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An Effective Number Geometric Method
of Computing the Fundamental Units
of an Algebraic Number Field

By Michael Pohst and Hans Zassenhaus

Abstract. The Minkowski method of unit search is applied to particular types of

parallelotopes permitting to discover algebraic integers of bounded norm in a given

algebraic number field of degree n at will by solving successively 2n linear inequali-

ties for one unknown each. Application is made to the unit search for all totally

real number fields of minimal discriminant for n < 7.

Introduction. Many methods have been devised for producing maximal sets of
independent units of an integral domain O with a finite basis w,, . . ., w, over the
rational integer ring, Z. The number geometric methods devised so far always lead to
a large number of linear inequalities for #» unknowns simultaneously. It is the purpose
of this note to reduce the application of number geometric methods to sequences of
n pairs of linear inequalities, each only for one unknown.

1. Parallelotopes of Bounded Norm. Denoting by 7, the number of distinct
isomorphisms of () into the real number field, R, say

0—R:0, ((A<i<r)

and denoting by 2r, the number of the remaining isomorphisms of ( into the complex
number field, C, say

0—C: 0’1'“' (1 <i<2r),

where
* . *

() a9r1+r2+i = (a0r1+i) (I1<i<ry),
it follows from Dirichlet’s unit theorem that every set of independent units of () can
be extended to a set of
) r=r, +r, -1
independent units and that any set of r independent units is a maximal independent

set of units.
Moreover,
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* a* = Ra — Ioj denotes the complex conjugate of the complex number a = Ra + Ioj with
real part Ra and imaginary part Ia both contained in R and j© = —1, the imaginary unit.
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NUMBER GEOMETRIC METHOD OF COMPUTING 755
3) n=r;, + 2r2.

The applications of number geometric methods to the task of determining maxi-
mal independent unit sets of () hinge on the possibility of an additive homomorphism
¢ of 0 into the n-dimensional vector space C! *” over the complex number field C
with the property that the norm of an element « is equal to the value of a certain
homogeneous polynomial NV, of degree n on .

It can be shown easily that ¢ is monomorphic, that the embedding ¢ is unique up
to a nonsingular linear transformation over C,that Ot is a discrete subset of C! *” in
the customary sequential topology and that the linear space RQ: is of dimension n
over R. In other words ¢« maps () one-to-one on an n-dimensional lattice. (H. Hasse,
Zahlentheorie, 3. Auflage, Akademie Verlag, Berlin, 1969, pp. 516—520.)

The usual choice of ¢ is the Minkowski coordinatization

0 — R*n.,

(@a) @1 = @0y, ..., @0, \R(w0, L IN2,

1°

[0, (N2 RO, 4, IV I, IN2),

which has the advantage of employing only real coordinates with norm form

rl r2
— 57 2 2
(52) Ntl(xl’ cox)=2 2 [T x [1 (xr1+2j—1 +xr1+2j)'
=1 j=1

More satisfactory from the theoretical vantage point is the coordinatization
(4b) 0—C "y, wiy = (W), wh,,...,wd,) (w€DO0),

with norm form

X;.

::

(5b) NLz(xl,x2, Ce, X)) =

Il

i=1

For practical purposes we shall use the coordinatization

(40
Wiy = <

with norm form

0 — RV,

n
,gl Xiwi>t3=(>\l,>\2,...,)\n) A2y, .. N, EZ),
= /
(5¢) N¢3(“’) = det(wA),
where A denotes the right regular matrix representation
n
6) 0 =7V A, wh=yW), ww=3Y N(ww,
k=1

of O with respect to the Z-basis w,, . . ., w,.
Any p elements v, ..., v o of C! *” that are linearly independent over R
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generate the discrete submodule L = 21—1 v;, also called a p-vector lattice. It deter-
mines the basic parallelotope

P
) M@, ..,0)= 1Y &yl ER —%<E<%h 1<i<p
i=1

of L with the property that its translates under the translations by vectors belonging
toL provide a packing of the p-dimensional space RL over R by convex closed paral-
lelotopes centered at the members of Z

The linear space C! *” of dimension n over C is metricized by standard unitary
distance:

(82) dx, y) = 1(x = ») @ = p))*I**
giving rise to the p-volume measurement

(8b) Vo(0ys - - -5 0,) = ldet(;v)%  (=1,2,...,p),

which turns out to be invariant under the unitary subgroup

(8c) Un)= {xIx €C"*" & xx' = 1,1},
of the general linear group of degree n over C applied to v;,v,, ..., v, on the right.
The application of a matrix X of degree p over C to the p x n-matrix V with p rows
Vys e -5 Y, yields the matrix XV with p rows w;, w,, ..., w, such that
Vp(wl, Wy, .o, W) = Idet X| Vp(vl, e, vp). It yields a positive measure in case
Ups - -5V, are linearly independent over R, but zero in case v, . . ., v, are linearly
dependent over R.

The number

—> i P

(8d) lLI= Zi-_—.]zvi =Vp(vls"',vp)
1s independent of the ch01ce of the lattice basis vy, . . . , v, of the p-vector lattice

L. It is called the mesh of L due to the fact that its value gives an 1dea of the space
about each lattice point. For example if Ll is a p-sublattice of L ie. L is a sub-
module of the discrete module L of R-dimension 'R then the group theoretlc index of
j4 , in L ie. the number L: L counting the cosets of L over L is equal to the mesh
quotient:

> > -> >
(®) ILILI=L:L,.
For our coordinatizations we find that
(92) 1041 =104] = 1d(0YZ)*%|,
(9b) 1041 =1,
where

**where (af;) = (aik)t denotes the hermitian transpose of the rectangular matrix

(e (qeCi1<i<p1<k<qgpqez’®.
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(10) d(0/Z) = det(tr((w;A)(w; A)))

is the discriminant of the order () over Z which by (10) is defined as a nonzero ra-
tional integer independent of the choice of the Z-basis w,, . . ., w,.

According to the first fundamental theorem of Minkowski’s Geometry of Num-
bers, any convex body of RQ: centered at the origin contains a nonzero lattice vector
of Quin case its volume is not smaller than 2" times the mesh of the n-lattice Oi. In
particular, the parallelotope

(1) = 2M(w, s, - . ., w0 = gwulg ER —1<§

(<L 1<i<n

-

i=1

and the parallelotopes derived from it by a linear transformation of w,t, ..., w,t
of degree n and determinant 1 over R always contain a nonzero member of (t.

Evidently, the estimate obtained above is sharp in many instances.

In his initial applications to the task of unit search H. Minkowski formed paral-
lelotopes which in his coordinatization were rectangular and parallel to the coordinate
axes. This application has the effect that one has to consider irrational coordinates
of the lattice points subject to 2n linear inequalities involving all of the unknowns at
once.

Apply the fundamental theorem to those parallelotopes

fi(w) = 2|NL3(w)_1/"|H((wlw)L3, (W, @)1, -+« s (@, W)t3)

obtained upon transition from the n x n matrix V with row vectors 2wt3, 2w,
.« s 2wyt to the matrix

L3,

VWA/IN, (@) /7]

of the same determinant using some nonzero element w of (.

This application will have the effect that we will work with integral rational
coordinates of the lattice points subject only to two linear inequalities for each of
the unknown coordinates in sequence.

We observe that the norm function on ( defined by setting

(11a) N(w) = det(wd) (w€E)

is independent of the choice of the Z-basis w,, . . ., w,, and coincides with the
norm function NV, referred to above. It is by definition a multiplicative homomor-
phism of () in Z such that

(11b) N@pB) = N@N(B) (o, € 0),

(11¢) NOY =N (ANEZ).

It is easily computed for any element w of () with given right regular representation
wA upon forming the Hermitian column reduced matrix
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(W) U(w) = (o (w))

(114d)

(U(w) € SL(n, Z); () € Z, oy (w) = 0 if 1 <i <k <n).
Simply:
(11e) Nw) = [T o(w).

i=1

It is convenient to determine the integral matrix (8;;(w)) solving the matrix equation

(11f) (aik(w))(ﬁik(w)) =M (w)ln
by the recursive sequence of equations
(11h) Biy(w) = N(w)/oy;(w) if 1 <i<n,
; i
(lll) 2 0;; (W) (W) =0 if1<k<i<n
j=1

