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Algorithms for Computing Shape Preserving
Spline Interpolations to Data

By David F. McAllister*, Eli Passow** and John A. Roulier*

Abstract. Algorithms are presented for computing a smooth piecewise polynomial
interpolation which preserves the monotonicity and/or convexity of the data.

1. Introduction. Shape preserving polynomial or spline interpolation to mono-
tonic and/or convex data has been investigated by several authors in recent years (see
[11—[5] and [7]—[16]). It is the purpose of this paper to develop and test algo-
rithms for computing smooth monotonicity and/or convexity preserving spline inter-
polation. The algorithms presented herein are based on the theory developed by
Passow and Roulier [11]. The algorithms are tested on several examples and are
compared with ordinary Lagrange and cubic spline interpolation of increasing convex
data. It should be noted that algorithms for convexity preserving interpolation by
exponential splines are given in [14].

The authors thank the referee of the original version of this article for pointing
out numerous related articles on computer aided geometric design. See [1], [3], and
[4]. In particular, see the articles in [1] by Gordon and Riesenfeld p. 95, Bezier p.
127, Forrest p. 17, Wielinga p. 153, and Nielson p. 209. Many of these articles refer
to Bezier curves which are Bernstein polynomials of parametrized polygonal segments.
While the ideas are similar to those presented here and make use of the convexity pre-
serving properties of Bernstein polynomials, they deal more with construction of some
suitable shape rather than interpolation of given data with shape preservation. Here
we assume that the data is given and that no additional data points can be easily ob-
tained. Moreover, the alpha algorithm and its use in Theorem 3.2 allows one to mini-
mize the degree of the piecewise polynomials without losing the properties of inter-
polation or convexity. This algorithm is automatic and requires no interaction on the
part of the user as do many of the techniques in computer-aided geometric design.

2. Notation and Background. Let A = {x, <x, <---<xy} be fixed real
numbers and for j < n let S,’,' = S,{(A) be the set of splines of degree n and deficiency
n—jon A. Thus, f€ S,’;(A) if and only if f € C7 [xo, x] and fis an algebraic poly-
nomial of degree n or less on [x;_;, x;] fori=1,2,...,N

Given corresponding real numbers y,, . . . , yp, define §; =
O; =Y, —x;_y) fori =1,2, ..., N We say that the data are nondecreas
ingif yo <y, <-:'<yp,and the data are nonconcave if S; < S, <---<Sy. If
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no equality exists in either of these cases, we say that the data are increasing or con-
vex, respectively.

Definition 2.1. Suppose that the data (x;, y,),i =0, 1, ..., N are nondecreas-
ing (and/or nonconcave). Let {q; }fvz , be given with 0 <@; <1. Let 35,. =x;_, +
o;Ax; where Ax; =x; —x;_, fori=1,2,...,N. A set of numbers {t,.}fv=l is said
to be increasing (and/or convex) {«;}-admissible if the piecewise linear function L(x)
generated by the points

(x()s yo)» (351, tl)» (}2» tz)’ L) (EN’ tN)» (x_NayN)

passes through the points (x;, y,),i =1, ..., N— 1, and is nondecreasing (and/or
nonconcave). If a; = a for all i, we say that the numbers are a-admissible.

Roulier and Passow in [11] prove the following theorem.

THEOREM 2.1. Let m;, n; be natural numbers, with m; <n, i=1,2,...,N,
and let o = my/n, i=1,2,...,N. Letn=max{n:i=1,... ,N}andm =
min{min(m, n; —m;): i =1, ..., N}. Then there exist increasing (and/or convex)
{o;}-admissible points for A if and only if for all k > 1 there exists f € Sﬁ:,” (Q) satis-
fying f is a polynomial of degree kn; or less on [x;_,, x;],i=1,..., N, and

@ fx)=y,i=0,1,...,N;

®) fDxH=0,j=2,3,...,my ki=1,2,...,N-1;

(© fDe=0,j=2,3,...,(n,~mk;i=1,2,...,N—1;
@ &) >0,x€ [xy, xy] (andfor f"(x)>0,x € [x,, xp]).

