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A Numerical Conception of Entropy
for Quasi-Linear Equations

By A. Y. Le Roux

Abstract. A family of difference schemes solving the Cauchy problem for quasi-linear
equations is studied. This family contains well-known schemes such as the decentered,
Lax, Godounov or Lax-Wendroff schemes. Two conditions are given, the first assures the
convergence to a weak solution and the second, more restrictive, implies the convergence
to the solution in Kruzkov’s sense, which satisfies an entropy condition that guarantees

uniqueness. Some counterexamples are proposed to show the necessity of such conditions.

The purpose of this study is the numerical solution of the Cauchy problem
) u, +fw), =0 if(x,HERx]0,TI[,

?) u(x,0) = uy(x) if x ER,

where u, € L™ (R), with locally bounded variation on R, f € C'(R),and T > 0 are
given. Section 1 recalls some theoretical results of existence and mainly of uniqueness
for problem (1), (2), more particularly Oleinik’s and Kruzkov’s results.

Section 2 is devoted to proofs of convergence for a family of numerical schemes;
then Section 3 deals with various applications concerning some well-known numerical
schemes (Lax, Godounov, Lax-Wendroff schemes, decentered scheme).

1. Since f is nonlinear, a classical solution u of (1), (2) may offer singularities
after some value of ¢, even when u,, is very regular. With a more general definition of
the solution, we can extend u beyond this value of . The notion of a weak solution
represents one of these generalizations, but does not assure the uniqueness of the ex-
tension. These singularities of the solution make needless any hypothesis of regularity
on the initial value u.

DEFINITION 1. u is a weak solution of (1), (2) when u € L™ (R x 10, T[), and

©) fka] o,71 {®t + &, f(W)} dx dr + fR ®(x, 0)uy(x)dx = 0,
for all functions ¢ twice continuously differentiable and with compact support on
R x ]0,T[ (¢ € C3(R x 10, T])).

By multiplying (1) by ¢ and integrating by parts, we obtain (3). The existence
of a weak solution can be proved by the vanishing viscosity method (parameter € > 0)
from a quasi-lihear problem of parabolic type

(W), + f(u), =€)y, if (x,2) ER x 10, T,
u(x, 0) = uy(x) if x €R.
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In the case of the Burgers equation, i.e. when f(u) = u?/2, the Cauchy problem
(1), (2) describes the unidimensional flow of a perfect compressible fluid. The dis-
continuities of the solution correspond to pure shock waves. The introduction of a
second member in (4) is equivalent to a little viscosity, which has a regularizing effect
on the flow by changing shocks into regions of strong gradient and small thickness.
We obtain the flow of a perfect fluid by making the viscosity vanishing. This parabolic
regularization method can also be applied to the general case where f € C'(R). From
a theoretical point of view, the existence of a weak solution of (1), (2) is shown by a
compactness argument in LIIOC(R x 10, T[) on the family {u }.~ , of solutions of
(4), (2) (see Kruzkov [4] and Oleinik [9]).

Since f is nonlinear, uniqueness of weak solutions for (1), (2) is not true. As
soon as discontinuities appear, we may sometimes build several different weak solu-
tions, satisfying the same problem (1), (2).

In order to select the weak solution, the existence of which is established by
the vanishing viscosity method, we have to impose a specific additional condition, the
entropy condition, so called because of the previous physical analogy.

If u is a weak solution of (1), (2), piecewise continuously differentiable on R x
[0, T'[, and with piecewise regular discontinuity lines, then u satisfies the two follow-
ing properties:

(i) inside domains bounded by discontinuity lines, u is the solution of (1), (2)
in the classical sense;

(i) each discontinuity line satisfies the Rankine-Hugoniot jump equation, bind-
ing its velocity s and the intensity of the shock,

(%) s(u2 —u1)=f(u2)—f(u1),

where u, and u, represent the values of u on each side of discontinuity.

