Some New Primes of the Form $k \cdot 2^n + 1$

By G. Matthew and H. C. Williams

Abstract. All primes of the form $k \cdot 2^n + 1$, k odd, for $9 \le k \le 99$, $512 \le n \le 1000$ and for $101 \le k \le 129$, $1 \le n \le 1000$ are determined and factors are found for the Fermat numbers F_{744} and F_{556} .

Recently Hallyburton and Brillhart [1] found, by means of a computer search, a new factor of each of the Fermat numbers F_{12} and F_{13} . In this note we present two new factors of Fermat numbers which were found by using the method of Robinson [2]. In [2] Robinson tabulated all primes of the form $k \cdot 2^n + 1$ for k = 3,7, $1 \le n \le 1279$, for k = 5, $1 \le n \le 2004$, and for odd k such that $9 \le k \le 99$, $1 \le n \le 511$. In this note we extend his table to include all primes of the form $k \cdot 2^n + 1$ for $9 \le k \le 129$, $1 \le n \le 1000$. These results are presented in Tables 1 and 2.

TABLE 1
Primes of the form $k \cdot 2^n + 1$, k odd, for $9 \le k \le 99$, $512 \le n \le 1000$

k	values of n	k	values of n
9	663, 782	63	626, 693, 741, 768
13	1000	65	553
15	517, 522, 654, 900	67	598, 726, 870
17	747	69	515, 842
21	899	71	705
23	649	75	675, 831, 984
25	554, 664, 740, 748	77	559, 655, 667
33	525, 726, 828	79	538, 970
35	663	81	539, 577, 592, 711, 809, 852
37	712	85	624
39	518, 818, 865	87	518, 602
43	778	89	589, 711
45	801	91	696
47	583	93	686
4 9	594	95	533, 621, 661, 753, 993
51	695, 825	97	652, 722
53	857	99	631, 894
57	719		

Received December 20, 1976.

AMS (MOS) subject classifications (1970). Primary 10-04, 10A25, 10A40.

Table 2 Primes of the form $k \cdot 2^n + 1$, k odd, for $101 \le k \le 129$, $1 \le n \le 1000$

k	values of n	
101	3, 9, 17, 21, 27, 39, 45, 47, 71, 95, 117, 123, 143, 173, 387, 389, 513, 633,	
	827, 971	
103	16, 18, 30, 40, 58, 138, 250, 616, 622, 736	
105	1, 2, 5, 7, 8, 12, 14, 23, 27, 33, 38, 49, 61, 62, 85, 93, 94, 107, 155, 182,	
	215, 273, 382, 392, 413, 434, 490	
107	3, 7, 23, 27, 291, 303, 311, 479, 567	
109	6, 14, 58, 62, 318	
111	1, 4, 28, 32, 44, 47, 71, 128, 137, 193, 676	
113	1, 5, 13, 33, 145, 365, 409, 509, 553, 673, 733, 961	
115	2, 12, 20, 26, 42, 114, 228, 396, 456, 482	
117	3, 4, 6, 10, 16, 30, 36, 91, 94, 156, 382, 454, 643, 867	
119	1, 3, 7, 13, 21, 23, 45, 63, 553	
121	8, 12, 44, 84, 96, 228, 264, 320, 732, 788	
123	6, 8, 17, 21, 29, 32, 46, 57, 69, 128, 141, 268, 333, 476, 742, 832	
125	1, 5, 7, 17, 25, 35, 67, 281, 331, 491, 581, 941	
127	2, 12, 18, 24, 54, 72, 114, 180, 214, 504, 558, 964	
129	3, 5, 21, 27, 59, 75, 111, 287, 414, 786, 966	

Each of the new primes found was tested as a possible divisor of a Fermat number and only the two following factors were found:

$$17 \cdot 2^{747} + 1 \mid F_{744}, \quad 127 \cdot 2^{558} + 1 \mid F_{556}.$$

Department of Computer Science University of Manitoba Winnipeg, Manitoba R3T 2N2, Canada

- 1. JOHN C. HALLYBURTON, JR. & JOHN BRILLHART, "Two new factors of Fermat numbers," Math. Comp., v. 29, 1975, pp. 109-112. MR 51 # 5460.
- 2. RAPHAEL M. ROBINSON, "A report on primes of the form $k \cdot 2^n + 1$ and on factors of Fermat numbers," *Proc. Amer. Math. Soc.*, v. 9, 1958, pp. 673-681. MR 20 # 3097.