2.1)

(Thus, in particular, fP(x) =0,j=12,3,...,mk;i=1,2,...,N=1)

Furthermore, if there exist increasing (and/or convex) {q;} -admissible points as
above, then an f is constructed by setting f(x) = q,(x) on [x;_;, x;] where g, is the
Bernstein polynomial (see [6]) of degree kn; of the restriction of the broken line seg-
ment function L(x) to [x;_;, x;]. That is,

1
qi(x) = (xi _ xi—-l)k"i

2.2

1

kn; v k"i ) ms
: Zo LIx;_, + P O = x-q) ’ e —x; Y lx; —x)yshi”.
v= ;

The function f is not in general unique, since the set {t;} is not in general unique.
Thus, any algorithm which will give increasing (and/or convex) {o;}-admissible points
will result in an algorithm for computing such an interpolant f. Furthermore, for
computational purposes, it is generally not worthwhile to consider f € S (A) for m
= 2 because of (2.1)(b) and (c). However, the fact that higher order continuity is
possible is significant theoretically and indicates that it may be possible to avoid the
difficulties of f%)(x,) = 0 for k > 2.

It is also shown in [11] for convex interpolation that if n is any fixed positive
integer there exists a convex set of data points {x,, y),i=0,1, 2, 3, 4, such that no
fe S,ll(xo, Xy, X, X3, X4) satisfies f(x;) = y, fori =0, 1,2, 3,4, and f is convex



SHAPE PRESERVING SPLINE INTERPOLATIONS 719

on [x,, x,]. This result has been used to produce examples of convex increasing
data for which neither Lagrange nor cubic spline interpolation is convex and increasing.
The example in Section 4 of this paper was constructed using this.

3. Tests for {;}-Admissibility. In this section we will restrict ourselves to in-
creasing and convex {;}-admissibility. For brevity we will use the term {q;}-admis-
sibility with no prefix. We present in this section two algorithms for {; }-admissibil-
ity. That is, we will construct interpolating, shape preserving polygonal segments
whose vertices interlace the abscissas of the given data. The first of these is construc-
tive in nature and produces for given nonconcave nondecreasing data, numbers 0 <
B;<1,i=1,...,N,such that there exists {;}-admissible points for each collection
{a‘-}?_r__l with 0 <a; <f; fori=1,...,N. Once a set of such {;} is determined,
the calculation of the set {t,.}f;“ll is given. This algorithm, however, does not neces-
sarily specify all possible {¢; };’,V=1 for which there are {a;}-admissible points. The
following theorem is the basis for this algorithm.

THEOREM 3.1. Let the data (x;, y;),i =0, 1, ..., N, be convex and increasing
and define S;, i =1, ..., N, as above. Let Sy = 0 and ;N = Xx,. Now define

_ ;i T X1 .
Bi—W fori=1,...,N,

where

% = Vier “Yi ¥ Sip 1% ~ 81X
=

fori=1,2,...,N—1.
Si+1~Si-1

Then, given any {o,}]_ | with

0<aq<p; fori=1,...,N,
there exist {; }-admissible points for the given data.

Proof. Note that 37,. as defined above is the x-coordinate of the point of inter-
section of the lines determined by the points (x,_,, ¥;_,) and (x;_,, ¥;_,) and by
(e y)and @y q, Vi), fori=2,3,...,N—1. Also, ?c'l is the x-coordinate of
the point of intersection of the horizontal line through (x,, y,) and the line deter-
mined by (x,, y,) and (x,, y,). Finally, ')?N is the x-coordinate of the point of in-
tersection of the vertical line through (x,, y,) and the line determined by (x,._,,
YNn—2) and (Ky_y, Yy—y)- -

Now consider the triangle T; formed by the vertical line through x;, the line
determined by (x;_,, ;_,) and (x;, y;) and the line determined by (x,_,, y;_,) and
(c;myp i) fori=2,...,N. Fori=1,we replace the last line with the horizontal
line through (x4, ¥¢).