Conversely, if u satisfies (2), (i) and (ii), then u is a weak solution of (1), (2)
(see Oleinik [9]). This characterization enables us to build examples of weak solu-
tions thus, nonuniqueness can be verified and the entropy condition justified.

We shall now give three examples of weak solutions.

Example 1. Burgers Equation with a Rarefaction Wave. Let a € [0, 1]; the
problem

u, +uu, =0
1 ifx>0,
u(x, 0) = sg(x) = 0 ifx=0,
-1 ifx <0,

admits the weak solution

1 if x > ¢,

x/t ifar<x<t,
if 0 <x < at,

—u,(—x,1 ifx<0.

u,(x, )=
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uy(x, t)

a

y —Q

The physically right solution corresponds to a = 0; it is continuous and shows
the dissipation of a rarefaction wave in the time.

Example 2. Burgers Equation With a Compression Wave. Let a > 1; the prob-
lem

u, + uu, =0,
{u(x, 0) = —sg(x),
admits the weak solution
1 if x <-ft,

-a if-Bt<x<0,

if 0 <x <Bt,
-1 if gr <x,

uy(x, )=

where 8 = (a — 1)/2.
u,(x, 1)
E s |

1

|

| —a

The physically right solution corresponds to a = 1. In this case, the rarefaction
wave is eliminated so we now have a single discontinuity.
Example 3. A Nonconvex Problem. The problem
3ut + %Bu? - Du, =0,

u(x, 0) = sg(x),
flw)

/.
P —
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admits the two weak solutions

uy(x, 1) = sg(x)

and +1 if x > 1t,
Uuy(x, 1) = \/2%1 if £ >x>-1/8,
-1 if x <-1¢/8.
Now we have f(u) = u(u? — 1)/2.
1 ‘u,(x, t) ) uy(x, t)

o

=
- | -

o

~

=

|~ 1 -1

Each of the three examples proves the nonuniqueness of weak solutions. In the
case of the Burgers equation, eliminating rarefaction waves characterizes the physically
right solution. That is the same as avoiding shocks with decreasing entropy. When f
is strictly convex, this entropy condition may be written

6) VY, ) €ER x ]0,T[, ulx—0,8)=2u(x+0,71).

In [10], Oleinik proposes a generalization of this entropy condition when f is
not assumed to be convex, and then obtains uniqueness. If we put u, =u(x + 0, t),
u_=u(x —0,1t), at a point (x, ¢) of a discontinuity line of the weak solution u, the
entropy condition can be written

fluy) =) - fluy) = 1K)

=
U, —u_ u, -k

(7 Vvke]|Inf(u_,u,), Sup(u_,u,)|,

>

which is equivalent to

fluy) =) - fl) =7

(8) VKkE]Inf(u_,u,), Sup(u_, uy)l, IR

In Example 3, the weak solution u, satisfies this entropy condition.

Geometrically, the entropy condition indicates on which side of the straight line
from (u_, f(u_)) to (u, f(u,)) the graph of f must be entirely located on the interval
bounded by u_ and u_ and denoted by I = [Inf(u_, u_), Sup(u_, u,)]. If s is the
shock velocity, then we deduce from (5), (7) and (8)

fl) =) fu) - f(k) }]

u, —k °  u_-k

kET

©) [s| = Sup [Max;

Equation (9) gives the module of the physically right shock velocity in
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relation to its intensity. For a given intensity, the entropy condition selects the shock
for which the velocity module is maximal.

flw)

Hopf [3] and KruZkov [4] have proposed a definition of weak solution implicit-
ly containing the entropy condition by starting from (4) rather than from (1), which
will now be briefly recalled. Let & € C!(R) be nondecreasing. We build two differ-
entiable functions 7 and F such that I'(u) = h(u), F'(u) = h(u)f'(u). By multiplying
(4) by h(u), we get

Iue), + £, = Hug)y, — eh'(u) ()]

Let ¢ € Cg(R x ]0, ¢[) be nonnegative. Multiplying by ¢ and integrating by
parts on R x ]0, T'[ gives

-[fRX]O,T[ {¢,I(u,) + ¢ F(u,)} dx dt
(10)

= eIfo] 0’T[quxl(ue)dx dt + e ffo]o,T[h'(”e)u§x¢dx dr.

