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Computation of the Solution of x’ + Dy’ = 1

By H. C. Williams and R. Holte

Abstract. A computer technique for finding integer solutions of
x3 +Dyd =1

is described, and a table of all integer solutions of this equation for all positive D <
50000 is presented. Some theoretic results which describe certain values of D for which

the equation has no nontrivial solution are also given.

1. Introduction. Let D be an integer which is not a perfect cube; let K =
OR/D), the field formed by adjoining ¥/D to the rationals Q; and let € (> 1) be the
fundamental unit of K. By a nontrivial solution of

) x>+ Dy’ =1,

we mean a pair of integers (e, f) such that e and f satisfy (1) and ef # 0. We say that
(1) is solved when we have either found all its nontrivial solutions or we have shown
that no nontrivial solutions of (1) exist. If (1) has a nontrivial solution, we say that D
is admissible; otherwise, we say that D is inadmissible.

It has long been known that the solution of (1) can be obtained from the follow-
ing theorem.

THEOREM (DELONE-NAGELL [6], [7]). The equation (1) has at most one non-
trivial solution. If (e, f) is such a solution, then e + f/D is either € or €2, the latter
case occurring only for D = 19, 20, 28.

By using this theorem, Williams and Zarnke [9] determined all nontrivial solutions
of (1) for all D such that 1 < D < 15000. The difficulty in using this theorem to solve
(1) lies in the fact that the calculation of e is frequently very difficult and time con-
suming. The best algorithm for computing €, which is currently available, still seems to
be that of Voronoi (see, for example, [4] and [2]); however, this algorithm is both
intricate and lengthy. For example, when D = 34607, the number of iterations re-
quired to find € is 66931 and e > 1032873,

There appear to be relatively few values of D which are admissible and, when a
value of D is admissible, the corresponding € is usually quite small. Consequently, the
best strategy for solving (1) would seem to consist of finding simpler techniques than
the calculation of e for determining when D is inadmissible. The purpose of this
paper is to develop some of these techniques. We also present an extended version of
the table in [9] for all D < 50000. Finally, some theorems are given which can be
used for showing that certain values of D are inadmissible.
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2. Some Criteria for Determining When D is Inadmissible. Since x3 + dldg y3
=x3 + d,(d,)?, we need only consider those values of D which have no perfect cube
divisor; hence, we assume that D = cd2, where ¢, d are square-free integers. We also
let D = 3'AB, where 0 < < 2, every prime divisor of 4 is congruent to =1 modulo 3,
and every prime divisor of B is congruent to +1 modulo 3. Cohn [3] has shown that,
if D#2,9, 17, 20, then D is inadmissible whenever B = 1. In what follows we will
assume that D # 2,9, 17, 20. The following simple result is also frequently useful.

THEOREM. If D = #4, £3 (mod 9) and B > 1, then D is inadmissible if no
factor (# 1) of B is of the form 1 + 9¢.

Proof. Suppose D is admissible and suppose (e, f) is the nontrivial solution of
(1). Since e3 + Df? =1ande® =0,1,-1,f3 =0, 1, -1 (mod 9), we must have
3|f Sincee? + e+ 120 (mod9)and (4, e +e+1) =1, we get e =1 (mod 9),

e +e+1=3Bg%

where B' > 1 and B' | B. It follows that B’ =1 (mod 9).

Let p be a primitive cube root of unity; let Q(p) be the field formed by adjoining
p to the rationals; let Q[p] be the ring of integers in Q(p); and let Z be the set of
rational integers. Put A = 1 — p and, if p (= 1 (mod 3)) is any rational prime, define
m, =a + bp, Ep =a + bp?, where 2 = -1 (mod 3), 3|b, and p = N(m,) = N(?rp) =
a* —ab+b% IfP=pp, - * pj, where p; (= 1 (mod 3)) is prime fori =1,2, ...,
J, we define I'(P) = {yly = m mymy + - - m, } where m; = My, O Epi; and if p, =p,,
then m, = m,. Thus, if there are / distinct prime factors of P, we have 2! elements in
r').

With these conventions we can now give the following four theorems.