From Figure 1 we see that if (x;, ;) is any point in T} then the line formed by
(;, y;) and (x;, y,) lies in the triangle T}, , for all values of x between x; and X, ;.
Thus given {o;}Y.,, 0 < o; < B, the points x; = x,_; + o;(x; = x;_,) all satisfy x;_,
<Xx; <X, Hence, if y, is chosen so that (x,, ¥,) lies in T, then this uniquely deter-
mines y, so that (x,, y,) lies in T, and so forth. It follows that {y,} is {o;}-admis-
sible.
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FIGURE 1
The second algorithm gives necessary and sufficient conditions for the existence
of an {q;}-admissible set for given data. If {q; }1}’=1 are determined for which there
exists a set {ti}f.\;l of {@;}-admissible points, then the calculation of such a set

{#;}?L | is given. The alpha-algorithm presented below and Theorem 3.2 which refers
to it are the basis for this second algorithm.

The Alpha-Algorithm. let {q; }ff_:l with 0 < a; <1 be given.

Define my = 0 and My = S,. Now fori=1,2,3,...,N— 1, define

m; = 1
T l-g

[S; —aM;_,]

and

. 1
M; = min (S,~+ 1 W [S; - aimi—l]> :

THEOREM 3.2. Given nondecreasing nonconcave data (xi, y,.), i=0,1,...,N,
and {a,}'L, with 0<a;<1,i=1,...,N. Then
(3.1) there exist {a;}-admissible points for this data, if and only if
(3.2) the alpha algorithm can be completed with m; < S;pfori=1,2,3,
.., N~-1.
Proof. Let xo =X, Xy, = Xy, and as above, let X; = x;_, + o;(x; = x;_;)
fori=1,2,...,N
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Assume that a line of slope .57, passes through (x;_,, y;_;). The point of inter-
section of this line with the vertical line through x; determines a unique line through
(x;, ;) of slope

& 1

3.3) Siv1 = 1-q (S; = S).

Similarly, a line of slope AST, +1 through (x;, y;) determines a unique line through
(x;_1» ¥;—) of slope

— 1 —
G4) Si=&;—(si_(l = )84 1)-
Also, note that

— _ 1 —
(3.5) Siv1 =8 = —a &= 5.

1

Thus §; < S, if, and only if, §; < S;41- Moreover,

36 & _ Y% 5
(3.6) Sivr1 =8 = 1 _'ai (S; = Sp-
Hence
3.7 S;<8,,, if, and only if
(-8 S5, <S8,

Now suppose that S¥ and S¥, | are two other pairs of slopes related as above. Then

a

(3.9) ‘ Sie1 ~Sha =17 ] (S¥-5).
1-aq

That is,

(3.10) S;+1 =S¥, if, and only if

(3.11) S*¥> 3.

It is now clear from this discussion that m; is the slope of the line segment
through (x;, y;) determined by the line of slope M,_, through (%;—1» ¥i_1), and M; is
the minimum of §;, ; and the slope of the line through (x;, y;) determined by the line
of slope m;_, through (x;_,, y;_,).

It is also clear that

a;
(3.12) M, — m; = min <S,-+l —mp 7o a]. ™M;_y - mi—-l)>'
]

-1

Thus, we have

(3.13) M,-m;>0 fori=1,2,...,N-1,

if, and only if,
(3.14) m<8;,, fori=1,2,...,N-1.

Moreover, in this case we have
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(3.15) S;<m;<M;<S;,, fori=0,1,2,...,N—1,
since

@ )
-mi—Si=iTl—o:(Si_M’—l) and M;<S;,, fori=1,...,N-1L
1

Now, let L be any piecewise linear function with knots at 55,-, i=0,1,...,N, and
such that L(xj) =ypi=0,1,..., N. Let v; be the slope of the line segment of the
graph of L passing through (x;, y;),j =0,1,..., N If we define M, and m,, to be
the slopes of the lines through (x,, y,/) induced by the lines through (xy_;, Yx_;)
of slopes my,_, and My,_,, respectively, then it follows from (3.10) and (3.15) that

(3.16) m;<py;<M; forj=0,1,...,N,

if, and only if
(3'17) mN<VN <MN'

Furthermore, if v, <my or vy, > M, then either v; > Sj 4+ for some j or vy <O.
Thus, L is either not nonconcave or not nondecreasing. On the other hand, by (3.15),
any piecewise linear function L satisfying (3.16) is nondecreasing and nonconcave.
Thus, the only nondecreasing nonconcave piecewise linear functions L as above are
those satisfying (3.17). But (3.17) can be satisfied if and only if (3.14) is satisfied.
This proves the theorem.