The family {u_},- , which is compact in LIIOC(R x 10, T[) (see [4]), contains
a convergent sequence towards u € L”(R x 10, T'[). Since the last term of (10) is
nonnegative, we get at the limit

an ffRX,o,T[(qb,!(u) + ¢, F(u))dx dt > 0.

With proper choices of #, the Rankine-Hugoniot equation (5) and Oleinik’s
condition of entropy (7) can be deduced from (11) (see [3]). Now, by means of a den-
sity argument, (11) holds for all nondecreasing functions.

Let k € R; by taking h(u) = sg(u — k), we obtain Kruzkov’s formulation

02 [faeyon e~ klb, + slu ~ D7) ~ F), ] dx dr >0,

from which we can still deduce (5) and (7), with proper choices of k.

Now, we only have to specify the initial value of u, in order to define the solu-
tion in Kruzkov’s sense.

DEFINITION 2. A solution of (1), (2) in KruZkov's sense is a function u €
L”(R x 0, T|) verifying:

(i) (12) for all k € R and all functions ¢ € Cg(R x 10, T|) nonnegative,

(ii) for all R > 0, for a negligible set E C 10, T
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=0.
(13) t_)lérl:%E fl (< lux, ) = ug(x)l dx

In [4], Kruzkov proves existence and uniqueness of such a solution with only
the hypotheses u, € L(R), f € C'(R). Definition 2 can be extended to more gen-
eral equations than (1), for example,

(14) u, + flu, x, N, +gux,1)=0

and multidimensional problems (see [4])
p
(15) u, + 3 f].(u, x, 0x; + glu, x, ) =0 if (x, ) ERP x 10, T|.
j=1

2. This section deals with the numerical approximation of the solution in
Kruzkov’s sense or of a weak solution of (1), (2), by a family of finite difference
schemes. As in Conway and Smoller [1], by using the locally bounded variation of
u, and a result of compactness, we can prove the convergence (of a subsequence) to
a weak solution. By imposing an additional condition, we verify that the weak solu-
tion obtained at the limit is the solution in Kruzkov’s sense and using a counterex-
ample, we see that such a condition is necessary.

Let 2 > 0 be the mesh size in space; 4 is destined to tend to zero and we may
suppose it to be bounded (2 < k). The mesh size in time is Az = gh where q is a
constant positive coefficient. R is divided into an infinity of intervals of length h,

= [(i — ¥h, (i +%)h], fori € Z.

Let N be the integer part of T/At, the interval [0, T[ is covered by N + 2 dis-
jointed intervals J = [0, At/2[,J, = [(n — %)At, (n + %)At[, withn€E{l,. ..,

N + 1}. The initial condition u, € L™ (R) is supposed to be of locally bounded vari-
ation on R, and therefore verifies, for all real §,

(16) VR =0, flxl<R lug(x +8) —uy(x)ldx < CR)ISI,

where C is an increasing function on [0, =[, independent of 8. u, is approached on
each interval /; by the constant

17) ul = }1; fliuo(x) dx.

The approximate solution u,, is now defined on R x 0, T'[ by u,(x, t) = u}
if (x, £) €1; x J,, with the help of a finite difference scheme of the form

ntl _ z+1/2 w Y12 .,
(18) ui™ " =uf -1 [f(”1+1) f@l Dl +—— l+l—ui)——2_(ui —uly),
with i € Z, n < N, and where the coefficients a?H /2 are introduced so that they
locally bound the influence of viscosity, and a priori depend on ' and u}, ;. How-
ever, we must specify that the stability and convergence of the scheme depend on
the choice of ', | ,. The last two terms of (18) locally contribute to “numerical
viscosity” of parameter a”
member of (4).

t+1/2 on{; xJ, which should be compared to the second
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Fori€Z,n€{0, ..., N}, we define the closed interval
(19) l—‘?-l-1/2 = [Inf( u?’ u?-;_l), SUP(“?, u?—(—])] 5

and since f € C'(R), there exists Elv1/2 € Ti4 12 such that

(20) fal, ) - fud) =&, 12) Wi —uf).
The following theorem states a first result of convergence.

