MATHEMATICS OF COMPUTATION, VOLUME 31, NUMBER 139
JULY 1977, PAGES 691-707

Taylor Series Methods for
the Solution of Volterra Integral
and Integro-Differential Equations

By Alan Goldfine

Abstract. Algorithms based on the use of Taylor series are developed for the numerical
solution of Volterra integral and integro-differential equations of arbitrary order. It is
shown that these algorithms are uniformly convergent, bounds are obtained for the
truncation error, and an asymptotic error analysis is provided for the integral equation
case. The various problems of computer implementation are discussed, and the results

of certain experiments suggested by the theory are presented.

I. Introduction. Consider the equation

YO = £ (), 7' @), .,y)
) + TR v, Y @), Y PO, s 6, 016), - YO ds,

y(i)(a)=y8i), i=0,1,...,p—1,a<x<b,

which defines a Volterra integral or integro-differential equation of the second kind,
accordingas p=0orp > 1.

In this paper, we discuss the numerical solution of (1) by a class of algorithms
based on the Taylor expansion. The techniques are inspired by the Taylor series method
of solution of the initial value problem of ordinary differential equations, and have
been discussed in the context of a first order version of (1) by Feldstein and Sopka [6].

If p(x), y1(x), . . ., y®)(x) are expanded in gth order Taylor series, and the
derivatives y®+*1(x), . . ., y®*9)(x) are known, an approximate method of solution
of (1) can be defined.

Traditionally, methods of this type were usually regarded as impractical, because
the necessary derivatives of the right-hand side of (1) are often complicated and
difficult to obtain by hand. Henrici [8, p. 66] discusses this problem in connection
with the solution of ordinary differential equations. In recent years, however, atten-
tion has been given to the use of symbolic manipulation for the computation of
derivatives and Taylor coefficients [1], [2]. Even more recently, a technique has been
developed that allows the differentiation of functions defined by a FORTRAN program
[9]. This very interesting concept involves the use of a specially designed pre-compiler.

Received January 20, 1974; revised December 30, 1976.

AMS (MOS) subject classifications (1970). Primary 65R05, 45L10, 68A15; Secondary
45D0S, 45J05.

Key words and phrases. Volterra integral equation, Volterra integro-differential equation,

Taylor series method, initial value problems, symbolic differentiation.
Copyright © 1977, American Mathematical Society

691

692 ALAN GOLDFINE

The technique used in this study for the automation of the differentiation problem uses a
program written in FORMAC [14]. In comparison with hand calculation, the use of
this program greatly enlarges the class of equations for which it is practical to solve
using our Taylor series based methods

In what follows, y(u) (or y(u) if amblguous) stands for the sequence y(u),
yi@), ...,y (). Therefore, F(x, y(x) s, y—S) would represent the integrand in
. In contexts where there is no ambiguity, we often abbreviate still further: f for

fCx, y(x)) and F for F(x, y(x) s, y—S)

II. Definition of the Algorithms. Two variations of a Taylor series algorithm of
order g, ¢ = 1, will be discussed. It is assumed that both fand F are ¢ + 1 times
continuously differentiable with respect to all their arguments.

Suppose we expand y, and each of the first p derivatives of y, in gth order
Taylor series around x,, = a + nh:

hq

y(r)(an) = y(r)(xn) + hy(””)(x Y+ -+ ol y(r+¢1)(xn)

)] hat1

(q+1)

with x, < 535,’) <x,4i,forr=0,1,...,p. By successively differentiating (1),
using Leibnitz’s rule, we obtain

di—i-1 d’ ¥ db
I A== | Pt W I M-

fori=1,2,...,q. From our assumptions it is easily seen that each of the functions
y(p +1) are continuously differentiable, and that y(” ta+1) jg continuous, all of these with
respect to all arguments. It is assumed that we have convergent integration formulas
which, for any continuous function g, have the form

y(r+q +1)(E(r))

(4) fz:;g(x)dx =h kZ::O w, kg(xk) + E(h’ g)

with bounded weights |w,, | < W, for k < n, and Woo = 0.
Now, using (3) and (4), the following approximations yff’) o y® +i)(xn),
i=0,1,...,q,are defined:

y _[4 S [[d
S e e] ol | Co i P § PR S

n . di 7
+hy wi) [[—F] . o | om.
k=0

Ldx' ds=xpx=xp,y ()= |

)

Putting these together, an algorithm of order g can be defined as follows:
Algorithm 1. Atstepn,n=0,1,...,N—1,

TAYLOR SERIES METHODS 693

1.y, y, ..., »¥) are known.