It follows that the inequalities

-1<g<1 (1<i<n)

for the lattice points

(113 =My - - - »0,) €2V N (W)
with

(1K) 1 = E@A)Nw) ",

(11 £=(, b oo En)

after the unimodular substitutions

(11m) F=nU0@) =, 855 80

amount to the triangular set of inequalities

— IMw)m=DI" < ¢ B, (w) < [Nw)®— D7

— M@ G By a1 (@) F §uBy g (@) < M)
(11n)

— M) =DM < £ 8y (@) + 2t F § 1By, 1 (@) F 848y ()
< lN(w)(" —1)/n l.
They are solved recursively one after another yielding a finite number of lattice points

(110) n=¢tU Y (w)E Z*".

By construction the corresponding elements, m'3'l of 0 have absolute norms bounded
by the maximum of the norm function on II(1).
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Upon choosing w randomly in O in several ways so that never any one of
them is a rational multiple of another, we get as many elements of bounded absolute
norm as we like by the number geometric method explained above. The principles of
an efficient choice of w partially depend on mathematical intuition. It is of course
desirable that scientific principles guiding our direction be developed. This aim under-
lies the investigations of a forthcoming paper.

2. Unit Search I. According to Dirichlet’s Theorem (see [1], [6]) the logarith-
mic mapping

(122) QOMO0}— R!*": Log, € Log = (logled, |, ..., logled, ) (0+#e€Q0)

is a multiplicative to additive homomorphism of the multiplicative group of Q( in

R ™" The kernel of its restriction to the unit group U(0) is the torsion subgroup

TU(0) of U(0), a cyclic group of finite order w(()). The image of U(0) is an r-
dimensional lattice spanning the linear subspace

n

R(UO)Log) = §(xy,-..,x,) I X, ER1<i<n& Y x;,=0
(12b) =1

&xr1+j=xrl+r2+i,l<]<r2} .

In order to determine TU(() remember that the generators of TU(()) are the
roots of the cyclotomic polynomial

(12¢) (o)D) = I1 (4 — w0/
1<dlw(0)

of degree p(w((0)) over Z. Hence
(124) ewW(0)) | n,

and there exist only finitely many possibilities for w(0), given n, say

Wi > Wy >t > Wy > Wemy = 1

Following the method given in [5], we test whether the polynomial ¢, has a root
¢in Q0 fori=1,2,...,/, until the answer is affirmative for the first time, say
00 (&) = 0.

It follows that every unit root of QQ is a power of o.

The first power of ¢ belonging to O generates TU((Q)Log; its order is w(0).

Since —1 always is a torsion unit of (, it follows that

(12¢) 2 1 w(0).

We want to find a set of » fundamental vectors n, Log, . . . , 1, Log which form
a basis of the unit lattice U(0) Log, i.e. n,, n,, . . . , n, generate a free abelian sub-
group of

(12f) U(0) = ker Log x (n;) x {n,) x ==+ x(m,).
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In the course of the search we shall find finitely many units ¢, . . ., €, of 0
generating the sublattice Zf_, Ze;Log of the unit lattice. It will be required to find a
Z-basis of that sublattice and to express the generators ¢;Log as integral linear combina-
tions of the lattice vectors. This will be achieved by means of the Minkowski reduc-
tion expounded in Minkowski [3], or simply by Hermite’s row reduction, applied to
the p x n-matrix of the p vectors ¢;Log (1 <i < p).

The first task is to find 7 independent units of 0, i.e. units €, €5, . . ., €, of
0 for which the n-rows €,Log, e,Log, . . ., €,Log are linearly independent.

For this purpose we give two methods, the first one simply carrying out the
Dirichlet-Minkowski ideas in a new setting, the second one implementing additional
economies obtained by using the action of the automorphism group of the minimal
splitting field of Q0 over Q and the ideal theory of (.

If r = 0, then TU(Q) = U((); and we are done. Let r > 0.

Method 1. Suppose we have found already p independent units €, . . . , €, of
0 and o(p) nonequivalent elements £,, . . . , &,(,) of 0 with the properties

(13a) 0<p<r, oafp)=0;

the absolute value of each §; is not larger than
(13b)

lubINLB(x)l, x € 2M(wqtg, - - -, Wyts).
Proceed as follows.