THEOREM 1. If the stability condition of Courant-Friedrichs-Lewy

a- _Sup  ®I<I
(21) E1<H0 1) e

is verified, and if for all h > 0, the choice of coefficients a}, | /2 is such that

(22) VieZ Nn<N, q - If (& ) <l <1,

then the family {u,}, , contains a convergent sequence in Lll0 (R x]0,T)toa
weak solution of (1), (2).

Proof. We establish the same estimates as Conway and Smoller [1].

(a) Conservation of Stability. letn €{0, ..., N};if Sup]-ezlu]'-'l < Iuole(R),
we prove that
(23) Viez, Inf?,, u?,u?, ) <upt! <Sup(@f},, ul,u},,).

By introducing (29) into (18), it follows that

wp =l @y —u) @ —af (41 )2
(24)
+ i, —u) g, /2 + Qf,(g?—l/z))/z,

where from (21) and (22)

(25) V] €Z, 0< (a;l-(-]/z + Qfl(s;'l.'.l/z))/z <1

Let i € Z. There are six cases corresponding to the different possibilities; we
have to classify u}, |, u} and 4 | in decreasing order.

Case 1. If ul, | =>ul > u} |, we have from (24) and (25),

+1
uf <“?+(”?+1_u?)’1+(“?—1_”?)'0=u?+1’

+1
wiTh Zul iy —uf) 0+ Wy —uf) -1 =ui,

and (23) is proved in this case.
Case 2. Ifu}, | > u}l | > ul, there exists a real £ between u? | and ul, |,
such that

(26) f(u?-(- 1) - f(u?—l) = f’(Ef’) (u?.“ - u;"—l ),

which allows us to give (18) the form
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uptl = ug @y, + af' ENI2 +uf (1 - ("?+1/2 +ail,22)
(27)

tui @y, af' /2.
From (22) the coefficient of u} is nonnegative, and since u] <ul |, we get
u;H-l < u?—l [1- (a,"'+1/2 - Qfl(éln))/zl + u,r'l.;. 1(‘1,"’4.1/2 - Qfl(éln))/z

In the same way, from (21) and (22), the coefficient of 4 ;| is nonnegative and
ut | <u?_,. It follows that u? *! <u?_,. We also have from (24), (25),

+1
ulmhZul iy —ul) 0+ @l —ul) -0 =ulf;
thus (23) is proved.
Each of the four remaining cases may be treated as one of these two cases.

(b) Conservation of Bounded Variation. let n <N and I € N; writing (24)
fori€{-I, ..., I}and for i + 1, and subtracting, we get

up —uptt =y, - Uiy )@y 3~ Qf’(5?+3/2))/2 + iy, —u) (= diy2)

@ —up )@, t+ qf’(S?_l,z))/Z.

All the coefficients are nonnegative; we take absolute values, sum for i € {—1,
..., It and group terms. It follows that

n+l1 _ n+1
> iy —ui T
lil<I

<X Wy Wl =y + @y~ Ely ) +afy A Gy 22
lil<I

n —_ N n _ ,n
Flugyy —upg I+ W Ul
from which we deduce the conservation of bounded variation in space

+1 +1 n _ . n
(28) 2 —upt < )> iy —uil
11594 li|l<I+1

Forie{-1I ..., I}, (24) can be written

u;z+ V—ult =@l —u) @}, 12~ af (&}, 1/2))/2

+ @y —u)) @y +af )2

where the coefficients are nonnegative.
It follows that

l'IZ<I|u?+1 —ufl < IEI Wiy~ ut @y n) —af El g ) F @y T Al Gy )2
1 s

+lu_y—u_p I
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From (22), al'.‘H/2 < 1 for each i; therefore

