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High Order Local Approximations
to Derivatives in the Finite Element Method

By Vidar Thomée

Abstract. Consider the approximation of the solution u of an elliptic boundary value
problem by means of a finite element Galerkin method of order r, so that the approx-
imate solution u, satisfies u, —u = O(hr). Bramble and Schatz (Math. Comp., v. 31,
1977, pp. 94—111) have constructed, for elements satisfying certain uniformity condi-
tions, a simple function Kh such that Kh * Uy —u = O(h2"“2) in the interior. Their
result is generalized here to obtain similar superconvergent order interior approxima-

tions also for derivatives of u.

1. Introduction. Assume that u is a smooth function defined in & C RV.
Assume also that one is given an approximation u, which belongs to a subspace S,
(depending on a small parameter /) of L,(2) such that (for notation, see Section 2)

Hu —u,llg < Cu)n".

Such a situation arises when one solves a 2mth order elliptic problem in a finite
element space of order r by Galerkin’s method. In certain cases it is possible to
derive estimates for u — u, in negative norms with a higher power of 4, e.g.

N —u,ll_y o < Q@)L

In the elliptic case referred to, this can sometimes be done by a duality argument,
with I =r — 2m if r > 2m.

In [2], Bramble and Schatz were able to show (this was carried out for second
order equations, i.e. with / = r — 2) that under certain uniformity assumptions on
{S,} in the interior, it is possible to find an approximation of u based on u, which
is of this higher order also in L,(£2,) where 2, CC . Their approximation is a
convolution K, * u, where K, is a linear combination of translates of B-splines, and
their result thus takes the form

llu =Ky *uyllg < C(u)h .
The interior uniformity of {S,} is reflected in the fact that for any a,
) 05 —ull_y g, < Ch™!,

where 9, denote difference quotients. Under the assumption that in addition to (1),
maximum norm estimates of the form
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2 |og(u — u")'“o < C(u)h”

are valid (such estimates hold in the elliptic case, cf. Bramble, Nitsche and Schatz
[1]), Bramble and Schatz also showed that

lu =Ky % u,lq < Ca)n"™".

The purpose of this note is to derive similar approximations also for arbitrary
derivatives of u, and in fact for any linear functional of u which is continuous on
some Sobolev space W7(2,). In deriving these results we also give alternative proofs
of the results by Bramble and Schatz.

Our first main result, Theorem 1 below, shows that an arbitrary derivative of
the smooth function u can be approximated in L,(£2,) by a local average of the
corresponding difference quotient of the approximating function u,. Hereby the
error can be bounded by O(h?P) plus a finite sum of terms of the form of the left-
hand side in (1), where p and [ are arbitrary given positive integers. Using this result
we show in Theorem 2 that the value at u of any bounded linear functional A on
some W75 (£2,) can be approximated to the same degree as in Theorem 1 by a linear
functional A, acting on u,. Finally, in Theorem 3, we show the analogue of Theorem
1 for the maximum norm. Now interior maximum norms of certain difference
quotients of the error have to be included in the error bound.

Our results are not restricted to the solution of elliptic problems by Galerkin’s
method but may be applied in any situation where negative norm (and for Theorem
3, maximum norm) interior estimates are available for difference quotients of the
error. Such estimates were obtained recently for second order parabolic equations in
Bramble, Schatz, Thomée and Wahlbin [3]. The conclusion is therefore that in the
context of that paper, O(h?"~2) approximations can be obtained in the interior by
local averaging, not only for the solution itself, which was shown in [3], but also for
any derivative of the solution.

2. Notation. For £ a domain in R and s a nonnegative integer we set for
v € WYQ), with |||l the norm in L, (),

Y%
ol o = ( 3 llD“vl@,) :

la|<s
and for v € L, (),
v, w)

Wil_gqo=  sup o7—
5, Hwllg o

wEC] ()

Note that for any integer s, |||,  increases with £ and that ||-]| RN is equivalent to
X s,

lvll, = (f a+ |s|2)*|a|2ds>”’-
N

R
Notice also that for supp v C Qy CC Q, CC Q, we have for positive s, [lvll_g o <
Clivll_; o - so that the two norms are then equivalent. For if ¢ € Cy (£2,) and
¢ =1 on Q, we have



