MATHEMATICS OF COMPUTATION, VOLUME 31, NUMBER 139
JULY 1977, PAGES 740-751

Computational Complexity of
Fourier Transforms Over Finite Fields*

By F. P. Preparata and D. V. Sarwate**

Abstract. In this paper we describe a method for computing the Discrete Fourier Trans-
form (DFT) of a sequence of n elements over a finite field GF(p™) with a number of
bit operations O(nm log(nm) - P(q)) where P(q) is the number of bit operations required
to multiply two g-bit integers and g = 2 logyn + 4 logym + 4 logyp. This method is
uniformly applicable to all instances and its order of complexity is not inferior to that
of methods whose success depends upon the existence of certain primes. Our algorithm
is a combination of known and novel techniques. In particular, the finite-field DFT is
at first converted into a finite field convolution; the latter is then implemented as a
two-dimensional Fourier transform over the complex field. The key feature of the
method is the fusion of these two basic operations into a single integrated procedure
centered on the Fast Fourier Transform algorithm.

I. Introduction. The Discrete Fourier Transform (DFT) over a finite field occurs
in many applications. It occurs, under the name of Mattson-Solomon polynomials, in
the theory of error-correcting codes [1], [2]. Also, in applications of BCH error-
correcting codes, the computation of the syndrome of the error pattern and the deter-
mination of the locations and values of the errors all correspond to the computation
of the DFT of a sequence of elements from a finite field. The DFT over a finite field
has been suggested as a means of computing exactly the results of the convolution of
sequences of integers [3] —[8] and for implementing the multiplication of very large
integers [3], [9]. For these reasons, it is desirable to devise efficient methods of com-
puting the DFT over a finite field.

Pollard [3] has shown that an algorithm, which is the finite field analogue of the
well-known Fast Fourier Transform (FFT) algorithm [12], can be applied to computa-
tion of the DFT over a finite field. This algorithm requires O(n(n, + n, + - - - + n)))
arithmetic operations in the field to compute the DFT of a sequence of n elements
where n =n, *n, - ... n. Thus, the finite-field FFT algorithm is efficient only
when n is highly composite; and in this case, the algorithm requires O(n log n) arith-

Received August 30, 1976.

AMS (MOS) subject classifications (1970). Primary 68A20, 42A68, 42A96, 12C15; Second-
ary 68A10, 94A10.

Key words and phrases. Computational complexity, discrete Fourier transform, finite fields,
convolution.

*This work was supported in part by the National Science Foundation under Grants MCS76-
17321 and GK-24879 and in part by the Joint Services Electronics Program (U.S. Army, U. S.
Navy, and U.S. Air Force) under contract DAAB-07-72-C-0259.

**The authors are with the Coordinated Science Laboratory and the Department of Electrical
Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.

Copyright © 1977, American Mathematical Society

740

COMPUTATIONAL COMPLEXITY OF FOURIER TRANSFORMS 741

metic operations in the field. Several authors [6]—[9] have considered special cases
of the FFT for particular applications, using special properties of carefully chosen field:
to achieve computational efficiency. For the general case, however, the efficiency of
the FFT algorithm depends upon the vagaries of the factorization of n.

In this paper, we present a method of computing the DFT in a finite field that is
uniformly applicable to all finite fields. The method used is based on some ideas that
have been discussed in the past ([3] and [9]—[11]) as well as on some novel tech-
niques. The basic idea is to convert the computation of the DFT of a sequence of
length n into the computation of the cyclic convolution of two appropriately defined
sequences. The techniques for doing this are due to Bluestein [10] (also briefly dis-
cussed by Pollard [3] for application in certain special cases only) and to Rader [11].
The main feature of these techniques is that the length of the sequences to be convolved
can be chosen as any integer N = 2n — 1. Since, by virtue of the well-known con-
volution theorem, convolutions can be implemented via Discrete Fourier Transforms
over a field which we are now free to choose, V will be selected as a power of 2 for
optimal FFT-implementation of the transforms.