Choose some nonzero element w of 0 and find the nonzero lattice points of
fl(w), say 2, ..., %p,.

(a) If one of the quotients ¢;/£; is a unit, then we seek independent units
€s v v s e;,' of O generating the same subgroup of U(0) as €,, €,, . . ., €, ¥ilEss
taken together with TU(0).

Eliminate ;.

Replace €,,...,€, by e'l, RN e;’. If p’ = r then we are done.

(b) If none of the ‘P,-/E,' is a unit, then set Ea(p)+1 = 9> a(p) + 1 to a(p) and
go on. If all of the ;s are run through, then choose another w. It was shown in
[5] that the method will come to a halt as desired after finitely many steps.

Method 11 requires ( to be a maximal order.

Using the methods of [5], we form the minimal splitting field £ generated by
the conjugate subfields Q06; (1 <j < n) and its automorphism group G, a transitive
permutation group on the conjugates of any primitive element ¥ of QQ such that the
stabilizer of Q08, = QO is the subgroup H of all automorphisms of E fixing Q0
elementwise.

Hence,

G= 'U Ho;

n
=1

such that
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Suppose we have found already p independent units €, . . . , €, of 0, and
B(p) ideals U, . .., Up ) of O as well as their inverses AL, ..., Uz, and olp)
elements £,,&,,..., Ea( 0) of O of absolute norm not larger than

lublNLa(x)I, x € 2M(wytg, - - - » Wyt3)

and some a(p) x P(p)-integral matrix A = (o;;) such that

(142) 0<p<r, a(p)=0, B(p)=>0,
(14b) 0> 2[1. (1 <i<p(p)),
(14¢) A+A =0 (A<i<k<BP),
8(p) o
(14d) 0# 50 = [T ulix;
k=1
(14e) the rank of A is equal to a( p).

Choose some nonzero element w of () and find the nonzero lattice points of
(w), say +p,, 29,5 .. ., f‘f’x'

(2) If ¢;0 = MELIAF (0 <w, €Z,1 <k <P(p)) and if there is a rational
a(p)1ow pg i = (Ky, - - - 5 Hy(py)/ko such that 0 # ug € Z and

a(p)
(14f) vZ+ Y Zy =12,
i=0
(14g) HolwAd =v = (1, .-, V()

then because of (14e)—(14g), the rational integers py, Ky, - - . , Mg, aT€ uniquely
determined by y; and ¥, ..., ?Iﬁ( )" Furthermore, the quotient

u a(p)
= M0 ™

is a unit of 0.
We find independent units €, . . ., e;r of ( generating the same subgroup of
UQ)as €;,€5,-- > €, and the units

e, [1 .0 (<k<n),
oEH
taken together with 7U(0).

Eliminate +y;.
Replace €,, . . . , €, by €15 .- ,e;r.
If p' = r, then we are done.
Otherwise, rename p’ to p, go on increasing j by 1 if j <k.
(b) If
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B(p)
00=TI4* O<y€Z1<k<H()
k=1

and if the rank of the matrix 4 obtained by adjoining the f(0)-row (vy, . - - » Vg())
as (a(p) + 1)st row to A is equal to a(p) + 1, then rename ¢; to £,(p)4 1, @(p) + 1
to a(p), A to A and go on increasing j by 1if j <«k. .

(©) If ;0 =3ng(=fqal;" RCO;R¢Y,,0<v, €Z,1<k<p(p)), then we
replace the ideals ¥, . . ., Qlﬁ(p)_l,?lﬁ( p) as follows:

By several applications of ideal addition and quotient formation of ideals one of
which is contained in the other let us form the divisor cascade (see [5, Part IT})
determined by ¥,, . . ., ?Iﬁ( )’ & resulting in ideals %), . . ., ?I;,( p)’ With the proper-
ties

(152) 0<p(p) €2,

(15b) A CO0 <k <B(p))

(15¢) AC+A,=0 (1 <i<k<p(p))
B(p)

(15(1) 211 = kIl—‘l 2{;’71”6 (7ik IS Z>0, 1<i <ﬁ(p), 1<k< Oz(p)'),
(o)’ '

(15¢) = [T 40k (v, €27°,1 <k <B(p))
k=1

We form the (a(p) + 1) x B(p)-matrix 4 = (o) determined by

8(p)
o = X Y (I <i<ap),
v=1

B(p)
Xy 41,k = <h§l Vn 7hk> +vor (A <E<BP)),

rename ¢; t0 £4(p)+ 15 X t0 o, Ato 4, a(p) + 1 to ap) and Aj, . . ., g,y to
Ap, ..., Ug,ys B(p) to B(p), and go on increasing j by 1if j <«.