@29 |z'|:<flu?+l mHls |i|<§+1lu?+l B
(c) Convergence. Let h >0, n <N; if Sup;c,luf| < Iuole(R), we have from
(23),
,Seug 2t < tS:g 'l < ol s
Now from (17), Suplezlu | < IuolL =(R)’ ; therefore step by step
(30) Iu"IL“’(Rx]o,T[) < Sup ufl < luOIL'”(R);

i,n
and thus, the family {u,} contains a subsequence {u__ } weakly-star convergent to a
function u € L”(R x ]0, T[), bounded by Iuole

Let v, be the interpolate of degree one of u,, at the vertices of each rectangle
[ih, G + 1)h] x [ngh, (n + 1)qh]; v, is continuous, uniformly bounded by |u|

L”(R)
in A, and differentiable inside each rectangle, where it is given by

e, 1) =+ @y —u) I+ G -
(31
1 —ih t— nqh
@ et gy n) A ah

Let R > 0; we denote by I, the smallest integer such that
Qp =1-R, R[ x10, T[C{(x, DIx, D EL; x J, = lil + n <I,}.

This choice implies that AI, — R + T/q, and remains uniformly bounded (h/, <R).
Thus, we obtain, successively

ff Ivh [ axdt < Z > Wt —ullh from (31),
n=0 liISIy—n-1

< Z >l , —ullh  from (29) and (28) n times,
n=0 liI<I,

SW+1) T [ gl + ) ~up)idx from (17),
lt|<lh

< (hy + T/g)CR,) from (16) with § = h.

In the same way:

N+1
o onsl @t <T T by ufigh <Qaho + TIAR).
n=0 lil<I,—n
By putting M = luolL =(R) + (2hy + T[q)C(R,)(1 + q) (independent of h), it fol-
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lows that

(32) v, | | | <M.

L= )"' Ivh,xLl(Q )+ h’h,tLl(Q )
Therefore, from {Uh;‘n} associated to {u,« }, we can extract a subsequence {vh ® }
convergent in L1(Qy), (see [1]), from which, with the same argument, we can once
more extract a subsequence {Uhm,R+ l} convergent in L' (Qg 1) Step by step,
from {vhm,R +j—1} we extract {v"m,R+j} convergent in L' (Qy j)- By the diagonal
process, which consists in keeping only index 4, = M R +m> at last we extract
subsequence {v,} convergent in L (R x 10, T[). Since {uhm}C{uh;",,} which
weakly star converges to « € L*(R x ]0, T[) and by using (28) and (29), as previ-
ously, we verify that {uhm - vhm} tends to zero in L'(), for all bounded open sets
QCR x]0,TJ.

Since Up,, converges in L!

loc

(R x ]0, T[), finally we have

loc

L} (Rx]o0.T)
(33) U, ——IL———HJEL‘”(RX]O,T[).

m

(d) The limit is a weak solution of (1), (2). Since u € L”(R x ]0, T[), now
we have to verify (3). Let ¢ € Cg(R x [0, T[); we multiply (18) by ¢ = ¢(ih, nqh)
and by h, then we sum for n < N and i € Z (actually |i| <1, since ¢ has a compact

support).
Since
NELo g - A
Z(u"“—u")qﬁ”——z —q‘—— qh—u? ¢,
by introducing d)ﬁv *1 =0and treating the other terms in the same way, we get
N+1 o — g1 ¢’.’
Z Z“ln i i qh2 + Z Zf(un) ""1 i qh2 + Zu%oh
n=1 ez qh n=0icZ iz
(34) n n
1 X i1 — 0,
ZZ Z 2 +1/2(“z+1_“?) h qh”.
n=0 Ii€Z

The first member of (34) tends to the first member of (3), when & € {h,,}
tends to zero, since the strong convergence allows us to treat the second nonlinear
term (see Oleinik [9]). The second member tends to zero; let R € R such that
Support(¢) C [-R, R], then kI <R, and

Z Z un) 1+1 ¢z qh2 <§ n _unlai5 2
n=0 i€z +1/2 n=0 lil<I 1 ! awa(RXIO,T[)qh
<2l ) Tl -ufigr from(29),
liI<I+N
<[%¢ LT+ aho)CR +T/q)]h from (17) and (16).
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Thus {uhm} converges in L} (R x 10, T[) to a weak solution of (1), (2), and Theo-
rem 1 is proved.