The latter transforms are computed in the complex field. In order to apply the
complex field DFT to elements of a finite field GF(p™), we resort to the standard rep-
resentation of the latter as polynomials with integer coefficients and of degree less
than m. The convolution of sequences over GF(p") could then be recovered by com-
bining the results of m? convolutions of integer sequences; however, by observing that
the latter combination can be formulated as a cyclic convolution, the entire operation
is implemented via a two-dimensional FFT. Finally, by noting that Bluestein’s tech-
nique, i.e. the conversion of the DFT to a cyclic convolution, involves a pre-conditioning
and a post-conditioning consisting of multiplications in GF(p"), a considerable compu-
tational saving is obtained by combining preconditioning, convolution, and post-condi-
tioning into a single procedure. In this procedure, which involves computations in
several transform domains, those three conceptual steps essentially blur their confines.
The result is that the DFT of sequences of n elements over GF(p™) can be computed
with O(nm - log(nm) - P(q)) bit operations, where P(q) is the number of bit operations
required to multiply two g-bit integers and g = 2 log, n + 4 log, m + 4 log, p.

The method proposed in this paper basically resorts to the complex field FFT for
computing integer convolutions and departs from the prevalent trend. In fact, in recent
years several authors [3]—[8] have suggested that the complex field FFT not be used
for computing integer convolutions because of the problems of round-off error. The
alternative is, of course, the finite field FFT based on a careful choice of the finite
field. We have not followed the latter approach for the following reasons: (i) we are
interested in techniques which are uniformly applicable to all cases, whereas the success
of the FFT over a finite field depends upon the existence of primes of a special type
[13] and, as is easily shown, no higher efficiency is achieved, even for the case of
prime fields; (ii) the round-off error problem is entirely controllable, since real num-
bers can be economically represented so that in all cases the results will be correctly
interpreted.

742 F. P. PREPARATA AND D. V. SARWATE

II. Discrete Fourier Transforms via Convolutions. Let p denote a prime,
GF(p™) the finite field containing p™ elements,

n a divisor of p™ — 1,

« a primitive nth root of unity in GF(p™).
In what follows we shall also make use of a short-hand notation for vectors:
(ai)’k with k <1 denotes the vector {ay, a; ., . . ., ap and (0)* denotes the vector
(0,0, ...,0) whose t components are all equal to O; also v denotes the concatenation
of two vectors # and v.
Let ¢; € GF(p™) fori =0, 1, ..., n — 1. The Discrete Fourier Transform of

(a3~ is defined to be the sequence (4,;)p~ " where
n—1

The inverse Fourier Transform to (1) is given by
n—1 .

Q) g=m""' Y 4, i€[0,n-1],
=0

where (n)~! is the multiplicative inverse in GF(p™) of the field integer n. As is well
known, the direct method of computing the DFT requires O(n?) arithmetic operations
in GF(p™). If n is composite, with n =n, - n, - ... - n, then the finite-field analogue
of the FFT algorithm over the complex field can be used to compute the DFT [3].
This algorithm requires O(n(n, + n, + - - - + n;)) arithmetic operations in GF(p"™).
Thus for highly composite n, the DFT can be computed in O(n log n) arithmetic opera-
tions in GF(p™).

When 7 is not highly composite, or is a prime, the saving in computation achieved
by resorting to the FFT can be small (or nonexistent). In such cases the DFT problem
is reformulated as a convolution problem, to the solution of which more general meth-
ods can be applied. There are two main techniques for such reformulation, which we
now briefly review for the reader’s benefit.

The first technique is due to Bluestein [10], and is based on the following ex-
pression for 4 i

n—1 . n—1 ‘/[i2+‘2 G ‘)2
Aj=zoaia"=2aia’ *=G-07]
= i=0

(3)
2 n_1 2 2
=0" ¥ @)B YD), where g =
i=0

The sum in (3) can be recognized to be a term of the convolution of the sequence
(aiﬁiz)g‘1 with the sequence (8~ n—1. It is easy to see that the convolution of
these sequences can be obtained from the cyclic (or periodic) convolution of the se-
quences (aiﬁiz)g‘l(O)N_” and (B"'2 '1':,1,(0)N'(2”_1), of common length N, where
N must be no smaller than 2n — 1, and, in view of optimally executing the FFT, is
conveniently chosen as a power of 2. Thus, N = 2°, where s > [log,(2n — 1)].