If all of the ¢;’s are run through, then choose another w. It was shown in [6]
that this method will come to a halt as desired after finitely many steps.

3. Unit Search II. Suppose €,, . .., €, are p independent units and p,, . . .,
p, are distinct prime numbers. Then all units e of () with the property that some
power €” with exponent of the form & = p’l’lp;2 X pZ" belong to the subgroup
generated by TU(0), €, . . ., €, form a subgroup S(ey, . - ., €,5Pps - - - p,) of

U(0) such that
(16a) S(eys -+ s €3 Pys -5 Pg) =TUQ) x Ce}) x =+ x(e,).

We want to find a set of p units €}, . . . , €, of U(0) satisfying (16a). Firstly, let
p =1, € =¢,. Supposing there holds an equation
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(16b) eu=¢"  @ETUO),£€0, m=>2),
then
led 21 if e, > 1,
180, <x, and x, = (1 <k<n),
1 if lef | < 1,
(16¢) . k
£= Z ‘ékwk (Ek €12),
k=1
n
(164d) £0; = kZ.l w95,
n. 1,
(16¢) £ =Y 4,400/,
i=1
when A _is the algebraic complement of w, 8, in the matrix (w,6,) and
ik k" ki
(16f) det(w, 0,) = d(0/Z)".
Hence,
n
i=1

There is a natural number p satisfying

n
(16h) p= Y WMyl /d0I12)% (1 <k<n).

i=1
Each solution of the congruence

h = s v,
(16i) n" =eu (mod p0) <77 ETUO), h = H pg')
i=1
is congruent to
n

(16j) n= kZ_:l Mg Wk

modulo p() where the rational integer 1, is a least residue modulo p. Because of
(16g) any solution of (16b) is equal to one of the congruence solutions (16j). If
none of them satisfies (16b), then (16b) has no solution. If some of the #’s of (16j)
satisfy (16b), then pick one with maximum value of m. That one will serve as e'l.
Now let p > 1. Using the method above, we determine S(e;;p,,..., P,) =
TU(0) x (€}) = S(€}; Py, - - -, P,). We replace €; by €.
Without loss of generality we may assume that

(16k) S(€;;Pys - - -5 P,)=TUO) x (e, ).

Hence

Pj___
Q0 Ve, 1 2 Q0,
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the polynomial /7 — €, of Q(O[t] is irreducible. By Cebotarev (Math. Ann., v. 95,
1926, pp. 191-229) there is a prime ideal »; P d(0) so that the polynomial Fi-
€, remains irreducible mod p;. Hence, p;I(M(p;) - 1).

Hence for every unit €; for which 1 <i < p there is precisely one rational integer
v; for which

o<y < p;, e';" €; is congruent a p]-th power modulo p;-

Hence, by an application of the Chinese remainder theorem we obtain units
€rr v ns ép such that
(1) x(€y) x ==+ x(g,) = (&) x () x *++ x(&));
and every element of (€, x * +* x (§p> is a p;th power modulo b forj=1,2,...,0.

Hence, any element ¢ of  for which ’;‘5" belongs to TU(0) x (€;) x * -+ x (e,)
must itself belong to TU(0) x {e,> x S(E,, . . -, Ep; p;). Applying mathematical in-

duction over p, we assume that we have already constructed units €, . . . , €, of 0
for which
(16 S5 - -5 &3Py o) = TU0) x @) x * =+ x €).

It follows that

(16m) S(eys - s €3P1s -3 Pg) =S(€1, €5,y o5 €)5D15 4+ 5 D)
and that

A6n)  S(ey, .. s €03 P1s - - vy Do) = TU(O) X (€, x (&)} x =+ » x (€,)

in case
(160) 8@y -+ 63Pys - -+ s Pg) =TU0) x (€3} x * -+ x (€,).