THEOREM 1. Let D = AB # 1 (mod 9). If D is admissible, there must be a
unitary* factor B, of B such that B, > 1 and either

@) p2yr3 + B AP =)
or
3) yr? +3p°\B,4r* =1 (B, =1 (mod 9))

must have a solution where T € Q[pl, r € Z, B, = B/B,, and v € I'(B,).
THEOREM 2. Let D = AB = *1 (mod 9). If D is admissible, there must be a
unitary factor B, of B such that B, > 1 and either

4) oyr® + BlAr3 = A
or
) 3 +3p°\8,4r =1 (B, =1 (mod 9))

must have a solution, where T € Q[p], r € Z, B, = B/B,, and y € I'(B,).
THEOREM 3. Let D = 3AB. If D is admissible, there must be a unitary factor
B, of B such that B, > 1 and

*We say that m is a unitary factor of n if (m, m/n) = 1.
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©® yr3 + 9N\o2B,Ar3 = 1

must have a solution, where v € Q[p], r € Z, B, = B/B,, and vy € I'(B,).
THEOREM 4. Let D = 9AB. If D is admissible, there must be a unitary factor
B, of B such that B, > 1, B, #4 (mod 9), and

™ pyr® + p*MB P =1 (B, =7 (mod 9)),
®) P2y + p?MB,P =1 (B, =1 (mod 9))
or

) yr®> + p*MB;P =1 (B, =1 (mod 9)),

must have a solution, where v € Q[p], r € Z, B, = B/B,, and v € I'(B,).
Since the proofs of these four theorems are similar, we will prove Theorem 1 only.
Proof of Theorem 1. Suppose D is admissible and that (e, f) is the nontrivial
solution of (1). We divide the proof into two cases.
Case 1. 34f. Since D # +1 (mod 9) and 34f, we must have e = —1 (mod 3) and

e-1=B AP, & +e+1=8,,
where r, t € Z, BB, = B, (B, B,) = 1. Since D # 17, 20, we have B, > 1 (Ljunggren
[5D.
In Q(p),
(e — p)e - p*) = B,13;
and it follows that e — p = 73, where § = p/y for some y € I'(B,) and 7 € Q[p].
Since e = -1, y = £1, and 73 = £1 (mod 3), we must have j = 2. Since
e= BlAr3 +1 and e=p%yr3 + P,
we get (2).
Case 2. 3|f. In this case we have e = 1 (mod 9) and
e—1=9BAr*, & +e+1=3B,7.

It follows that e — p = p/Ayr3, where 7 € Q[p]. Since e =1 (mod 9) and yr3 = £1
(mod 3), we find that j = 0. It is now easy to deduce (3).
Let 7 be any prime of Q[p]; and define the cubic character of » € Q[p] by

[vIr] =1, p or p?
when
ANM-DB =1 5 or p2 (mod ),
respectively. Suppose, for example, that D = AB #*1 (mod 9). If D is admissible,

we must have some unitary factor B, of B such that B, > 1; and we must also have
some y € I'(B,) such that either (2) or (3) is solvable. If (2) is solvable,

Aoy
(10) W =1 for each prime g which divides 4,
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2 2

an [)\ﬂp'y] [)—\;—rﬁl] =1 for each rational prime p which divides B,,
p p

\2B,4
(12)[1r::|=1 fori:1,2,3,...,m,wherely=ﬂ1ﬂ2...ﬂm'
If (3) is solvable,
3) B, =1 (mod 9),
(14) ['ql] =1 for each prime g which divides 4,
(15) [l] = [—_7— = for each rational prime p which divides B,

Tp Tp

3p%\B, 4
(16) [_Tl__]=1 fori=1,2,3,...,m,wherey=mm, -7

-
1]
If, for every possible unitary divisor B, > 1 of B there does not exist a value for vy
such that either (10)—(12) or (13)—(16) are all true, then neither (2) nor (3) has a
solution; thus, D is inadmissible.
Similar results can also be obtained from Theorems 2, 3 and 4.