2. Using (5), calculate y P+ 1), p®@+2) 5, (P+q),
3. Forr=0,1,...,p, calculate
6) d

h

ys,r-?-] =y5:‘) + hy’(1}‘+l) + -+ q,_!yflr"'q) + O(ha)'

The O(h*) terms in (5) and (6.3) can be thought of as representing the total of various
corrections, including perhaps roundoff error. It is assumed that o > 1.

In the above, we could have defined
—_— n+1 —_ —_
™ yf,‘?l =f(ps1r Vur1) Th 2 WSIP-I?I,kF(xn+1’ Yn+1s Xps Vi) + O(%),
k=0

instead of defining yff’+) ; by means of a Taylor expansion. Consideration of the
resulting algorithm, which eliminates the need to calculate the gth derivative of (1)
and leads to the possibility of an implicit definition of yfl”+)l, is necessary to the
subsequent theory. We omit a discussion of the precise nature of any iteration, and
define:

Algorithm 2. At stepn,n=0,1,...,N—1,
1.y, ,(,l), o ,yff’) are known.

; +1 +2 -
2. Using (5), calculate y®*+1), yp+2) - y(pta-1)

®) 3. Forr=0,1,...,p — 1, calculate
na
yO = O+ it 4.4 q—!ygw) + O(h®).
4. Use (7) to calculate a value for yfl”+)1.

III. Analysis of Convergence. In order to bound the truncation error, the
quantities ef{) =y$,’) —y(’)(xn),r =0,1,...,p+q,n=0,1,... ,N—1,are
examined. Algorithm 1 is considered first. Forr =0, 1, ..., p, we subtract (2) from
(6.3) and take absolute values to obtain

2 =y, < I8 =y)l + AT+ — y0+ Dy)

hq hq+1
oA e = yrrad | MY PR et DEr))
+ 0(h*)
or
(r) a hi (r+j5) +1
©) 1602, 1< 3 5 1001+ 0™ 1) + 0Gre),
j=0

since "9+ (x) is continuous on the closed interval ¢ < x < b, and so is bounded.
Now, for e®?*D, i =1,2,...,q, wesubtract (3), evaluated at x = x,,, from
(5), and take absolute values to obtain

694 ALAN GOLDFINE

i dt
ey]
dx! x=xn,y(x)=yn dx! x=x

1

3

|e§zp:1i) I <

n

i—j—1 g
L7 o e5)
de'7=V Ly Js=xdx=x,y(x)=y,
i—j—1 j
-Gl L)
(10) A -i—tLLax! s=xdd x=x
n . i
X (L I
k=0 dx! S=xk,x=xn,y(s)=yk
l
_ [f‘ d_Fds]Fx
xo dx n
)) +i-
Now, d’f/dx" is a function of the p + i + 1 functions x, y(x) . By expanding the

approximate version of this in (10) in a Taylor series around the point (x,, y(x,)),
we get

n

+ O(1%).

o e [() e iomne]

with p(’") between yf,’") and (")(xn), for the first term of (10). The absolute values
of the partial derivative factors are bounded by, say K, yielding Kfon“":i()‘l le(™)| as an
upper bound.

Suppose we expand, in a similar manner,

=l] e ([]
—_— F —s — | and —_— N
'[dx""l dx! s=xJ x=x,,y(x)=y, dx']s=xk,x=xn,y(s)=yk

in Taylor series around the points (x,,, y(_x;)) and (x,,)E:), X, y(x,)), respectively.
If we then bound the resulting partial derivative factors by K and K > Tespectively, an
upper bound for the first sum in (10) would be

pti—1
iKp 3 le{™)
m=0

and a bound for the integral term would be

pti—1 n-1 p m) .
20-)KW 3 e +hkw 3 > g™+ Eh d),
m=0 k=0 m=0
where E(h, i) = E (h, d'F|dx").
Letting K, = K, +qKp + 2(b — a)K;W and K, = K,;W, we can combine terms
to obtain

TAYLOR SERIES METHODS 695

. p+i—1 n—-1 p (m)
P <K, S ™I +hK, S 3 lef™|

m=0 k=0 m=0
1)
+ E(h, i) + O(h%).
We would now like to express the eff’ *1) in terms of the el(') r=0,1,...,p,
j=0,1,...,n. The following lemma can be proved directly by induction:
LEMMA 1. Suppose that for some sequence of nonnegative real numbers {z]-},
we have that ZI.Jrl <A Z‘/;FOZM +gj+l,for]' =t,t+1,.... Then
ot i .
Z SAA+ DTN Y Z, 44 Y A+ 1Y, gy
(12) u=0 u=t+1
fori=tt+1,....
Lemma 1 is applied to (11), withj=p +i—1,r=p, Z, = Ieff‘)l, A=K,
and