Hence, upon repeated replacement of €,, . . . , €, by €, €35 v é;, until one

arrives at (160), the last p-tuple obtained will serve in the capacity of €}, . . ., e;.
In the event p and s are not too large one can employ with advantage a ‘non p-

. s . . . . 1 -
adic method’ based on the inspection of the possible candidates e = ¢! - - - eslels

s—1"s
(0 <1, <p, 1 <i<s)and their conjugates. Using a dual Q-basis w,, . . . , ¢, of
QO characterized by the equation tr(w,-c—o_k) = 8, it follows for e = &P (¢ =
a0, 4; €Z, 1 <i<n)that g, = tr(wf) = =0, of%/e®). If this a; (double
precision!) is ‘not integral’, then e = £ is impossible. Otherwise, upon taking for a,
the pertinent rational integer, one obtains a solution.
For computerization of the algorithm and complete numerical examples see the
article by Michael Pohst on ‘4 Program for Determining Fundamental Units’ in

SYMSAC 76, pp. 177—182 and also a forthcoming paper by the authors.

4. Unit Search III. Using methods of Zassenhaus [5], [6], we determine the
algebraic number fields F,, . . ., F, satisfying

QCFCQ0 (1<j<7).
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Note if # is a prime number, then 7 = 0.

Applying an inductive argument, we assume that we have found already a genera-
tor set of the unit group of each of the integral domains F; N 0 and that the indepen-
dent units €, . . . , €, of 0 together with TU(Q) generate a subgroup of the unit group
of ( that contains all those generators. As a result, we know that any unit € of 0
that is not already contained in the subgroup TU(0) x {€;} x - * * x (g} is a primitive
element of QQ, i.e. Q0 = 0(e). Hence, any n consecutive powers of € like

eltn2l-n_ =1 1 ¢ ..., eln/2]

are linearly independent over Q which implies the linear independence of ¢! *[#/21-7,

..., elm2l over R.

We apply this remark to the (n — 1)-dimensional linear-R-space M = E;’;ll Ry
determined by the first n — 1 successive minima of the lattice or relative to the Carte-
sian distance function on the n-dimensional linear space ROt over R. For this purpose
we determine 7 linearly independent lattice vectors y; of Ou with the property that
any lattice vector which is linearly independent of u,, . . ., M; is of a Cartesian length
not less than the Cartesian length of Mg (G=1,2,...,n—1). In particular, u, is
a lattice vector of shortest positive length. Clearly, 1t is of shortest length. We choose
K, to be equal to 1¢. For an algorithm to find u,, u,, . . ., &, see [3] or [8].

Of the n vectors

etttnf2l=n ..., e["/”c

at least one is not contained in the (» — 1)-dimensional linear R-space spanned by u,,
.., M,_;. It follows that |e/t| > |u, | for some exponent j satisfying 1 + [n/2] —n
<j<[n/2], and j # O because 1¢ = u,. Hence

(20) led > |, (72171,

According to the Hadamard inequality, we have

n

(21a) 10d = 1d0/2)*1 < T Il SV lw,I"—t,
i=1

(21b) I, | = 1(d(0/Z)/n)! 12 (n=1),

(21c) led > 1(d(0/Z)/n)21n/21 (r=1)!

In any case we obtain an estimate of the form
(21d) led=Zu>0

leading to an estimate of the form

(22) ‘le Logl = (Zn: (log| eOiI)2> %| =>g(uw)>0

i=1

according to the
LemMMA. Leto,, ..., 0,, u be real positive numbers subject to the conditions
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n n
(23a) Z 0i2>u2>n, H 0,=1,
i=1 i=1
then
n
(23b) 3" (log 6,)* > g(1)*,
i=1

where g(u) > 0 and g(u)? is the minimum of the finitely many positive numbers

Bnofn-a) (@EZ,0<a<n;p>0,

a exp(28) + (n — @) exp(—26a/(n — @) = p).exx

Proof. Apply the Lagrange multiplier method to the function Z7_, (log o,-)2
with the side conditions (23a) and o; >0 fori=1,2,...,n.