Notice, however, since f is not necessarily an element of GF(p™), the two length-

COMPUTATIONAL COMPLEXITY OF FOURIER TRANSFORMS 743

N sequences to be convolved are also not always over GF(p™). Indeed, they are over
GF(p™) in the following two cases: (i) p = 2, since, in this case, f = va = o +1)
€ GF(2™), because (n + 1)/2 is an integer; (ii) p # 2 and 2n|(p™ — 1), since @ is prim-
itive of order 2n in GF(p™). Otherwise, when p # 2 and 2nf(p™ — 1), B is a primitive
2nth root of unity in GF(p®™) and we have a convolution of sequences over GF(p?™).
In this case we carry out the computation in this larger field. However, the result of
multiplying by ﬁf2 the corresponding term of the convolution is equal to 4 i which,

by (1), is an element of GF(p™). Thus, in the sequel we shall simply refer to convolu-
tions of sequences over GF(p™), with the understanding that whenever this field must
be replaced by GF(p?™), the complexity analysis is correspondingly modified.

A second technique to compute DFTs via convolution is due to Rader [11]. This
technique is unfortunately restricted to the case in which # is a prime, but in some
instances it is slightly more efficient than the more general Bluestein’s technique, as
illustrated below. Let the integer 6 be a primitive root of unity modulo n and let ¢(i)
be the smallest integer such that 8°® mod n =i for i € [1,n — 1]. Then

n—1 Py
A;—ag = 3 g,
i=1
ie.
n—1 i i
o gD +0()
A(6¢(i) modn) %o = El a(0¢(i) mod n)a ’

Since (¢(:))7 ! is simply a permutation of (i)] !, we can set I = ¢(;) and use k = ¢(i)
as the index of summation to get

n_l ok+1

A —a, = a o
(Blmod n) o kgl (Okmod n)

This shows that the sequence (4 ! mod n —a,);~ ! is the cyclic correlation of the
sequences (2 ©% mod n))'l"l and (a®")] ™" of length n — 1. We obtain a cyclic convo-
lution by reversing one of the sequences. The advantage of Rader’s method is that both
sequences are always over GF(p™) and are shorter. In particular, if the prime n hap-
pens to be of the form 2¥ + 1, Rader’s method gives a convolution of sequences of
length 2% whereas Bluestein’s method would give a convolution of sequences of length
2%+2_ In this paper we shall not further consider Rader’s method due to its limited
applicability, and marginal superiority when applicable.

The preceding discussion indicates that to compute the DFT of a sequence
()" over GF(p™) using (3) we must

(i) construct the sequences (332)3‘1, (ﬁ—"2 'l'_‘_,l,, and (aiﬁiz)g‘l, and extend the
latter two to length N with appropriate strings of zeros;

(ii) compute the cyclic convolution of the latter two sequences;

(iii) multiply by ﬁfz, j € [0, n — 1], the corresponding term of the convolution.

In the next section we shall show how the preceding three steps, which are sepa-
rately stated for conceptual convenience, can be integrated into a single efficient compu-
tational procedure.

744 F. P. PREPARATA AND D. V. SARWATE

III. An Integrated Procedure For DFT Implementation. The objective, embodied
by Bluestein’s and Rader’s techniques, of reformulating DFTs as cyclic convolutions of
sequences, is that the common lengths of the latter can be chosen so that the FFT
technique is always optimally applicable. In fact, as is very well known, efficient com-
putation of convolutions is based on the convolution theorem [3], which states: Let
(w5 ! denote the result of cyclically convolving (x,)y ~! and (¥)Y !, i..