654 VIDAR THOMEE

!fl_), W! U, YW
”U”_s,g2 = sup T < C sup —-——”( . T ) <C”U”—s,nl-
wECq (92,) 5,82, weCq (2,) Wi, q,

In addition to these L, based norms we shall use the maximum norm
lvlg = sup lv()l,
xEN
and for v € C%(Q) ,

max |D%]g.
lal<s

Let x,l/(,) denote the B-spline of order [, that is the convolution x * - -+ * x
with / factors, where x is the characteristic function of [~ %4, %]. Fora =
(@, ..., ay)let

I

vl q

N
‘l/(a)(x)’: n lI/(azi)(""j)
j=1 :

denote the B-spline of order a in RV, In particular, with e = (1, ..., 1), t[z(,e)
denotes the B-spline of the same order / in each variable. We set ‘l’(a), ax) =
RN Y gy ().

We define the difference quotient operator 9j by

o =3, -+ 3N, with 9, w(x) = A7 (v(x + Yhe;) — v(x — %hey)).
Notice that for the Fourier transforms of ¥, , and 93V we have

; ; N [ sin(hg)\’
Vian® = Ve #®) = T1 (s‘ 2

j=1

%hg
and
P N
dzu(E) = (20)'* T (h~'sin(thg,)).
=1

Let a € C™(RY ). We recall that g is said to be a Fourier multiplier on L, or
aEM=M_ if

M(a) = sup{| F“(aﬁ)IRN; v € C3(RY), ol y <1} <es,

where F~! denotes the inverse Fourier transform (for related material, cf.,e.g. [4]).
We shall use below that a(ht) € M if a € M, with M(a(h -)) independent of h so that

IF- l(a(hz)f))IR N S M@l IR N

We shall also use the facts that M is closed under multiplication, that any trigonometric
polynomial and ¥, belong to M (in fact, M(ll/(a)) = 1), that Cy C M and further
that if p is a C** function on the real line with ¢)(§,) = 0(;1=>~") (6>0,1=0, 1), for
large IE,.I, then ¢ belongs to M in one and, as a consequence, also in N dimensions.
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3. The Local Averaging Operators. We shall now turn to the construction of
the kernels of the averaging operators used in our main results. The first step is the
definition of certain one-dimensional trigonometric polynomials.

LEMMA 1. Let q 2 1,p = 1. Then there exists a unique trigonometric poly-
nomial kq’p of order p — 1 such that

3) kq p(@x(0)? =1+ 0(c*P) as o — 0.
Proof. Setting 7 = sin %0 we obtain for small 7 or o,

o g _ farcsinT\a & 97

MORE (————, ) = % tar

We may therefore choose
p-1 o1 \2i B3l w :
k, p(0) = ]Zo Ya.i (sm §O> = 'Zo g2/ (1 — cos o).
= I:

The uniqueness follows at once since if k; and k, both satisfy (3) then k,—kyisa
trigonometric polynomial of order p — 1 which vanishes of order 2p at the origin
and hence has to vanish identically.

Fora = (o, ..., ay) with Q > 0 and p = 1 we now define the NV-dimensional
trigonometric polynomial

N
KOP@) = [] k(&) = THEDED, gy RV,
j=1 Y

Using the coefficients of this polynomial and the B-splines of order a we set
K(O"p)(x) = Zkga,p)d,(a)(x -9).
v

Notice that by (3),

~ ~ N ~ .
@ K©PXg) = K ®P)(E)) o () = Il](ka,.,,,(s,-)x(s,.)“/)

=1+ 0(¢?P) as§— 0.

We also set

K{&P)x) = h~VK(@P)(n—1x).

The order relation near the origin in (4) is the basis for proving the following
approximation estimate for convolution by Kf,""p ),

LEMMA 2. Let a = (ay, ..., ay) with o > 0and p = 1 be given. Then for
Q, CC Q, there is a constant C such that for small h,

) llo = K2 xvllg < Pl o,

(6) b~ K{*P) xvlg S PPloly, o
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Proof. Since by (4),
11 = K@P)ng)l < Ch?P|£2P for £ € RV,
we obtain at once by Parseval’s relation, for v € C;"(RN ),
llo = K52) % vlly < QW2 vl

The estimate (5) now follows by applying this inequality to wv where w € Cg(£2,)
and w =1 in a neighborhood of ﬁl.