Supposing we know already that for some natural number p < r every unit of
0 a power of which belongs to the subgroup § = TU(0) x (€;) x - - - x (e, of the
unit group of O is contained in that-subgroup S. In other words €,, €,, . . ., €, are
known to be part of a system of fundamental units of 0. It is our task to find a
unit n of O a power of which belongs to S x <€p+1> such that even €,, €,, . . ., €y
n are part of a system of fundamental units. This implies of course that S x ep+1?
is a subgroup of finite index of § x (). Since we know from the general theory that
there is an 7, it is appropriate to employ the method expounded in Section 3 (Unit
Search II) in order to find it provided that we have an upper estimate for the index
ofo(epH)inSx(n). ‘

It remains to give an estimate of the form

(24) K=(Sx(M): (S x4 ))<T.

We denote by
RS, ..., 8,) = |det((8;Log)(8, Log)*l G k=1,2,...,0)

the mesh of the sublattice Z{_,Z5,Log of U(0)Log corresponding to ¢ independent
units §,, . .., 8, of U(0). By the second fundamental theorem of the geometry of
numbers

R(ey, -+ > €M = Ypuy vyl Wl =2 ¥4,

where v, vy, .. ., ¥, are successive minima of the lattice
p
L=(X ZeiLog) + ZnLog
i=1
and v, , is the Hermite constant indicating the critical mesh for Cartesian distance

in p + 1 dimensions.
Denoting by ¥y, v5, . . ., ¥, 4, a (p + 1)-tuple of successive minima of the

***An estimate (22) remains valid even for “2 < n because of the inequality I.N(e2 -1l
> 1 (see forthcoming paper by the authors).
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sublattice L' = 224! Ze;Log of L, it follows that |v;| < [vj| and either v; € L', [v;| >
g(u) or v; EL', ;| = Iv;| thus

R(ey, s €0 M) =7, W1 - Ijle)P* 17,

0 < Wyl < Wyl <+ - < Wil < g,

R(eys -1 €p¢p41) R(el,..,.,ep+l)
Reps -5 €M) vy Wyl jlg(up ¥’

K =

where the successive minima v}, ..., Iv]'-l may be calculated (or estimated from below)
by the methods of [5] or [8]. Note that j = 0 if 7 = 0!

The method given here works very well in all cases. However, it requires »
number geometric estimates, as indicated above.

We can reduce the number of estimates in case () is the maximal order of QQ and
a minimal splitting field £ of QQ over Q and its automorphism group G over Q are
known, say G is a permutation group of the algebraic conjugates of a primitive element
w of QO over 0, provided G is not doubly transitive. In that case we determine first
of all by the method of Section 3 the subgroup S of U(0) consisting of all units € of
0 for which some power €” with % divisible only by the prime divisors of |G||TU(0)|
belongs to TU(0) x (e;) x * - - x {¢,). Having done that, we may assume without loss
of generality that for every prime number p dividing the order of G or TU(0) the re-
lation

e ETU(Q) x(ep) x =+ x (e
always implies that
eETU0) x ey x- * + x (e,

Let G, be the stabilizer of w in G. Set §, = €,. Assuming that (after suitable re-

numbering of the ¢;’s (1 <i<7)) the units ¢,, . . . , €, have the property that €, ,
is independent of the finite set of units
U, {NE/QO OQ efjoll1 <i< 1<j<n}

foru=1,2,...,v,then we replace » by » + 1. After a finite number of steps, we
arrive at a subset {e;, ..., €,} of {¢;, ..., €} such that every unit of p is depen-
dent on U, but that €41 is independent of Uu foru=1,2,...,v—1.

It follows from the integral representation theory of G that for any prime number
p not dividing the order of G or of TU(Q), the relations

e? ETU0) x () x - -+ x (g, €€ UO0),

either imply that e itself belongs to TU(Q) x (e;) x * -+ x {g,), or else there is a unit
8 of U(0) that is not contained in (g;) x - - x {¢,) such that § belongs to {€;) x - *
x {€,).
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Applying the method given above, we obtain number geometric estimates of p
depending only on €,, . . ., €,.

Using these estimates, either we determine right away a system of fundamental
units as above, or else we first determine » fundamental units n,, . . . , m,, such that

§EEMY xMmy) x - x) (1<i<y)

and then extend TU(0), n,, . . . , m, to a generator set TU(0), n,, . . . , m, of the
group generated by U, and €, ,, . . ., €,. As the theory shows, the units n,, ...,
n, form the desired system of fundamental units.