In order to assure that the limit u is the solution in Kruzkov’s sense of (1), (2),
we must furthermore restrict the choice of coefficients {a}, | /2}, as the following
counterexample shows. By numerically solving Example 3 with a scheme of the
form (18), where the choice of coefficients verifies

(%) Vn<NVIEZ dyy ) =alf @)l

the family {u,} converges to the weak solution u,, which does not satisfy the entropy
condition (7). Indeed, from (17), the discrete initial condition is u? = sg(i), and thus
f@?) is zero for all i € Z. We have a?+1/2(u?+1— u?) = 0, and thus the scheme is
reduced to u! = u?, and step by step u? *! = u? =+ - - =u?. Obviously,

e, <Th forall R >0,

—u, IL 1 (2R)
and {u,} converges in Llloc(R x ]0, T[) to u, which differs from the solution in
KruZkov’s sense, u,.

Let us note that if (35) is only verified for i = —1 and i/ = 0, then we get the
same conclusions. By solving Example 1 with the numerical initial condition u; =
—1ifi<0,and 1 if i > 1, which is the same as replacing (17) by

up = (uwy [ o) ax,

we have convergence to u,, which does not satisfy (7).
By introducing, for all i € Z and n < N, the quantity

lfl(é;l-;.l/z)l if u;'_'_l = u;',
el fa)- 0 fep-re)y|
keigp Max un+1 -k ’ u —k if Uit1 * ui ’
i+1/2 i i

we get a result of convergence to the solution in Kruzkov’s sense of (1), (2).
THEOREM 2. If the stability condition of Courant-Friedrichs-Lewy (21) is verified,
and if for all h > 0, the choice of coefficients {a, | /2} is such that

(37 VieZ,Nn<N, g}y 2 <@}y <1,

then the family {u,} converges in Ll‘0 (R x 10, T|) to the solution in KruZkov's
sense of (1), (2).

Proof. leti € Z, n < N; by successively taking k = 4} and k = u}, , in (36),
we verify that q[f'(f,f'ﬂ/z)l < qsi4 172 S 1, so that the choice of iy o is always
possible and Theorem 1 can be used. Therefore, {u,} contains a sequence {uhm}
convergent in L] (R x ]0, T[) to a weak solution u of (1), (2). If u satisfies Defini-
tion 2, then the uniqueness of the solution in Kruzkov’s sense implies the convergence
of the whole family {u,}.
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(a) Verification of (). Let k € R, h >0,i € Z, n < N; we first prove

W+ = k| < Wl — k|

(39) ~ 006, ) ~ FO seey = R) = [FG )~ f(R)] 8y = R))
+M(lu?’+1 —kl -l —kD)——— s 1/2 (I — kI — iy — k),

2

case by case and using k] defined by
(39) Vi€z, 3K € [Inf?, k), Sup@, O],  f@]) = (k) = F&D @7 =~ k).
Case 0. k > Sup{u?,, u?, u?y Yor k <Inf{ul,, uf, uf,,}. We have from
(18)
Wit =k =l — k=4 (06, )~ 10) =~ (FE,) ~ 1)

a4 1/2

At - -0 - B 60 - -0,

and we multiply by s = sg(u?* ! - k) (= sg(ul_, —k) = sg(u;’ - k) = sg(ul, ; —k)), from
(23).