N-1
where ((j — 1)) denotes (j — i) mod N. If (W)Y~ 1, (X)¥~!, and (Y,)J~! denote their
respective N-point Fourier Transforms, then

) W,=XY; forj€[0,N-1].

Suppose at first that GF(p™) contains an Nth root of unity. We can find (Xt.)f;;’”1
and (Yi)g’ ~1 with O(V log N) arithmetic operations, find the W/’s from (4) with ¥
multiplications and then find the w/’s with O(N log N) arithmetic operations, all in
GF(p™). This implies that, when GF(p™) contains an Nth root of unity, the Fourier
Transform of a sequence of length n can be found in O(n log n) arithmetic operations
in GF(p™). However, recall that, by the original formulation of the DFT problem,
GF(p™) is assumed to contain an nth root of unity. Thus, we must have both
nl(™ ~ 1) and Ni(p™ ~ 1). Now, notice that NV, a power of 2, is highly composite,
while 7 is presumably not so; therefore, if n and N have a very small G.C.D., then we
may reasonably conclude that n is O(v/p™) or smaller; thus the event that GF(p™) con-
tains an Nth root of unity is likely to be quite rare.

On the other hand, it has been suggested in a similar context [3] that since an
Nth root unity will exist in some extension field of GF(p™),*** the DFT can be found
in O(n log n) arithmetic operations in this extension field. This approach can be quite
deceptive, however, because the extension field could be very large and the complexity
of the arithmetic could far outweigh the reduction of the number of operations from
0(n?) to O(n log n), as the following examples indicate.

Example 1. Take p = 3, m = 3, n = 26. Since 2nt(p™ — 1), we have to com-
pute a convolution of sequences of length 26 over GF(3%). Now, a 64th root of unity
exists in GF(31); however, the smallest extension field of GF(3%) containing a 64th
root of unity is GF(34%).

Example 2. Take p =2, m = 5, n = 31. Here we have to compute a convolution
of sequences of length 3% *** An 81st root of unity exists in GF(254) and the smallest
extension field of GF(2%) containing an 81st root is GF(2279).

Actually, one can use any highly composite integer N', satisfying N' > 2n — 1
and p4 N', as the length of the sequences to be convolved; and try to find a (V')th

*¥** A word of caution is in order. No finite field of characteristic 2 can contain an Nth root
of unity. To avoid this difficulty, when p = 2 one could choose N = 3% > 2n — 1, still permitting
an efficient implementation of the FFT.

COMPUTATIONAL COMPLEXITY OF FOURIER TRANSFORMS 745

root of unity in an extension field of GF(p™). Thus, we have

Example 2 (continued). Choose N' = 63 > 61. A 63rd root of unity exists in
GF(2°), and the smallest extension field of GF(2%) containing a 63rd root is GF(239).

The preceding discussion indicates that computation of the convolution in GF(p™
or its extensions is not viable in general. What is desirable instead is a method univer-
sally applicable to all instances of p and m and of easily determinable complexity, al-
though for specific isolated choices of p and m other approaches may be slightly more
efficient.

To this end we propose to transform the problem of convolving sequences over
GF(p™) into the problem of convolving arrays of integers, i.e. natural numbers. This
approach is not novel: in fact it was proposed by Pollard [3, Section 8] in connection
with the use of Bluestein’s method for the very particular case m = 1 and 2x|(p — 1),
i.e., for a prime field containing a 2nth root of unity. Both restrictions, however, are
unnecessary. In fact, we have shown in Section II that if the field does not contain a
2nth root of unity, we merely need to compute the convolution in a somewhat larger
field. The condition m = 1 was imposed so that the sequences could be treated as
sequences of integers in the range [0, p — 1] and convolved by the methods of [3,
Section 3]. We now show that this restriction can be easily removed.

First of all, we review the standard representation of elements of GF(p™) as poly-
nomials. Let ¢ be a root of a monic irreducible polynomial g(z) of degree m over
GF(p). Then every element x; € GF(p™) can be represented as a polynomial x({) of
degree less than m in ¢, i.e.

m—1
(5) x,§) = kzo x; 8% x; . € GF(Q).
As is well known, addition in GF(p™) corresponds to addition of polynomials over
GF(p), and multiplication in GF(»™) corresponds to multiplication of polynomials over
GF(p) modulo g(%).

As before, let (wi)l(;"1 denote the result of the cyclic convolution of (xi){;’_1
and (yi)f)v —1. Then we have
N-1
Wi = ;o XY ((-1))

and, using the representation (5) of elements of GF(p™) as polynomials, we have

N-1

W) = 3 @@ G_in@) mod g)
i=0
N—-1/2m-2 t
= < E <Z xi,ky((,‘_i)),t_k>§t> mod £(5),
i=0 t=0 \k=0

where Xk and Y((G—i)),t—k are taken to be zero if the second subscript exceeds m — 1.
Thus,

746 F. P. PREPARATA AND D. V. SARWATE

2m—2 t N-1 ;
wi(§) [Zo < > X xi,ky((j-i)),t_k>§'] mod g(§)
t:

k=0 i=0

2m-—2

< 3z 4) mod gG),

t=0

where

A . N=1

= kzo .zo xi’ky((j_i)),t_k € GF(p).
= i=

Zjt

Now suppose we treat all the terms of (x; ,)Jo ~! and (v; ;)5 ~! as elements of

Z, the set of the integers, rather than of GF(p). With this stipulation, we define the
integers

t

N—1
6) %= kg()(;() xi'ky((j_i))’t_k> forj€[0,N-1] and ¢ € [0, 2m — 2]

and, obviously, Ej’t mod p = z; ,. The right side of (6) has the form of a double, or
two-dimensional, convolution which is a periodic convolution in one dimension and an
aperiodic convolution in the other. The latter can be easily converted into a periodic
convolution by extending the range of k and ¢ to [0, M — 1] where M > 2m — 1. Let-
ting [[¢ — k]] denote (¢ — k) mod M, (6) can be rewritten as

. M—1N-1

) 5= XX X G-ii-k11-
k=0 i=0

It is convenient to think of the set x; 1}, 0<i<KN-1,0<k<M-lasa
two-dimensional N x M array [x; ;], and of (7) as an array convolution. Let [X;,]
denote the two-dimensional Fourier Transform of [xi'k] over the complex field, i.e.,

M—1 N—1 -
— 1}
®) X, = > X x; 1 Uy
k=0 i=0

where Q,, = e/2™/N and Qy = e/2™/M are primitive roots of unity of order N and M,
respectively, in the complex field. If [7].’ ;] and [Yj’ ;] denote the transforms of the
arrays [Ei'k] and [y; ;], respectively, then we have

()] Z;,,=X;,Y;, forj€[0O,N-1] and t € [0, M - 1].

Recall from Section II that one of the two sequences to be convolved is
(aiﬁ"z)g‘ 1YY", i.e. it is the term-by-term product of the two sequences
@)2~*©)N—" and (ﬁ‘z)g‘ 1(0)Y—". Representing the field elements as polynomials
as in (5), the element aiﬁ"2 is a polynomial of degree (2m — 2) before it is reduced
mod g(§). If we neglect to do this reduction, the convolution in (3) will give a poly-
nomial of degree (3m — 3) and the post-convolution multiplication by sz will give a
polynomial of degree (4m — 4). Reducing this last polynomial mod g(¢) produces the
same result as a reduction mod g({) after each multiplication. With this in mind, we
choose M = 2" where r = [log,(4m — 3)] and define the N x M arrays la; 1, [B; 4],
and [y; ;] corresponding to the sequences (a,-)g‘l(O)N_", ([3‘2)3‘1(0)”'” and

COMPUTATIONAL COMPLEXITY OF FOURIER TRANSFORMS 747

-2 1(0)N-2"+1. Let us also define the row-Fourier Transform (RFT) of the
array [x; ;] as the array [x;,] where

. M1 il
10) xip= 2 %Sy
k=0
and the column-Fourier Transform (CFT) as the array [x}:k] where
N-1 N
an Xie = 3 X U
i=0

Using the notation [x;,] = RFT[x, ;] and [x;;] = CFT[x;], we have
CFT[RFTIx, 1] = RET[CFT[x; ,]] = CRFT[x,] = [X;],

where X;; was defined in (8).

We thus have the following algorithm for the computation of the discrete Fourier
Transform of a sequence of n elements of GF(p™).

Algorithm.

Step 1. [a;,] < RFT[q;], [b;,] <— RFT[b; .].

Step 2. [x;,] < la;, - b;,].

(Comment: The rows of the array [x;,] are the transform domain representations
of the polynomials a; ﬁ' J)

Step 3. [X;,;] < CFT[x;,].

Step 4. [Y;;]1 < CRFT[y; ,].

Step 5. [Z;,) < [X;, - Y} 1.

(Comment: [Z,.’ ;] is the transform domain representation of the convolution in
3))

Step 6. [z;;] «— CFT~'[Z;].

(Comment: The rows of the array [zi ;] are the transform domain representations
of the polynomials defined by 27 s (a; B/)ﬁ‘(‘ -n?)

Step 7. [ut,I] - [zt,l l,I]

Step 8. [,] < RFT~![u;,].

(Comment: The array [E,.’k] represents the desired Fourier Transform as poly-
nomials of degree 4m — 4 with integer coefficients.)

Step 9. [u; ;] < [u, , mod p].

Step 10. A, < (Z325 *u, ;&) mod g(§) fori=0,1,...,n- 1.

We note that, in certain special cases, our algorithm is not necessarily the best.
For example, if one of the convolutions in (6) is quite short, then it can be computed
more efficiently using the methods in [15]. However, our algorithm does have the
virtue of being uniformly applicable to all cases of computation of the DFT over finite
fields, and of having order of complexity not inferior to other algorithms.

IV. Performance Evaluation of the Algorithm. The following analysis is based on
the so-called “logarithmic model” [4, Chapter 1], that is, the time required by the al-
gorithms will be estimated in terms of “bit operations™ rather than of “operand opera-
tions™ (as is the case with the so-called “uniform model”). This choice is justified on
the grounds that the length of the operands used by the algorithms depends upon the

748 F. P. PREPARATA AND D. V. SARWATE

parameter n, the original sequence length. Thus, assuming a fixed operand size would
be erroneous; on the other hand, the running time on any given conventional machine
of the random access memory type will be proportional to the bit complexity to be
evaluated.

A basic operation used by the convolution algorithm described in the preceding
section is the Fourier Transform of a sequence of integers in the complex field. The
choice of this field is obviously motivated by the fact that a primitive root of unity
exists for every order N; thus NV can be chosen as the one which yields an optimal im-
plementation of the FFT algorithm. Resorting to the complex-field FFT is by no
means novel; it was proposed in the past in connection with similar problems, notably
by Schonhage and Strassen [9] as a device for fast integer multiplication. The main
problem encountered with this approach is that the accuracy with which complex
numbers are represented must be sufficient to guarantee that the rounded-off results
exactly yield the correct integers. We now éstimate in detail the number of bits that
must be used to represent the powers of the primitive roots of unity ,, and Qp. A
similar analysis, applied however to a considerably simpler situation, can be found in
ol.

Let N, = 2%. As is well known, the ith stage i =0, 1, ..., — 1) in the ex-
ecution of the FFT consists of a set of “butterfly operations”, in each of which two
complex numbers 4; and B; are combined to yield two outputs 4;, ; and B;,, where

(12) Ajpy=A;+QB;, B, =4,-QB,

where £ is some power of QNb =e?™No_ Let 1 be the maximum error in any

power of QNO, let ¢; be the maximum error in the inputs to the ith stage and let L;
be the maximum modulus of the inputs to the ith stage. From (12) we have

L, <2L; <21
and

€41 <€ +Bn+ Qe; <Lm +2¢; <2'Lyn + 2¢
since |B;| < L; and || = 1. Therefore, we have
€41 <@+ 1)2Lgn + 21+ 1¢y;
and
€<t-2""'Lin+ 2‘§0 = %tNoL,n + Nyeg

is the bound on the error of the Fourier Transform.

For the inverse Fourier Transform, the equations (12) are slightly modified.
Using fi}, ﬁi, f,i, and §; to denote the corresponding quantities for the inverse trans-
form, we have R

Ay = WA, + QB),

B,y =%, - QB).

COMPUTATIONAL COMPLEXITY OF FOURIER TRANSFORMS 749

Therefore, we can choose io =L, == Z’v whence &, , < %[¢ + Bn + Q8] <
E + Vzion.T Hence, we have €, < €, + %tf,on.

From this, it is easy to determine the maximum moduli of and maximum errors
in the results produced at each of Steps 1—8 of the algorithm. These are given in

Table 1.
TABLE 1

Maximum moduli of and errors in complex numbers produced in Algorithm

Step Maximum modulus of result Maximum error in result
1 Mp Y%rMpn
2 M*p? M*p2n
3 NM?*p? (r + %S)NM*p*n
4 NMp %(r + s)NMpn
5 N>M3p3 Br/2 + N*M3p3q
6 N2M3p3 3B/2)(r + HN?*M3p3n
7 N2Mpt Q2r + 3)N*M*p*q
8 N2M3pt %(5r + 3s)N*M?p*n

The results at Step 8 must have a maximum error of less than % in order that
the results may be correctly interpreted as integers. It follows that the approximation
error 7 in the roots of unity § must satisfy n < 1/(5r + 3s)N2M*p*, or, equivalently,
the number of bits used to represent the powers of the roots must be at least

q £ [4 log, p + log, (57 + 3s)] + 2s + 4r.

We can now evaluate the performance of the Fourier Transform algorithm. Let
P(q) denote the number of bit operations required to multiply two g bit numbers. We
represent the real and imaginary parts of both the powers of £ and the terms A;, B;
previously defined using g bits for each, and note that a complex field multiplication
corresponds to four’t multiplications of real numbers. Note that the integer parts of
the results grow at each step of the algorithm, but concurrently their fractional parts
lose accuracy so that the significant operand length remains constant. It follows that
Steps 1 and 8 require O(NM log, M - P(q)) bit operations, that Steps 3 and 6 require
O(NM log, N - P(q)) bit operations, that Step 4 requires O(NM log, (NM) - P(q)) bit
operations, and that Steps 2, 5 and 7 require O(NM - P(q)) bit operations. Obviously,
the complexity of Step 4 dominates those of Steps 1—8.

In Step 9, MN integers, represented by q bits each, are divided by p, which is
represented with [log, p] < ¢ bits. Thus, the complexity of this step is dominated by
that of Steps 2 or 6 and hence by that of Step 4. Finally, in Step 10, N polynomials

TWhen the final maximum _modulus L, is known, we can derive the bound Et < 80 + 2tLtn,
which is based on the inequality Li < 2t_’Lt. However, this bound does not improve our result
in any significant way.

tTor three real-number multiplications, using Buneman’s method [14, p. 444].

750 F. P. PREPARATA AND D. V. SARWATE

over GF(p) of degree 4m — 4 are divided by a polynomial of degree m. Let D, (m) de-
note the number of bit operations required to divide a polynomial of degree 2m by a
polynomial of degree m in GF(p). Then, Step 10 requires at most O(V - D, (2m)) bit
operations. If m <N, i.e., m is O(log N) or less, then a long division method can be
used at Step 10 and the complexity of Step 10 is O(Nm?P(log p)) which is dominated
by the complexity of Steps 3 and 6. On the other hand, if m is large compared to N,
then fast polynomial division methods [4], [5] can be used at Step 10. The complexity
is then O(NM log mP(log m + log p)) bit operations, and this is dominated by the com-
plexity of Steps 1 and 8. We thus have

THEOREM. The Fourier Transform of a sequence of n elements of GF(p™),
nl(™ - 1), can be computed with O(nm - log(nm) - P(q)) bit operations where P(q) is
the number of bit operations required to multiply two g-bit numbers and q = 2 log, n
+ 4 log, m + 4 log, p.

As a general observation, note that the number of arithmetic operations depends
on the degree of the extension of GF(p) but not on the characteristic p itself. The
latter affects the bit complexity of arithmetic operations only. The following special
cases of the theorem are also of interest.

() If m =1, the bit complexity reduces to O(n log nP(q)) where ¢ =2 log n +
4 log p <6 log p, i.e., P(q) is proportional to the complexity of arithmetic in GF(p).
Thus, the Fourier Transform over GF(p) can be computed using O(n log n) arithmetic
operations whose bit complexity is essentially that of arithmetic operations in GF(p).

(i) If p=2and n=2™ -1, (which is a case of great interest in coding theory
[1], [2]) then P(q) is proportional to the complexity of arithmetic in GF(2”). Thus,
the Fourier Transform of a sequence of length 2 — 1 over GF(2™) can be computed
using O(n log? n) arithmetic operations whose bit complexity is essentially that of arith-
metic operations in GF(2™).

Remark. The algorithm proposed in this paper can also be used (with appropriate
modifications) to compute the convolution of sequences over GF(p™) of arbitrary
length n. The asymptotic complexity is easily shown to be O(n log n) arithmetic oper-
ations whose bit complexity is essentially that of multiplying two (log 7) bit integers.

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

1. E. R. BERLEKAMP, Algebraic Coding Theory, McGraw-Hill, New York, 1968. MR 38
#6873.

2. F.J. MacWILLIAMS & N. J. A. SLOANE, Theory of Error-Correcting Codes, American
Elsevier, New York. (To appear)

3. J. M. POLLARD, “The fast Fourier transform in a finite field,” Math. Comp., v. 25,
1971, pp. 365—-374. MR 46 #1120.

4. A. V. AHO, J. E. HOPCROFT & J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

5. A. BORODIN & I. MUNRO, The Computational Complexity of Algebraic and Numerical
Problems, American Elsevier, New York, 1975.

6. C. M. RADER, “Discrete convolutions via Mersenne transforms,” IEEE Trans. Computers,
v. C-21, No. 12, 1972, pp. 1269—1273.

7. R. C. AGARWAL & C. S. BURRUS, “Number theoretic transforms to implement fast
digital convolution,” Proc. IEEE, v. 63, No. 4, 1975, pp. 550—560.

COMPUTATIONAL COMPLEXITY OF FOURIER TRANSFORMS 751

8. L. S. REED & T. K. TRUONG, “The use of finite fields to compute convolutions,” IEEE
Trans. Information Theory, v. IT-21, No. 2, 1975, pp. 208—-213.

9. A. SCHONHAGE & V. STRASSEN, “Schnelle Multiplikation grosser Zahlen,”” Computing
v. 7, 1971, pp. 281—-292. MR 45 #1431.

10. L. I. BLUESTEIN, ‘A linear filtering approach to the computation of discrete Fourier
transform,” IEEE Trans. Audio & Electroacoustics, v. AU-18, 1970, pp. 451—455.

11. C. M. RADER, “Discrete Fourier transforms when the number of data samples is prime,
Proc. IEEE (Letters), v. 56, No. 6, 1968, pp. 1107—1108.

12. J. W. COOLEY & J. W. TUKEY, “An algorithm for the machine calculation of complex
Fourier series,” Math. Comp., v. 19, 1965, pp. 297—301. MR 31 #2843.

13. S. W. GOLOMB, “Properties of the sequence 3 - 2" + 1,” Math. Comp., v. 30, 1976,
pp. 657—663.

14. D. E. KNUTH, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms,
Addison-Wesley, Reading, Mass., 1971. MR 44 #3531,

15. R. C. AGARWAL & C. S. BURRUS, “Fast one-dimensional digital convolution by
multidimensional techniques,” IEEE Trans. Acoustics, Speech and Signal Processing, v. ASSP-22,
No. 1, 1974, pp. 1-10.