S. Applications and Examples. To show the effectiveness of our method we
compute the fundamental units of all known totally real algebraic number fields F
with minimum discriminants, i.e. of the degrees n =2, ..., 7 ([4], [2]). At first
we determine independent units as described in Section 1. There is no difficulty in
writing a computer program for this procedure. In fact, most of the necessary compu-
tations are so simple that in case n = 2, 3, 4 we need not even use a computer.

In each case we obtain n — 1 independent units n,, . .., n,_,. Butit
is useful to carry on the procedure. Every time a new unit n will be found we exam-
ine whether it is already contained in the group generated by —1,7,,...,n,_,. If
not, we determine a new system of generators 1}, . . ., m,,_,, for which 1,7, ...
Np—1> W =¢1,7],...,n,_;) holds. If the system of generators does not change
any longer, we expect that we have already found 7 — 1 fundamental units. Then we
compute an upper bound for the index x of our system in a system of fundamental
units as shown in Section 4 or by using a lower bound for the regulator of F. For
all prime numbers p < x we try to solve the equation € = £P as described in Section
3. If there is no solution for the test units € generated by our system, we have deter-
mined a system of fundamental units.

n=2. (2) Let F = Q(/5). The elements o, =1, w, = (1 ++/5)/2 form an
integral basis, and the lattice point (0, 1) of the basic parallelotope 2IT(w, ¢, w,¢) is
already a fundamental unit of F.

(b) In F = Q(/5) things are slightly more complicated. We have w, =1, w,
= /6 as an integral basis, but the parallelotope 2M(w, t, w,yt) does not contain a unit
different from 1. To transform the parallelotope we choose an element w =a +
56 (@ b € Z) of F, for example w =1 + V6. Transforming the basic parallelotope
with this element w does not yield anything new. But after the transformation by
w?, w3 we find lattice points g, =2+ \/3 and 8, =3 + \/3 of norms -2, 3, re-
spectively. On the other hand 2I(w,t, w,t) contains \/g; and therefore, € =
B,8,/+/6 should be a unit, in our case it is even a fundamental unit.

Remark. It seems that transformations of the basic parallelotope by elements
w € F give better results (i.e. more new lattice points), if |[V(w)] is large.

n = 3. We determine a pair of fundamental units of F; = Q(B), where $ is a
root of the polynomial f(x) = x3 + x2 — 2x — 1 of discriminant d; =49. In this and
all following examples an integral basis w,, . . . , w, of the field F under considera-
tion is given by the successive powers 1,8, . . ., gL,
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The basic parallelotope 2I1(w,t, w,t, w4t) contains €, =B,e, =+ 1. These
two units are obviously independent. They already form a system of fundamental
units as is shown by an easy index computation.

n=4. We have F, = Q(B), p* + p3 - 3p> -8+ 1=0,d, = 725. The units
€, =B,e; =+ 1,e; =f— 1 are independent. By an index computation we find
that they are either fundamental units or that they are of index 2 in a system of
fundamental units. But the latter is shown to be impossible by considering the signs
of the pertinent conjugates.

n=S5. Fg = Q(),p a zero of x° +x4—4x3-3x2 +3x +1=0,d5 =
14641. By means of electronic computation we find four independent units

e =B +B-38-1, =6 e=p+1, ¢, =p*+ -1

They turn out to be fundamental units.
n==6. Fg=Q),pazeroof x¢ +x%—7x* - 2x3 + Tx2 + 2x - 1 = 0, d
=300 125. A system of fundamental units is given by

e, =B+ -6 +36-1, e, =p*+p3-66>-p+1,
e;=B+1, €, =8, e, =p—B +B+1

n=7. F,=Q(),Bazeroof x” +x%—6x5—5x* + 83 +5x2 -2x -1 =
0,d; =20 134 393. A system of fundamental units is given by

€, =% +2p5 - 5% —108° + 3% + 88 + 2,

e, =B° +p° —6p* — 5% + 867 + 58— 1,

e, =B +p* -S54 +38+1, e, =5
e = 4p° + B5 — 256% — 26% + 3562 - 36— 6,

€g = SB° — B5 — 368% + 883 + 6362 — 98— 12.
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