| = ie(p—2)(2v+l)“Fp(0p—2—-2V)| - u;'p(027\+1)|’
where
(6 A=(@-3)2-w.

Hence the product in (5) does not differ in absolute value from that in (2). It remains
to show that it is positive.

If we compare §2”*! with 622+ 1 where \ is defined by (6), we see that they
are complex conjugates and so the corresponding factors of (5), G,(62"*!) and
GP(B““), have a positive product to contribute to (5) as long as v and X are distinct.
If they are equal, their value is (p — 3)/4, which can happen only when p =—1 (mod 4).

02v+1

It remains to consider this case in which = —1. To prove the lemma it suffices,

then, to show that Gp(— 1) is positive. In fact, more is true, namely if p = 3 (mod 4)
) G,(~1) = ph,

where k1 denotes the class number of the imaginary quadratic field K(\/—_p). We have
only to note that

p—2 —1
G,(-1) = Zjo g, (- 1P =~ pglu(l%),
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since the g’s with even subscripts are the quadratic residues of p. But it is well known
that (see, for example, [3, p. 344, formula (4.3)])

)=
v[=)=-p
v=1 \P
so (7) follows and the lemma is proved. This also gives a simple proof of the follow-
ing well-known [6]

CoROLLARY. If p =3 (mod 4), then h*(p) is divisible by h.

3. First Factorization Theorem.

THEOREM 1. Let p be an odd prime and let p — 1 = 2Mw where w is odd. Ther
the right-hand member of

(8) @p)P~3I2n¥(p) = (1P D[] 0%, (G,)
dlw 27d
is a factorization into rational integers.
Proof. The degree of §2,_,(x) is seen to be (p — 1)/2 while that of G ,(x) is p
— 2. The right-hand side of (5) is the product of Gp(x) taken over the roots of
Qp_l(x) and is thus the resultant

R(Gp, Qp_l) =(- 1)(p_2)(p_l)/2R(Qp—1’ Gp)

—2
= DC DRI R, @) Gyla)=0)

i=1

— (—1\(p-1)/2
= ( 1)(P )/ dII_I Q:}\d((;p)
w
by Lemma 1. Since Gp is monic with integer coefficients the Q*’s are integers.
This theorem allows us to “divide and conquer” the problem of factoring A*(p)
by considering separately the prime factors of the Q*’s.

4. Second Factorization Theorem. Of course, the product on the right of (8)
must contain at least (p — 3)/2 factors 2 and p, and we show in Section 5 how these
can be removed automatically in obtaining a more efficient variant of (8). Other
prime factors of Q;‘}\ d(GP) may divide d and are called intrinsic factors and are dis-
cussed in Sections 8 and 9. They are easily discovered and removed. The remaining
prime factors of Qﬁx g are called characteristic. To facilitate their discovery we use
the following lemma.

LEMMA 3. Let 7% be the highest power of a characteristic prime = dividing
Q%(p). Let u be the least positive exponent for which 7 = 1 (mod n). Then plk.

Proof. A proof of this fundamental result from the theory of Pierce functions
is found in [1].

THEOREM 2. Let P; =q,q, * * - q, be the product of all the characteristic
factors of Q’;}\ d(Gp) into distinct powers of odd primes. Then

g;=1 (mod 2*d) (i = 1(1)p).
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Proof. Using Lemma 3 with % = q,n= M, P = Gp and writing k = pyj, we
have at once

g;=7"=@") =1 =1 (mod 2d).

To search for the prime factors of P, we therefore try as divisors of P; only
the numbers in the arithmetic progression 2 +1(x=1,2,3,...). The first
such divisor is either a prime or a power of a prime. After removing all such factors
below some limit, an attempt can be made to represent the cofactor as a2 — 2. In
this case a is restricted to one case modulo 2227142,

5. Simplification of Character Sums. We now develop a practical method of
computing an isolated value of Q;‘,\ d(Gp). This involves four lemmas and the follow-
ing notation.

p is an odd prime.

g is a primitive root of p.
p — 1 = ef where fis odd.
T =e/(e, ind,2).

a = exp{2mnife}.

xk) = x, (k) = o'"8*  (x,(0) = 0).

p-1
M(p) = kZ kx (k).
=1

(p—1)/2

mm) = 3 x/(k.
k=1

LEMMA 4. Let r be any integer and let (r, €) = § so that e = be,. Then

9) I {x-expQuirt/e)} = {Q, (x)}#(@I0Cer),
t<e;(t,e)=1 1

where ¢(n) is Euler’s totient function.