n—1 14
g, =hK, 3 le™I|+ E(h, u—p)+ OK%).
k=0 m=0

Ifwelet Ky =K (K, +1)*1, K, =K, + K,K (K, + 1)7*!- (g + 1)and K, =
1 +K,(K, + 1)1, the result is that

le()|

M-

leP+)| < K,

u=0

(13)

n—1 P . i
+hK, 33 ™I+ Ky Y B, u) + 0().
k=0 m=0 u=1

At this point we separate our analysis and restrict ourselves, for the time being,
to Algorithm 1. By using (13), we can eliminate all occurrences of error expressions
of order > p from (9). Lete, = max0<,<p;0<i<kle](’)|. Then by (13),

] i
leP* DI < Ky(p + 1)e, + hKy(p + Dne, + K5 3" E(h, u) + O(h%).

u=1
Letting K¢ = K5(p + 1) + (b = a)K,(p + 1), we have
! ¢
(14) lePtD| <Kge, +Kg S E(h, u) + O(h°).
u=1

Assume that i < h, for some constant hy, <1. Let H=1+hy/2! +- -+
hg_]/q! . Since those terms in (9) for which j > min{g, p — r} are the terms
replaceable by (14), we have, for r =0, 1, ...p,

696 ALAN GOLDFINE

min {g,p—r} ,j q W r—p+j
lePI< % ;",’— &t 3 o [Kae,. K ¥ Eh D+ 0(”“)]
j=0 : j=p—-r+17° t=1

+ 0(h%) + on?th)

r—p+q q W +1
<€, (1 +hHK) +Kg > Eh) > +O0M0*)+0MmIT).
t=1 j=p —r+l]'
Since the second term is at a maximum when r = p, we have
q
(15) €4 <€,(1 +hHK) + hKs 3" E(h, 1) - O("+1) + O(h®) + O(hI*1).
t=1

We are now ready for our first major result.
THEOREM 2. Let a numerical algorithm for solving (1) be defined by Algorithm
1. Then, using the notation we have developed,

(@) €, <exp{(x, —a)HK }€,

exp{(x,, —a)HK¢} -1
(16) + HK,

[KS t}::l E, f) - O(h"‘)]

+0(m*~ ") + o(rn%),

(b) lim max (x,)—y,l =0.
h—>0;N—ow aN=constant 0<n<N

Proof. We apply Henrici’s Lemma [8, p. 18] to (15). This yields

€, < exp{nhHK 6}€o

exp{nhHK ¢} — 1
hHK ¢

q
[hKS 3 Eh, DO ™Y) + O(*) + 01?1)]
=1
By observing that nh = x, — a and simplifying, (16) is obtained. Now,

maxy <, <nW(x,) — v, <e, by definition, and €, = O(h*), so if we assume that E(h, 1)
is at least O(k) and that the other E(h, t) are bounded, we see that

lim max |y(e,) -y, < lim e, =0.
h—>0;N—>;aN=constant 0<n<N h—0;N—>o;aN=constant

With respect to the order of convergence, we have that

exp{(x,, —a)HK} — 1
exp{(x,, —a)HK,;} and HK, K,

are constants, and that e, = O(h®), so

q
max |y(x,) -y, <e, < 3 E@,) O~ + O(n*~1) + 0.
o<n<N " =

TAYLOR SERIES METHODS 697

Therefore, we can state

COROLLARY 3. In order to insure O(h?) convergence (the maximum fixed by
the order of the Taylor expansion) in the application of Algorithm 1, we must have

(@) OEh,))y=q—t+1,and

() a=q +1.

In other words, the quadrature rule for the integral of the first derivative of F
must be of order g, but rules for successively higher derivatives can be successively
less precise. In addition, the order of any additional error made during a given step
must be no smaller than a = g + 1.

The analysis of Algorithm 2 is similar. The major difference is in the bound for
Ieff’) |, which now resembles in structure those for the leff’“) Li=1,2,.... IfQ),
evaluated at x,, is subtracted from (7), for yflp), and absolute values are taken, then

p—1 n 14
P <K, 3 1M +hK, 33 1e{™] + En, 0) + 0(n®),

by analogy to the argument leading up to (11). Ieff’)| now appears on both sides of
the inequality. Solving for Ief,p) [, and introducing ?k = MaXg<,<p—1;0<j< kIe](’)I,

we get
n—1 ~
6P| <hk, S 1P|+ Kge, + 28O 4 o2,
=, 1 - hoKg
where
K, = —2 P O L hy <K
1T Tohgk, ¢ TETTonk, T Mo

If we apply Lemma 1, and observe that 1 + hK, < e”K7, h(n —1)<b —a,and

Ieg”)| = O(h®), we obtain

»- a)K7e(b —)Kq
1 - oK,

6P| < (b - 0)K,Kge®~DK7e, | + E(h, 0)

+ > . E(h, 0)
Kroen *To0,x, -
Now, €, _, <F&,, so letting
K, (b —a)e®=9%7 4 4
- hoK, ’

Ky = (Kg +Kg(b —a)K,e®~DK7) and K,, =

it follows that
a7 1P| < K€, + K, E(h, 0) + O(h%).