3. Computer Algorithms. In order to make use of the results described above,
we must have a method for evaluating [vIn]. To do this we use an algorithm analogous
to that of Jacobi for evaluating the Legendre Symbol. To evaluate[(4 + Bp)I(C + Dp)].
where A, B, C. D € Z and 34C, 3| D, we first find £ + Fp, where E = A — xC + yD,
F=B-yC—-xD +yD,

TABLE 1
D e f D e f
2 -1 1 422 -15 2
7 2 -1 511 8 -1
9 -2 1 513 -8 1
17 18 -7 614 17 -2
19 -8 3 635 361 -42
20 -19 7 651 -26 3
26 3 -1 728 9 -1
28 -3 1 730 -9 1
37 10 -3 813 28 -3
43 -7 2 999 10 -1
63 4 -1 1001 -10 1
65 -4 1 1330 11 -1
91 9 -2 1332 -11 1
124 5 -1 1521 -23 2
126 -5 1 1588 -35 3
182 -17 3 1657 -71 6
215 6 -1 1727 12 -1
217 -6 1 1729 -12 1
254 19 -3 1801 73 -6
342 7 -1 1876 37 -3
344 -7 1 1953 25 -2
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TABLE 1 (Continued)

D e £ D e f
2196 13 -1 17145 361 ~14
2198 -13 1 17575 26 -1
2743 14 -1 17577 -26 1
2745 -14 1 18745 1036 -39
3155 -44 3 18963 -80 3
3374 15 -1 19441 =242 9
3376 -15 1 19682 27 -1
3605 46 -3 19684 =27 1
3724 =31 2 19927 244 -9
3907 -63 4 20421 82 -3
4095 16 -1 20797 =55 2
4097 -16 1 21951 28 -1
4291 65 =4 21953 -28 1
4492 33 -2 23149 57 -2
4912 17 -1 24388 29 -1
4914 -17 1 24390 -29 1
5080 361 ~-21 26110 -89 3
5514 =53 3 26999 30 -1
5831 18 -1 27001 -30 1
5833 -18 1 27910 91 -3
6162 55 -3 29790 31 -1
6858 19 -1 29792 -31 1
6860 -19 1 31256 -63 2
7415 -39 2 32006 -127 4
7999 20 -1 32042 667 =21
8001 -20 1 32767 32 -1
8615 41 -2 32769 -32 1
8827 -62 3 33542 129 -4
9260 21 -1 34328 65 -2
9262 =21 1 34859 -98 3
9709 64 -3 35936 33 -1

10647 22 -1 35938 -33 1
10649 =22 1 37037 100 -3
12166 23 -1 39303 34 -1
12168 =23 1 39305 -34 1
12978 ~47 2 42874 35 -1
13256 -71 3 42876 =35 1
13538 =143 6 44739 -71 2
13823 24 -1 45372 =107 3
13825 -24 1 46011 =215 6
14114 145 -6 46655 36 -1
14408 73 -3 46657 -36 1
14706 49 -2 47307 217 -6
15253 -124 5. 47964 109 -3
15624 25 -1 48627 73 -2
15626 =25 1 48949 4097 -112
16003 126 -5
. _Ne<AC+BD—AD\ — Nof BE=4D )
cr-co+p* ) 7 c*-cp +D?)

and, by Ne(a) (« real), we denote the nearest rational integer to a.
If E =—F (mod 3), divide £ + Fp by 1 — p m times until

E+ Fp
1 -pym

=E’+I—7p,
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where E 2 —F (mod 3). This can be easily done by using the result that, if £ = —F +
30, then (£ + Fp)/(1 ~ p) = 20 - F + Qp.

If3| F,putn=0,G=E, H=F,

if 3|E,putn=1,G6=F-E H=-E;and

if 34EF, putn=2,G=-F, H=E-F.
We have

4+ Be] (2m+n)(C2—1)/3 nCD/3 [C + Dp]
C+ Dp G+ Hpl’

We now apply the algorithm again to [(C + Dp)I(G + Hp)]. Since N(G + Hp) <

N(C + Dp), we can repeat this process until we ultimately get a symbol of the form
[£1I(M + Np)] = 1. The accumulated power of p will give us the value of

[(4 + Bp)I(C + Dp)]. By using well-known results concerning the symbol [vi7] (see, for
example, Bachmann [1]), it is a simple matter to verify that if C + Dp is a prime in Q(p),
then this algorithm gives the cubic character of 4 + Bp modulo C + Dp.