The following corollaries are immediate consequences of Theorem 3.2 and its
proof.

CoROLLARY 1. (a) If (3.2) holds as above then a suitable piecewise linear func-
tion, L can be constructed by choosing any vy between my and M.

(b) This function L is unique if, and only if my, = M.

COROLLARY 2. If S, —25;+ S, =20fori=1,2,...,N~— 1, then the
alpha-algorithm satisfies (3.2) with a; = Y% fori =1, ..., N.

Proof. Observe that

Sie1 =M =Sip, — 28+ M,_,.

i i
This gives two cases:

(i) M,_, =S;. In this case

Sipp—m;=8;,,-8;=20.
(i) M;_, =2S;_; —m;_,. In this case
Spp1 ~ M =Sy 25+ 25 —miy
=Sppy ~ 25+ 8y F S Mg Z 8 T My
This holds fori = 2,3, ..., N—1. Applied recursively, this gives

S;yq —m; = min(S; —mgy, S, —m,).

But
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S, —myg=82>0 and S,-m; =5,-85, =0.
Thus
S;p1-m;=20 fori=0,1,... ,N—1.

This last corollary shows that the result of Passow [9] is contained in this theory.
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FIGURE 2

4. Computations and Examples. Given convex increasing data (x; y;), i = 0,
1, ..., N, and numbers {oz,.}?’=1 as above, Theorem 3.2 gives a method of deter-
mining if there exist {c;}-admissible points for this data. Corollary 1(a) and Theorem
3.2 show how to construct a suitable piecewise linear function L if { o;}-admissible
points exist. Once L and the desired continuity class m have been determined, a con-
vex increasing spline in S”" can then be calculated by (2.2). It is clear from Theorem
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2.1 that the most desirable and efficient choice of {¢; }f.\_'__l isoy=Yfori=1,...,
N. Unfortunately, this is not always possible. The problem of how to actually choose
a set {ai}fy:l for which there exist { o;}-admissible points can be handled by Theorem
3.1 either directly or implicitly in conjunction with Theorem 3.2. That is, Theorem
3.1 certainly gives a direct method of locating some sequences {q; }ff__l for which there
exist {a; }-admissible points. On the other hand, Theorem 3.1 shows that by choosing
a sequence of sets 4, = {al’k, Oy s - v o aN,k} with limy_, . @; , = Ofori=1,
..., N, then for k sufficiently large all sets 4, = {al,k, e, aN,k} will do. Thus,
a repeated application of Theorem 3.2 to such a sequence of sets will eventually be
successful. This latter effort is probably more desirable since Theorem 3.1 does not

in general give all possible sets {a; }?;l for which there exist {;}-admissible points.

For computational examples in this paper we have used the latter approach with
oy = 1/(k +2) fork=0,1,2,...and all i The alpha-algorithm was run for suc-
cessively larger k until condition (3.2) was satisfied. The function L was determined by
choosing vy_; = ¥%(my_, + My_,).

The algorithm was tested on several examples and compared with Lagrange and
standard cubic spline interpolation.

The following example is for f(x) = 1/x? on [-2, —.2] interpolating at x = —2,
—1,-.3, and —.2. Figure 2 shows that interpolation to these points by natural cubic
splines (S"(—2) = §"(-.2) = 0) and by ordinary polynomials yields functions which
are neither convex nor increasing. However, there exist %-admissible points for this
data and our technique presents a convex increasing f € Sﬁ(—-2, -3, -.3,-.2) for this
case. As mentioned in [11], the data can be constructed so that no spline in S§ (or
even S;) can interpolate the data and preserve convexity and monotonicity. Other ex-
amples were tested and run on the computer with similar results. In one case the al-
gorithm obtained & = 1/10 and in another case a = 1/21, while Lagrange and cubic
spline interpolation failed.

Acknowledgement. The authors are grateful to George Bishop, who wrote some
of the computer programs during the preliminary testing of our algorithms, and to
Stephen Bento, who painstakingly drew the figures.
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