Using (17) and the definition of €, in (13), we obtain, fori=1,2,...,9—1,

6P+ | < [pK, + K3Ky + (b — DK3K Ko + p(b ~ DKyl e,

+ [K3K o + (b~)K4K o) E(h, 0) + K 5: E(h, j) + O(n®).
j=1

698 ALAN GOLDFINE

If we define

K,, = max{K,y, pK; + K;Ky + (b —a)K;K,Ky + p(b —a)K,} and

K, =max{K, g, K3K,;, + (b —a)K,K o + K.},
it follows that fori=0,1,...,9 — 1,
. _ i
1P| <K, €, +K,, 3 Eh, j) + O(0®).
j=0
This expression can be used to eliminate from (9) those terms for which j >

min{g, p —r— 1}
q—1
le) 1< e, (1 +hHK,)+ hK , S Eh, 1) - Or') + O(h*) + omi™h,
t=0

forr=0,1,...,p—1. Thus we have the analogue of Theorem 2:
THEOREM 4. Let Algorithm 2 be used to solve (1). Then, using the notation
we have developed,

<exp{(x, —a)HK, }?0

exp{(x, —a)HK, } — 1 q-1 '
@) + 7F, [K,2 tzjo E, 1) O(h’)]
+ 0t + o),
(b) lim max |y(x,)—y,l =0.

hA—>0;N—>oc;pN=constant 0<n<N

COROLLARY 5. In order to insure O(h?) convergence for Algorithm 2, it is
necessary to have

(@) OEh,) =q —t, and

) a=q + 1.

IV. AnAsymptotic Error Expansion. We would now like to derive an
asymptotic expansion for the errors incurred in the application of Algorithm 1, in
the case p = 0. This is the case of the classical Volterra integral equation

(18) y) = 1) + [, Fos, 5, y(s)ds.

It is assumed that the functions f and F' are now g + 2 times continuously differentia-
ble. The following assumption is also made, concerning the integration rules we are
using: Foreachi i=1,2,...,q,there exists a function Q, of two variables, such

that
i
[2ove]. o
Xg dx! x=x X=X, 8=Xp

n

= Q(x,, y(x,)h’ + O™).

TAYLOR SERIES METHODS 699

In terms of Corollary 3,
Eh, i) = Qy(x,, y(x, DRI+ + 0(na-1%2),

Our goal is to find an expression for e, , , that does not involve any errors of order
> 1. To do this, we reconsider our analysis of eP*9, i =1,2,...,4. Subtracting
(3) from (5) yields

Al]

X=x,,y(x)= Y,

) -G G

n
n . di
A ALE]
{ kzz:o nk dx! xX=x,,8=x,Y()=yy

The expression in the first braces of (19) equals zero. The approximation terms in

the second braces are again expanded in a Taylor series around the point
i-1

(x,,y(x,)) . This time however, they are expanded through an additional term:

di—]'—l d]
dx"—f'—‘[[;iFF]_]] T
s=x ddx=x,,y(x)=y,
I I it I I
- == lEA L
X dx s=x-dx=x,
£l S,
m=0 ay("')(x) dx'=7=1 LLdx/ s=xJd x=x,

' 0 N\ [&7 rd ']
+2[<mz=:o én by("')(x)> I:dac"""l [[dx’ F]s=x]] izl i

X=xp,y(x)= &

(20)

n

i—1 - i—1,
with £ =~ between y, and y(x,). All of the partial derivatives are bounded, so

700 ALAN GOLDFINE

using (14) and Corollary 3 we get for the expression in the second braces of (19):

© 9 2 ies
en [ay(x) [Fs=x]]x=xn + O(e") if i 1, and

S a7 rrd (m) 2
p— I F . en +0 en
(1) j;o mgo [by('")(x) dei—i—1 [[dx’]S=x]]x=xn (€,,)

+ O(E(h, i — 1))* + O(h**) + O(e,) - O(E(h, i — 1)) + O(e,)O(h®)