A computer program was written, which used the results of Section 2 in conjunc-
tion with the above algorithm, in order to solve (1). For any given value of D = cd?,
the program first attempted to prove that D is inadmissible; if this failed, the program
used the algorithm of Voronoi to determine the fundamental unit

e=w+wD +wD)t (v wtEZ

of K, where u, v, w, t were calculated modulo a large prime R (see [9]). If either v or
w were zero modulo R, the program recalculated u, v, w, ¢ exacﬂy. If, at this stage,
the solution of either x3 + cd?y3 =1 or x3 + ¢2dy>® = 1 was discovered, the computer
printed the solution and the appropriate D value.

This program was run on all values of D of the form cd?, where ¢, d are square-
free, ¢ > d, and 15000 < D < 50000. Over 89% of the D values considered are in-
admissible by the criteria of Section 2 only. In Table 1 above we present all the non-
trivial solutions of (1) for every D such that 1 < D < 50000.

4. Some Theoretical Results. When B is a single prime or the square of a prime,
we can obtain some results concerning the inadmissibility of D which are similar to
results of Sylvester and Selmer (see Selmer [8, Chapter 9]) concerning x3 + y3 = Dz3.
In what follows we denote by p a rational prime of the form 3¢ + 1 and we denote by
(n1p); (n € Z), the least positive residue of n®=1/3 (mod p). Note that (n| p); =1
if and only if [n|r] = 1, where 7 = mM, or 1_rp.

THEOREM 5. If D = p*A (k = 1 or 2), D # %1 (mod 9), then D is inadmissible
if either

(q1p); #1 for some prime divisor q of A
or

p#l (mod9) and (3|p)3—1

THEOREM 6. If D = p*A (xk = 1 or 2), D = *1 (mod 9), then D is admissible if
either



784 H. C. WILLIAMS AND R. HOLTE

p#l (mod9), Blp)=1;
or

p#l (mod9), Bp);#1, (Fglp); #1
for some prime divisor q of A, where j = —«(p — 1)(q + 1)/9 (mod 3); or

P=1 (mod9), Blp);#1, (glp);#1

for some prime q | A.
THEOREM 7. If D = 3p*A (k = 1 or 2), then D is inadmissible if either

p#1 (mod?9);
or
p=1 (mod9), Blp); #1;
or
p=1 (mod9), (Blp);=1 and (qlp); #1

for some prime q | A.
THEOREM 8. If D =9p" A (k = 1 or 2), then D is inadmissible if

=4 (mod9);
or

p*=7 (mod9), A=+4 (mod9), (Blp); #1;
or

p*=7 (mod9), 4#4 (mod9), (3q!p); #1

for some prime of q| A, where j = —(q + 1)(44% — 1)/9 (mod 3).

Since the proofs of these theorems are similar, we give here the proof of Theorem
6 only.

Proof of Theorem 6. From Theorem 2 we see that if (1) has a nontrivial solution,
we must have either

(@) [A24ln] =1 and [p®A\?7*|q] = 1 for each prime g |4 or p =1 (mod 9) and

® [3p*M\In] =1 and [nlg] = 1 for each prime q | A4, where 7 = m, Or 'ﬁp.

If () is true, we see that

(2 ]- [ ]
q q ’

4] - x@?-1)/3
[7]=

for each prime g | A4, and it follows that [4|n] = p"(“‘z‘l)/ 3. Since p"A = %] (mod
9), we have (42 — 1)/3 = k(p — 1)/3 (mod 3) and [d|n] = p®~ /3, From the fact
that [\24ln] = 1, we get [3ln] = p®~1/3; hence [3/gln] = p*@+D/3+iP=1)/3,

consequently,
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If p #1 (mod 9), then D is inadmissible if (3|p); = 1 or if Bq| p); # 1 for some
prime g | A4 when j = —«x(p — 1)(g + 1)/9 (mod 3).

If (B) is true, we must have (p | q); = 1 for each prime g| 4. Thus, if p =1
(mod 9), 31p); # 1 and (p|q); # 1 for some prime g | A, then neither () nor (8)
is true.

With these results it is frequently possible to determine the inadmissibility of a
value of D of the form 3'p*A4 by using a table of indices only. For example, if D =
95545 =5-97 - 197, we have p =97 and p #1 (mod 9). Also 3|p); #1,e =0,
and (197197); # 1; hence, 95545 is inadmissible.
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