Setting k i(0) = ka]., p(o)f((o)af , we find since (1 — k HENE 2P € M that (with
D; = 9/ox))

IF~Y(1 = k(g )D)I = h?PIF1((1 ~ K (hE))hE -)‘ng?}t))l
A} rN A i j RN

< Cn?P IDjzpleN'
Writing
~ N -~ ~
1= KPXhg) = 3 [T kg1 -k (hgy),
j=11<j

and noticing that clearly also ;j € M, we conclude

: = _ Aoy, - 2
lv — K§&P) % leN = |F~1((1 - K@ ”)(hE))v)IRN <@ ”Ivlzp'RN,

from which (6) follows as above by application to cwv.
In addition to the function Kff‘”’) we shall use the associated function defined
fora=0,l21,p>1by

R0 = THEHED Y 6= 7).
Y

Recall that derivatives of splines of higher order are difference quotients of splines
of lower order. In particular, more precisely,

DY yrieyn = O Vaeyn
so that with the above notation
+le,p) — aap(a,l,
Q) DeK(eHIeP) = geglabp),

4. Main results. We can now prove the first of our main results.

THEOREM 1. Let « be a given multi-index, let 1 = 1 and p = 1. Then, for
Q, CC Q, CC Q, there is a constant C such that for h small, u € WP *1*(Q )
and u, € L,(2,),

D% = R0 o g

< C{h2p“u“2p+|a|,ﬂl + Iﬁlz< ||az+l3(u _uh)“—l,nl}'
)
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Proof. Notice that by (7),
IA{IS"""’) * 0pv = Bﬁkﬁa""’) *p = D°‘K§l°"”€'p) *p = Kf,a"'le'p) * D%.
We have by the triangle inequality

1D%u — K$®bP) x 8%y, llg,

< ||D%u — K{@Hier) « Dullg, + KSR % 3%(u — upllg =1+ IL
By Lemma 2,
1< aﬂl’lu)“ullzp,Ql < Cthuuuzpﬂal,ﬂl.
The proof is therefore completed by the following lemma.

LEMMA 3. Letl>1and Q, CC Q, CC Q,. Then there exists a constant C
such that for small h and v € L,(£2,),

W aeyn * vllg, <C WZ( 3vll_y,q -
<l

Proof. We notice that for each j,

<si—n(—%isj-)>2l <c 1+ (h-—l sin(%hi,-))zl
i, a+g)y

. §ER K<

This is obvious for small hsi since then the left side is bounded above and the right
side below. For large h%; and hence £; large the result is also immediate. Letting
£, denote the component of ¢ with largest modulus, we conclude, since IxI <1,

R in(Y%h 21 1+ h_l in(%h 21

Do h8)* < (——s‘"f E°)> < o LU sinCiE)
V%, (1 + g2y

(®)

< 1 +2_(h~ 'sin(4hE))* .
(1 + g2y

Parseval’s relation therefore yields
le;
W geyn * vlly < C{llvll_,,RN +2 0o, ’vll_,,RN}

<c 2 l1abvll

N-
18I<i -LR

An application of this inequality to vw, where w € Cy(2;) and w =1 in a
neighborhood of §2, completes the proof.

Theorem 1 may now be used to produce approximations to Au for any bounded
linear functional on a Sobolev space on Q.

THEOREM 2. Letl>1,p > 1and Q, CC Q, CC Q,. Let A be a bounded
linear functional on W5(82,) for some n = 0. Then there exists a constant C and
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Jor sufficiently small h a bounded linear functional A, on L,(2,) such that for u €
W3P*™M(Q,), u, € Ly(R,),

[Au = Ayu, | < C{th”u“n,ﬂl + X 135 Pu - uh)”-l,ﬂl} )
lal<n;lgI<i

Proof. By the Riesz representation theorem there is a ¢ € W'z'(ﬂo) such that
with (-, .)90 the inner product in L,(£2,),

Au = (u, ) = 2 (D% D°9)q .
W3(R0)  jai<n 0
Setting
A= Z (Ef,“"'p) * 35, Daﬂﬂ)go,
lal<n
we obtain

|Au = Ay <llellngy 3° 11D - K{bP) « Ayunllg g
lal<n
and the result follows by Theorem 1.