Case 1. ull |, >k>ul >ul | orul,, <k <u} <u} . We subtract k
from each member of (18), and we put u?, , —ul = u},, — k) — (@} — k). From
(39),

) = F6 )= FEE ) @y =0 = PR @R =R + FE 1) 6 =~ uly),

Thus we have

ultl — k=@l @y —af KL N2+ @] - A+ (@ (k) ~ aly 1 )]2)
+ @y —up) @y, +af Gy )2

From (22), (36) and (37), since k € I}, | /29 coefficients are nonnegative; therefore

P Sl K@ gy — af KR )2+ ) = KL+ @ R~y 0)]2)

+ jul - u;’_ll(a;'_ll2 + qf'(g;'_l/z))/z.

We now group terms; since Vj € Z, uf — k[f'(k}') = (f}) — f(k)sg(u] — k), it
follows that

=k <l = = L@ )~ ONsey y — ) — () = g — B)]

taiy g (i — k= luf = kD2 + i —ul @ 12t qf' (gL 17202
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But sg(u} — k) = sg(u}_; — k) = sg(uj’, — u}), therefore
@yl —ul I =a il —k k- up)sg(uiy —uj)
=— 07_1/2(|u,"' -kl — W}, — kD,
and
b7 =y L ) = () = PO s = B) = £y — FRIsgCu, — KN

Thus, we obtain (38).
Case 2. ul, | >u} >k>ul | oru} , <ul <k<ul ,. We have the same
kind of argument as previously. We write this time

f(u;’-'- 1) ‘f(u?—l) =f,(‘§,r"+1/2)(u:"+1 - uln) +f,(k:’)(u1n - k) _f’(k?—l)(u?—l - k),
and ui —u} | = (u] — k) — (u}_, — k); then (18) is changed into

u:”-H —k= (u?-;.] - u?)(“?}.]/: - Qf'(2?+ 1/2))/2 + (u:’ -bQ - (a,r"—l/z + Qf’(k?))/z)

L, — k)@, +af (KZ))2,

where all the coefficients are nonnegative from (21), (22), (36) and (37), because k €
'Y 12~ Taking absolute values and observing that sg(u}, | —u]') = sg(u; — k) =
sg(ui,, — k), we get

TR CPR T G RYY)
=iy p(ufy = kI = I} — k)
- (@}, ) - fR)sguyy  — k) + q(F ) - f(K))sglu} — k).
From that we deduce (38).
Case 3. uf, , >k>ul | >u}orul, , <k<up, <uj. Since
f@fy ) — @l ) = fly ) - f) - (i) - (k)
= fl(k?-'- 1)(“?4.1 -k —f'(k?-l)(u?_l - k),

we obtain from (18)

W - k=ul k=L DG, - B - PR @, - R

1]
gy (@, — k) — @] — k)2 —aly (@] k)~ (u —K)/2.
By grouping terms, it follows that

urtl —k =@, — @, +af K2

(40)
t @ A =@y Tl )2 @y — K@y~ af (R ))2
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Since u} —k =ul —ul | +u}, —k, we obtain
u?“—k=(u:'_1—k)( ’”2 +4r) )

+ W} - up ) - (”?+1/2 + a?—l/2)/2) + iy, — k)(”?+1/2 —af' (k. )2,

where, from (21), (36), (37) (k € T}, , /2)» coefficients are nonnegative. Taking ab-

solute values and noting that [ —uf || = W} — k| — lu} | — kl, we obtain
fuu g < Iu?_l - kl(a?_1/2 + Qf'(k?—1))/2
(1) + o - kI = (@ p Falg2))2)

iy k@ af (k. )2

If we group terms inversely to (40}, we recognize (38) exactly.

Case 4. u}, , >ul | >k>ujorup,, < u? | <k <ujl. As before, we
change (18) into (40), where all the coefficients are nonnegative, since kK € I, ; , N
T2 1/, Therefore, we get (41) directly, ie. (38).

Case 5. u?? >k>ul | >ull  orul <k<ul , <ul . Asin Case 4, we
change (18) into (40) where coefﬁc1ents are nonnegative, since k € I, ; , N I, j25
from that, we deduce (41) directly, i.e. (38).