+ O(E(h, i — 1))O(r®),

ifi=2,3,...,q. For the integration expression in the third braces of (19), we
expand the function into a Taylor series around (x,,, x,, y(x;))

di
[——-. F]
dx! X=x,,8=x, V(X)=V

d’] d d’]]
=1-"7 (0) — F
[dx’ X=x,,5=x) ek ay(xy) [[dx’ X=X,,,8=X

: (4 50) [[57]]
+= (e —F >
2 \k ay(x,) dx! X=X ,,8= x5, Y (X)=y

with g, between y(x,) and y,. Since e§c°) < ¢ = O(¢,), the error term in (22) is
simply O(e,,)?, and the last braces of (19) equals

@3 h éo w® [W&;T [[(‘1‘% F] x=xn,s=xk]] e + 0(,)? + E@, i).

(22)

By inserting (21) and (23) into (19), and using the previously obtained expression,

m - [_9 . ,(0)
en = [ay(x) [Fs=x]] — €n

24

n . 9 d
+ (i) a5) .
" kz-:o e [ay(xk) I:[dx]x:xn,s:xk]] e T iy v,

+ 0+ 1) +0(h%)
and, fori=2,3,...,¢q

B

(25) eff) = Q/(x,, y(xn))hq"""‘+ O(n9=1+2y + o).

TAYLOR SERIES METHODS 701

At this point, if an exact Taylor series expansion for y(x,, , ,), taken out to one more
term than (2), is subtracted from (6.3), and (24) and (25) are substituted, we arrive
at the representation

e,i1 =6, +h[ay(x) [F,—]] s e,

]] e, +hnit! i %

=X, S=X j=1

26) e Z Wi [ay(axk) [[éF]x

y(q +1)(xn)

4patt T
h @+ 1)

+ 0% + 0(h®).
We now come to the asymptotic expansion itself:

THEOREM 6. Let y satisfy the Volterra integral equation (18), with f and F
q + 2 times continuously differentiable on [a, b] for some fixed q. Then, if a >
q+2,

€ =y’| _y(xn) = hqe(xn) + O(hq+l)’

n

where e is the solution of the first order (p = 1) Volterra integro-differential
equation

Qi(x, y(x)) Hlat1)(x)

(1) () = -
eW(x) Jz_:l i @+ 1!

(27) + [aya(x) [[F(x, s, y(S))] s=x]] e(x)

+ fx [ay(s) = = F(x, s, y(S))] e(s)ds,

with e(x,) =
Proof. Suppose we divide (26) by 49 and define &, = e, /n?, &,{1) = e{/n?.
Then

€1 =€, th [ayb(x) [Fs=x]]x=xngn
28) +n? Z Wi [ay(xk) [[i F] x=xn,s=xk]] E"

+ O(h?).

Now, consider the first order integro-differential equation defined by (27).

702 ALAN GOLDFINE

Suppose Algorithm 2 is applied to this equation, with the order of the algorithm
being 1, the approximations to e(x,) and e(‘)(xk) called e, and e(‘) respectively,
and the additional error made at each step no greater than O(hz). We then have

(29) €41 =€, + heD + 0(n?),
(q+1)
a O y (x +1))] —
(1) = _ £ + F_ e
€ni1 = ; (@ + 1) [ay(x) [Fo=yx] x=x,4 n+1
(30)
n+1 d d]]] - 2
wl F e, + O(h®).
th k=0 +l "[ay(x) [[X=Xp 41 STXp)

If we write out the equation for 'e'f,l), analogous to (30), and substitute into
(29), then (29) is precisely (28). Therefore, by Corollary 5,

' -;—’:;— e(xn) = IEn - e(xn)l < ?’, = O(h)’ len - hqe(x”)l = O(hq+l)

soy, =y(x,) + hie(x,) + O(h?*1), which was to be proved.
For asymptotic results on related problems, see Linz [11] and Feldstein and
Sopka [6].

V. Implementation. The most difficult part of the two algorithms to implement,
indeed the factor that has usually led to the dismissal of Taylor series methods from
practical consideration in several areas, is the necessary differentiation of perhaps
complicated functions.

A PL/1-FORMAC program .was written to perform this differentation. The
program symbolically computed the functions

d' -1 dx—] 1 [[di]]
“—F and —f+ —F ;
dx’ f Z axi—i-1 dx’ s=x

for arbitrary values of i. The FORMAC statements defining these functions were
then punched out as legal FORTRAN assignment statements with the aid of the
FORMAC utility program PUNCHE [10]. The numerical results were then calculated
on an IBM 370/165 using FORTRAN IV-G double precision.

For the purposes of this study, the actual FORTRAN programs handled orders
q =1, 2,3,and 4. The standard composite Newton-Cotes rules were used for the
various integrations. Where the Simpson rule was used, the difficulty involved in
having an even number of 'points was resolved (for n = 3) by using the standard rule
for jﬁg*, and the Simpson 3/8 rule for fi:_3

For n = 3, this will not work. We need an alternate means of computing y§3)
and y(4) Using FORMAC, we can easily differentiate (1) ¢ + 1 times instead of ¢
times, finding the O(h®) accurate values yPH+) j=1,2, ... i If we let

TAYLOR SERIES METHODS 703
+i) — (p+i) (p+i+1) h?
y(lpt=yopt+hyop +oee 4

n_(p+it+q)
q! yO bl
the error is seen to be

+1

. q .
ePHD <O+l v TIHIOE), o <E<,

= O(h%) + O(h@ 1)),
Thus, we retain our gth order accuracy.
In our implementation of Algorithm 2, in order to obtain a value for the

y(”+)1 appearing on the right-hand side of (7), yfl”) is first evaluated by means of the
equivalent formula in Algorithm 1. Therefore, we essentially have a predictor-

corrector arrangement in the approximation of y?)(xn). All the other values are
computed directly, without iteration.

VI. Computational Efficiency. In order to provide some estimates for the

amount of time required to execute each of the proposed algorithms, we make the
following assumptions:

—The major part of the computational effort in both cases lies in the repeated
evaluations of the functions f and F (and their derivatives).

—The necessary derivatives will have been obtained previously.

4t 471 dj] _4,——
in g e llael) e

dx

for all values of i, j, and n, can each be evaluated (numerically) in roughly the same time.
—Fach approximate integration requires » + 1 function evaluations.

For Algorithm 1, the functional count is as follows: At x,, we must evaluate
yff’“) fori=1,2,...,q. yf,” +i) requires one evaluation of difldx*, i evaluations of
i—j—1 j
dx'—1— dx’ ds=x

and, in the numerical integration, n + 1 evaluations of d'Fldxt, for a total of n + i +
2. Therefore, the total functional count would be

f 5 (n+i+2)=1n +<923+3q>1v+12—325—5‘1.
n=0i=1
For large N, therefore, the dominant term would be gN 2/2.
The count for Algorithm 2 is similar. In our implementation, yfﬁr)l is predicted
by Algorithm 1, then corrected by (7), so there are an additional N + 2 evaluations
per step:

N

2

[n+2+ij (n+i+2)]=1;1N2+("+1)2(‘l+§)1v+("+1)2£g+4).
n=0 =1

For large N, the (g + 1)N?/2 term dominates.

704 ALAN GOLDFINE

VII. Numerical Comparisons and Experiments. The following three equations
were among those to which our algorithms were applied:

X
€)) y@x) =1+ x - cos(x) — ~[xoy(s)cos(x -8)ds, 0<x<1,
with solution y(x) = x.

7)) YE)=1+2x-yix)+ f:oy(s)x(l +20)eG9g, 0<x<1,y0)=1,

with solution y(x) = e,

2
@3) V'@ =y - -x—';-@ -1+ f:o [sy(e) = »'(s) = " (9)] ds,
0<x<1,y0)=0,y'0) =1,
with exact solution y(x) = x.

The numerical results for the two algorithms are summarized in Tables 1, 2,
and 3, which present the absolute errors at the point x = 1.0 for ¢ =1, 2, 3,4, and
h =1, .05, .025.

Equations (1) and (2) have been considered previously in the literature. Our
q = 4 results will be used as standards for comparison.

For Eq. (1), Algorithm 2 compares favorably with the block-by-block technique
of Linz [13]; his results are slightly better than those of Algorithm 1. Campbell and
Day [3] get more accurate results using their O(k®), 15 iteration technique.

For Eq. (2), both our algorithms give uniformly better results than those of Day
[4], [5], Linz [12], and a previous method by the author [7]. They are also more
accurate than four out of the five methods proposed by Wolfe and Phillips [15].
Their fifth technique, an O(#%) Runge-Kutta type method, gives better results for
h = .1, but our algorithms are more accurate for h = .025.

Corollary 3 tells us that for gth order accuracy in the application of Algorithm
1, it is sufficient to use a quadrature rule of order ¢ —7 + 1 to approximate

x d .
fx‘);x;Fds, i=1,2,...,q.

Likewise, Corollary 5 implies that for Algorithm 2, rules of order g — i can be used.
To verify these results experimentally, the two algorithms were each modified such
that for a gth order method, all integrations were performed using qth order quadrature
rules exclusively. Equations (1), (2), and (3) were then solved with these modified
algorithms. The results are presented in Tables 4, 5, and 6. The data strongly
indicates that no loss in accuracy occurs when the minimal order integration rule is
used. In fact, the standard algorithm sometimes gives better results, as can be
observed by comparing Table 3 with Table 6.