In particular, in the case of the elliptic problem treated by Bramble and Schatz,
we conclude by Theorem 2 and (1) that the approximating function u, contains
enough information to produce a O(h"*") approximation of D%u(x) for any & and
any x € Q. The corresponding functional A, is of course not practical, and since also
(2) holds, we therefore have use for the following direct interior maximum norm
estimate.

THEOREM 3. Let a be a given multi-index, let 1 = 1 and p = 1. Then for £,
CC Q, CC Q, there is a constant C such that for h small and u € c?p +'°"(S22), u,
€ 0, ) (with Ny = [N/2] + 1),

IDau — E(a,l,p) * azuh |Qo

< c{h“’lulz,,“(,,l,Ql + 'BKZHN N5+ —ull_y 0
0

+H 2 0P - uy)lg, }
IBI<1 1
Proof. In the same way as in the proof of Theorem 1, using now the second
part of Lemma 2, we obtain

|D% — K$bP) % 3%u,, |ﬂo < Cthlu|2p+lal,ﬂl + |K§Ia,1,p) * dp(u - “h)lno'

The result therefore follows as above by the following analogue of Lemma 3.
LEMMA 4. Letl>1and Q, CC Q, CC Q,. Then there exists a constant C
such that for h small and v € C(,),

Waeyn *vlag<c] X N10bull_, g +H 2 13wl (.
IBISI+N T IgI<1 1y
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Proof. As previously, it is sufficient to prove the result for v € C3(2,). Let
¢ € Cy(— m, m) with ¢ = 1 near the origin and set ®(§) = H’l\lw(éj). We may write, at
x €8,

Vaeyn * v = F e (D)

= F ' ey DREW) + F1 (U (rO)(1 — @(RE)) =1 + 1L
Using Schwarz’s inequality, we obtain

1= U(l +1g2) Vo 2emitnB(q 4 |£|2)N°’2xi(,e)(hz)cb(hg)a(g)dg|

< CI + 18R P O PRED O -
For h¢ in the support of ®(h¢) we have

1+ Z(h—l sin(%hé,»z 2;

1+g2<C
j

and hence by (8),

(1 + 182"V oy (hE) D (hE)

<an+ |z|2)—‘/2%1 + 20 sin (lhgj))“”fvo)zg

7 2

We conclude

(I+Ng)e: -~
|1|<c3nvn Lo F2lB, Ol ’RNi <C 2 gl g,
- j " IBISI+N

In order to estimate II we write

I = F“( T3y 11 w1 - ¢(h§j))6) ’
7

joi<j
and hence since X, ¢ and (1 — ¢(&,))/£ belong to M,
21 s)

I < C3IFHA — oti)XBEYD) N
)

43.\ le;
= FIF 1A - otg) ()~ "0, W)l v S CH' 319, Tvlg -
j j
Together the estimates for I and II prove the lemma.

As an illustration, consider the case when a two-point boundary value problem
for a second order ordinary differential equation (or a second order parabolic problem)
has been approximately solved using cubic splines on a mesh which is uniform in the
interior, so that O(k%) interior estimates for the difference quotients of the error are
available in norms of order — 2. Then the above theory (with/ =2,p =3,r = 4)
shows that O(k®) approximations of for instance u, du/dx and d?u/dx?* can be obtained
using the trigonometric polynomials k, 5, k33 and k, 5. These approximations are
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(with Tnv(x) =ux —n)

(37 23

1
—3—(—)— - m (Th + T-—h) + % (T2h + T—Zh)) w(2),h * Uy,

437 97 37
(3_23_ 250 Tn + T-w) + T30 Tan + T—zh)) Yyn * Onttn>

181 17 7
(—156—66 (T, +T_,)+ ‘2%(7'2,‘ + T—2h)> \ﬁ(z),h * a,z,u,,.

Notice that these approximations can easily be expressed in terms of the coefficients
of u, with respect to a basis in the finite dimensional approximating space and the
convolutions of ll/(2)’h with these basis functions. In the particular case of smooth
(C?) cubic splines these convolutions are translates of Y(6).n ="1’(2),h * w(‘,)’h.
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