Case 6. ul >ul’ | >k>u}l  oru} < ul"+1 <k <ul,. (18) is changed into
(40), where we put ul —k =ul —u? , +u}, , — k. It follows that

up ¥t —k =, @l el KL N2+ @]l VA =@y tdl0)]2)

2
+ Wiy, — k) < t+21/ qf(k:+1 >

where coefficients are nonnegative. We take absolute values, and noting that Iu;' -
u? | =l — k|- W}, — ki, we find again (41), hence (38).
Case7 uly, >k>ul =ul | oru}, <k<ui =ul,. Wehave from (18)

u;""l -k = (U,n -kQ _(0?4-1/2 Qf(k )2)

+ Uiy, k(@ 1/2 = af (ki 1 )12,

where coefficients are nonnegative. We take absolute values, we group by using u] =
u? , and (39) and we get (38).

Case 8. u? , =uf >k>u} or u:'H =ul! <k <u} . The same argument
as before applies, but we exchange parts of u] ; and u}, ,.

Case 9. ul | =ul; >k>ul oru} , =ul, <k <uj. The same argument
as in Cases 4 and 5 applies, where sg(u', ; — u}_) has not been used.

After these ten cases, (38) is verified for all k & {ul |, u}, u?, ,}. Since (38)
is made up of continuous functions in the variable k, it is verified for all real k, and
thus (38) is proved.
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Let ¢ € C2(R x 10, T[) be nonnegative; we multiply (38) by h and ¢} =
®(ih, ngh), which keeps inequality. Then, we sum for i € Z (actually || <1, if we
consider the support of ¢) and with the same process as in the proof of Theorem 1
(part (d)) we obtain a formulation similar to (34)

Nl n=t§ ¢"—¢‘ x+1 ¢:’_
2~k g s - RBE) - f (k)) 5 (4"’
n=1 i€z q
(42)
N 1 = O
>3 5 B, -h- g -k 2 e,
n=1 li|<I

Now |t — k| and sg(u — k) (f(u) — f(k)) are Lipschitz continuous functions of u;
if we only consider the terms of the sequence {uh } convergent in Llo (R x 10, TD
to u, the first member of (42) converges to the ﬁrst member of (12). The second
member tends to zero so we can estimate it by the second member of (34), since
llufy, — kI — P — k|| < P, —u?l. Thus, we obtain (12) and u verifies (i).

‘(b) Verification of (ii). Let R > 0; the sequence {uy,, } converges in L'(2%)
to u; and therefore,we can extract a subsequence{uh;n} convergent to u, almost
everywhere on 5. According to the Fubini theorem, for almost all # € ]0, T'[,
uh;n(-, t) converges to u(:, t) almost everywhere on ]—R, R[. Now {“h’m} remains
uniformly bounded; according to the Lebesgue theorem we have

(43) for almost all # € ]0, ¢[, rii_':“”flxKR Iuh,m(x, H-ulx, Hldx=0

Let E be the negligible set of £ € 10, T[ for which (43) is not verified; if z €
10, T\E, for all m we have

J"" < e, D) ~ ()l dx < flx|<R lulx, 1) = “h;n(x, 1)l dx
(44) + flx|<R (x n- u, (X, 0)! dx

+ fIXI<R l“h;n(x» 0) — uy(x)l dx.

We separately study each term of the second member of (44), when m tends to
infinity. Since ¢ ¢ E, from (43), the first term tends to zero. As for the second
term, we introduce two integers / and n, such that (I — l)h;n <R <Ih;n, teJ,.
When m tends to infinity, Ih,, tends to R and nh,, tends to T/q, and then ( + n)h,,
remains uniformly bounded in A (( + n)h;, < R,). From (29), (28), (17) and (16)
we have successively

lel<R (x 3] —u, (x, 0)| dx

< Tl -, < X3 W -ul VI, < CR)(AL).

lil<I1 lil<I v=1
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We get for the upper limit
(45) nlllm Ix1<r ