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Roots of Two Transcendental Equations
Involving Spherical Bessel Functions*

By Robert L. Pexton and Arno D. Steiger
Abstract. Roots of the transcendental equations ji(aA)y;(A) = j(N)y,(a) and
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for the spherical Bessel functions of the first and second kind, ]'I(z) and y(z), have
been computed. The ranges for the parameter «, the order I and the root index n
are: @ = 0.1(0.1)0.7, 1 = 1(1)15, n = 1(1)30.

To determine the electromagnetic eigenfrequencies of a cavity resonator bound-
ed by two perfectly conducting concentric spheres (r = aR and r = R, 0 < a < 1), it
is necessary to solve the transcendental equations

6y IaNy (N = j,(A\)y (ad),

and
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forl=1,2,3,... . The spherical Bessel functions of the first and the second kind,

ji(z) and y/(z), are defined in [1, p. 437]. The nth root, A, ,,, of Eq. (1) is proportion-
al to the nth characteristic frequency of the transverse electric 2'-pole field. The nth
root, n; ,,, of Eq. (2) is proportional to the nth characteristic frequency of the trans-
verse magnetic 2'-pole field.

By virtue of the relation [1, p. 439, Eq. (10.1.21)]

j](z),

L@+ L@ =fia@  where £@) = 7@,

the transcendental equation (2) becomes
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@ ,) (O‘Tlfl_l(“n) - ,(Om)) (nyl_l m-b 1(7?))
= (Omyl-l(a"?) - lyl(om)) (n]',_l(n) - ljl(n))'

Express Eqgs. (1) and (2') each in the form F(u) = 0. For a given order / and a fixed
parameter « the function F(u) is then evaluated at a sequence of points uj, for which
u;—u;_; = constant, until a sign change occurs. In this last interval a root is com-
puted to near machine-word accuracy by using a modified Muller technique [2, p. 51].
The spherical Bessel functions are computed by means of Mechel’s recurrence method
[3, p- 202]. This straightforward procedure is fast, accurate and reliable.

Tables of numerical values for the roots of the two transcendental equations are
to be found in the microfiche supplement of this issue. The ranges for the parameter

o, the order [ and the root index n are

a=0.1(0.1)0.7,
1= 1(1)15,
n = 1(1)30.

The calculations were performed on a CDC 7600 computer. When extending consid-
erably the ranges for / and n, we encountered no difficulties with our program.

The first six roots of Eq. (1) for / =0, 1, 2 and for « = 1.2, 1.5, 2.0 are con-
tained in Table 34 of [4]. Nomograms allowing the approximate determination of a
few roots of Eq. (1) are presented in [5].
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