Proof. The left member of (9) is a polynomial Y(x) of degree ¢(e) which is
monic and has for roots all the primitive e, th roots of unity each with the same
multiplicity v, say. That is, Y(x) = {Qel(x)}". Taking the degrees of both sides of
this identity, we have ¢(e) = vé(e,), which proves the lemma.

LEMMA 5. The norm of 2 — x(2) in the cyclotomic field of the eth roots of
unity is

N,(2 = x,(2)) = {Q, (P,

Proof. Setr = ind8,2 and x = 2 in Lemma 4.

LEMMA 6. {2 — x,(2)}M,(p) = -pm, (D).
Proof. First we note that x,(—1) = —1. In fact

X 1) = x,(p — 1) = P~ = o(P=1/2 = exp(ni(p ~ 1)/e} = (1) = —1.

Now let M’ denote the half sum
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M =Mp) = 2 kx(k).

k<p/2
Then
M@)-M = 3 (p-rx-1n
r<p/2
= pxe(_ l)me(p) - Xe(_ I)M,‘
Hence
(10) M,(p) = —pm,(p) + 2M'".

On the other hand,

M(p) = 2. {2kx,(2k) + 2k + 1)x,(2k + 1)}
k<p/2

=2,QM + 2 (p - 2k)x,(p — 26)

k<p/2
or
(11) (DM, (D) = 4M' — pm,(p).
Multiplying (10) by 2 and subtracting from (11) gives the lemma.
THEOREM 3.
(12) Q;‘(Gp) =(- 1)¢(e)p¢(e)Ne(me(P))/{Q1(2)}¢(e)/¢(7).

Proof. By definition (3), we have

0f = 0XG,) =C1P©RG, 0,) = 1°© I G,

t<e;(t,e)=1

—1
EPETIORE § B S
t<e;(t,e)=1 n=1
p—1

=ip© I o« I Tga
t<e;(t,e)=1 t<e;(t,e)=1 n=1
p—1 p—1
= JI Xeodm= I X k®).
t<e;(t,e)=1 n=1 t<e;(t,e)=1 k=1

That is, QX(G,) = N(M,(p)). By Lemmas 5 and 6 we have the theorem.
We now define a new exponential sum W,(p) by

(p—1)/2
We(p) = We(p, H = Z {en - en—l}ant

n=1
(13) 1 ifg, <p/2,
where €, = {

0 otherwise.
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Thus the coefficients of W, are £1 or 0.
Lemma 7. (1 — aym, (p) = 2W,(p, 1).-
Proof. For typographic simplicity, we write p’ for (p — 1)/2. Since

o = (/2 = (-1) =-1

and we have gn+p' Eg'p’gn = _gn(mOdp)’ then gn+p' =p —gn so that ep’+n =1-

€,. In what follows the summation index v ranges over 0 <» < (p — 3)/2. From the
above we can write
indgk _ P2

=Y e =D{e,d"+ €, 0"}
r=0

m,(p) = i o
k=1

=22 (l—-¢)’=22¢ -2 o
=2{Q e, 0’ - 1/(1 - a)}.
Multiplying by (1 — @), we have

b’
(1= my(p) =23 (€5 = €y = 2W,(p, 1),
n=1
since €p' = 0. From this the lemma follows.
LEMMA 8. N,(m,(p)) = N(W,(p, 1))27(®) where

¢(e) ife#2*
J(e) = (k= 1).
dle)—1 ife=2k

Proof. This follows at once by taking norms of both sides in Lemma 7. Use is
made of a theorem of Lebesgue [4] in writing

I a-ah=01)=2 or 1
(t,e)=1
according as e is a power of an (even) prime or not.
6. Main Theorem. We are now prepared to give a formula for the class number
h*(p) as a product of norms of exponential sums of the type W, (p), divided by cer-

tain cyclotomic polynomials evaluated at the point 2. In stating the result there is
some recapitulation of notation.

THEOREM 4. Let p be an odd prime with g any primitive root. Let e range
over all divisiors of p — 1 whose codivisors are odd. Let

T =1(e) = ¢/(e, indg2),
and let h,(p) = pl/PDIN (W, (D) Q,(o(2)F', where

v = v(e) = ¢(e)/#().
Then
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(14) n*(p) =]1r.@).
e
Proof. This follows at once from putting together Theorem 1, Theorem 3, and
Lemma 8, using e = 2*d, 7 = 7(d), and the fact that
-1
2 ¢(2ra) = p_2_ .

dlw
At first sight, it would appear from (14) that A*(p) is always divisible by p. Of course,
this is not so. The explanation is that p divides the denominator, O w)(2). To see
this we note [5] that