In Section IV, it was demonstrated that the error term in the application of
Algorithm 1 to an equation in which p = 0 can be expressed in the form y, =
y(x,) + hle(x,) + O(h?*1!). This result implies that the techniques of Richardson’s
extrapolation can be used to combine two O(h?) values for y(x,), yielding an
O(h9*1) value. If we assume that the O(h?*!) term has an asymptotic expansion of

TAYLOR SERIES METHODS 705

the form A9 1d(x) + O(h9*?), the process can be repeated. In order to illustrate
the use of this technique, we solved Eq. (1), the only one of our examples to which
Theorem 6 can be applied directly, by Algorithm 1 for values of & equal to .2, .1,
05, .025, and .0125. For a given value of g, four successive extrapolations can be
performed. Table 7 presents typical results, namely for the case ¢ = 4. The entries
in the column representing the first extrapolation should be approximations to y(1)
of an order of & one greater than the corresponding initial approximation, and an
examination of the table bears this out. In addition, each succeeding extrapolation
seems to increase the order of approximation. Similar extrapolations performed upon
the results of applying the Algorithm to Egs. (2) and (3) have yielded similar
increases in accuracy. This would indicate that an expansion analogous to that in
Theorem 6 exists in those cases (p = 1) for which we do not give a proof.

TABLE 1. Errors for Eq. (1) at x = 1.0 (y(1) = 1.0)

Algorithm 1 Algorithm 2
q h=_.1 h = .05 h = .025 h = .1 h = .05 h = .025
1 s.6ax10% 1.5 x10% 367 x 12070 3.38 x 1002 1.67 x 1072 8.20 x 102
2 1.43x10°° 371 x10% 9.42x107° 2.73x10% 7.03x10° 1.77x 1070
3 6.50x10°° 7.33x10 8.68 x 10°° 7.48 x 10 5.11 x 1077 3.35 x 10°°
4 2.58x10° 1.61 x1077 1.00 x 10°° 5.17 x 1077 3.48 x 1070 2.21 x 107>
TABLE 2. Errors for Eq. 2) at x = 1.0 (y(1) = e)
Algorithm 1 aAlgorithm 2
q h=_.1 h = .05 h = .025 h = .1 h = .05 h = .025
1 415x100 2.28x1070 1.20 x 107¢ 2.60 x 100 1.36 x 107 6.98 x 1072
2 4.22x10°% 1.18x10°% 3.10 x 1073 2.54 x 1002 6.77 x 107> 1.75 x 107>
3 3.52x10° 4.90x10% .48 x 107° 234 x 102 3.10x10% 4.00 x 1070
4 250x10% 1.77x10° 1.18x10°° 1.42x10% 9.53x10% 6.17 x 1077
TABLE 3. Errors for Eq. (3)at x = 1.0 (y(1) = 841 x 1071)
Algorithm 1 : Algorithm 2

q h=_.1 h = .05 h = .025 h=.1 h = .05 h = .025

1 4.01x102 2.01 x102 1.01 x 1072 3.85 x 1002 1.92 x 1072 9.60 x 10>

2 1.03x10°° 2.47x10% 6.01 x107° 9.60 x 0% 2.17 x 107 5.06 x 107°

3 3.14x10° 3.96 x 10° 4.98 x 107/ 3.47 x 100 4.40 x 10°° 5.53 x 107/

4 5.26 x 1077 3.15 x 10° 1.93 x 10°° 4.42x 1077 2.20x10°° 1.18 x 107°

TABLE 4. Errors for Eq. (1) at x = 1.0
Modified Algorithm 1 Modified Algorithm 2

q h=_.1 h = .05 h = .025 h=_.1 h = .05 h = .025
1 s5.6ax10% 1.45x10% 3.67 x 1070 3.38x 1002 1.67 x 1072 8.20 x 10>
2 5.39x10% 1.42x10% 3.63x107° 2.81 x 1004 7,07 x107° 1.77 x 107°
3 9.36x10/ 5.42x10° 3.22 x 1072 5.60 x 10’ 3.61 x 10°° 2.25 x 1070
4 9.36x10 7 5.42x10°% 3.22x10° 5.60 x 1077 3.61 x 10°° 2.25 x 1072