7(w) =@~ D/((p ~ 1), ind 2)
is the exponent or order of 2 modulo p. Hence p is a divisor of QT(w)(2). Otherwise,
it is the responsibility of the numerator V of each factor to be divisible by the denom-
inator Q7. This affords an excellent check on calculation of N.
To illustrate Theorem 4 we give the simple example of p = 31. Here we have
g=3,2=1,w=15,ind;2 = 24. The various elements in each factor may be tabu-
lated thus.

e 7(e) ve) {Q,Q) N,(W)
2 1 1 1 3
6 1 2 1 3
10 5 1 31 31
30 5 2 312 31
Hence
31 31
* = . . e e —— =
h*(31)=31-3-3 3 30

7. Simple Special Cases. When the greatest common divisor (2*d, ind 2) = 8,
is specified, the parameters 7 and vy can be tabulated as follows. Here we have written
e for 2Xd and q is an odd prime.

) T ¥

1 e 1

S
2 if4

4 el 4 Lthelrlv:ise

q otherwise
2 if2eqle
q if2]e q2 | e
2q-2 ifd4leqlle
2q otherwise

2q el(2q)

{
o
a ela ;ql ifqglle
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The case where p is a Fermat prime results in (14) having but a single factor.
Settingp = 22" + 1, we findg =3, A =2", w =1, e = 22”, s0 () =2"*1, y(e) =
22V-v-1, 0.(2) = 22¥ 41 =p. For example, for p = 257 we have v = 3 so0 y(e) =
16. This means that N, ; (W, 54(257)) must be divisible by 257'5 and since 257 is
an irregular prime, we can expect 257'6. In fact,

h*(257) = 257-20738946049-
1022997744563911961561298698183419037149697

a factorization into primes.
This alarmingly large value of v is unusual for primes p in general. Ordinarily,

v rarely exceeds 2 and the denominator Q7 is very small compared with the numerator
N(W) in (14).

8. 0dd Intrinsic Factors of h,(p). For those odd primes g which divide both e
and h,(p) there is a “law of repetition”, namely

THEOREM 5. Let p — 1 = ef where f is odd. Let q be a prime factor of f. Then
h.,(p) is divisible by q if and only if h,(p) is divisible by q.

Proof. By (12) and (8) it suffices to prove the same fact about Q:‘q and Q%

Now

. q-1
e = NegM o= Il Y g
(t,eq)=1;t<eq n=1

where we have set ; = exp{2mi/(eq)} so that a = . If we use the multinomial
theorem identity

(xl +x2+...+xp_1)q=x’il+xg+--.+xg_l+qF(x1,..-,xp._l),

we have
@)= 1 5

1
gl + q®,
(t,eq)=1 n=1

where @ is a symmetric polynomial in the powers of a; with integer coefficients.
Thus we have

p—1 . ¢(eq)/o(e)
tq = I1 2 8" (mod q)
t<e;(t,e)=1 n=1
or
0%, =(0%° (mod g),
where

1 ifqgle,
0 =

q — 1 otherwise.

Thus qIth if and only if q|Q%. This proves the theorem.
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Example. Take p =379,p—1=2-33-7. Here 3lh, = 3. Hence 3lhy =
3-13,3lhyg =3 -991 and 3ihg, = 3 - 29997973. This theorem includes a theorem
of Metsinkyld [6] for e = 2*.

9. The Intrinsic Factor 2. It is well known that for p = 3 (mod 4), h,(p) is
always odd. For e # 2, however, h,(p) can be even, as witness

h,5(29) =8, he(163) =4, h, ,(491) =2°-29.

Newman [8] conjectured and Metsankyld [6] proved that if h; is even it is a

multiple of 4. The latter’s results show that when e = 2%, h.(p) is odd and that when
e = 2Md with d > 1 then the highest power of 2 dividing 4,(p) is 2/ where v is the
exponent of 2 (mod d) and j > 0. Since » = 2, Newman’s conjecture follows at once.
That j can be greater than 1 is evidenced by

he,(311) =210 - 9918966461,
whereas the exponent of 2 (mod 31) is 5. Since
2" =1 (mod d),

the factor 2/¥ of h,(p) behaves somewhat like a characteristic prime power factor of
h,(p), being of the form dx + 1 rather than 2*dx + 1.

10. Application. The preceding results have been used to obtain the prime
factorization of A*(p) in the published tables of Newman [8] (p <200)and Schrutka
[7] (p <257) and in the as yet unpublished table of Lehmer and Masley [9] (p <
512). Computational methods and results will appear in [9].
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