706 ALAN GOLDFINE

TABLE 5. Errors for Eq. 2)atx =10

Modified Algorithm 1 Modified Algorithm 2
q h=_.1 h = .05 h = .025 h=.1 h = .05 h = .025
1 451x10% 2.28x10% 1.20 x 10°° 2.60 x 100 1.36 x 1001 6.98 x 1072
2 3.94x102 1.08x10°2 2.84 x 10> 1.94 x 100> 5.05 x 100 1.28 x 10>
3 3.40 x 100 4.69 x 10°% 6.18 x 107° 1.89 x 1070 2.46 x 1007 3.13x 1070
4 2.55x10% 1.79x10° 1.19 x10° 1.30x10°% 8.63x107% 5.55 x 1077

TABLE 6. Errors for Eq. 3)atx =10

Modified Algorithm 1 Modified Algorithm 2
q h=_.1 h = .05 h = .025 h=.1 h = .05 h = .025
1 4.00 x 102 2.01 x 1072 1.01 x 102 3.85 x 1002 1.92 x 1072 9.60 x 10 °
2 1.00x10° 2.38x10 7% 5.79 x 107 1.26 x 1073 3.05 x 10°% 7.50 x 107>
3 3.31x10° 4.27x10° 5.41x 1077 3.091 x 1000 5.13x 100° 6.57 x 1077
4 5.07x107 2.99x10° 1.82x10° 6.56 x 1077 3.97 x 10°° 2.43 x 1070

TABLE 7. Extrapolation Errors for Algorithm 1, Example 1,x =10,q =4

h Initial Extraop 1 Extrap 2 Extrap 3 Extrap 4
.2 3.62 x 10°°
-6 -7
1 2.58 x 10 3.40 x 10
-7 -11 -8
.05 1.6l x 10 1.57 x 10 1.10 x 10
025 1.00 x 108 6.10 x 10712 6.45 x 10711 1.08 x 107
0125 6.25 x 1020 2.79 x 10712 8.80 x 10 13 1.29 x 10723 7.24 % 1033

United States Bureau of the Census
Systems Software Division
Washington, D.C. 20233

1. D. BARTON, I. M. WILLER & R. V. ZAHAR, “Taylor series methods for ordinary
differential equations,” Mathematical Software, Academic Press, New York, 1971.

2. J. A. BRAUN & R. E. MOORE, A Program for the Solution of Differential Equations
Using Interval Arithmetic (DIFEQ) for the CDC 3600 and 1604, MRC Report No. 901, Math.
Research Center, Univ. of Wisconsin, Madison, 1968.

3. G.M.CAMPBELL & J. T. DAY, “A block by block method for the numerical
solution of Volterra integral equations,” BIT, v. 11, 1971, pp. 120—124. MR 43 #7093.

4. J. T. DAY, “A note on the numerical solution of integro-differential equations,”
Comput. J., v. 9, 1967, pp. 394—-395.

5. J. T. DAY, “On the numerical solution of integro-differential equations,” BIT, v. 10,
1970, pp. 511—-514. MR 43 #5749.

6. A. FELDSTEIN & J. SOPKA, “Numerical methods for nonlinear Volterra integro-
differential equations,” unpublished (October, 1968).

7. A. GOLDFINE, “An algorithm for the numerical solution of integro-differential
equations,” BIT, v. 12, 1972, pp. 578—580. MR 48 #3281.

8. P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, Wiley,
New York, 1962. MR 24 #B1772.

9. G. KEDEM, Automatic Differentiation of Computer Programs, MRC Report, Math. Res.
Center, Univ. of Wisconsin, Madison. (To appear.)

10. K. KLINGEN & B. GEISLER, Punching FORMAC Statements, Inst. for Applied Math.,
517 Julich, Germany, 1971.

TAYLOR SERIES METHODS 707

11. P. LINZ, The Numerical Solution of Volterra Integral Equations by Finite Difference
Metnods, MRC Report No. 825, Math. Res. Center, Univ. of Wisconsin, Madison, 1967.

12. P. LINZ, “Linear multistep methods for Volterra integro-differential equations,” J.
Assoc. Comput. Mach., v. 16, 1969, pp. 293—301. MR 39 #1143.

13. P. LINZ, “A method for solving nonlinear Volterra integral equations of the second
kind,” Math. Comp., v. 23, 1969, pp. 595—-599. MR 40 #1055.

14. R. TOBEY, J. BAKER, R. CREWS, P. MARKS & K. VICTOR, PL/1-Interpreter User’s
Reference Manual, IBM #360-D-03.33004, 1967.

15. M. A. WOLFE & G. M. PHILLIPS, “Some methods for the solution of non-singular

Volterra integro-differential equations,” Comput. J., v. 11, 1968/69, pp. 334—336. MR 38
#4065.

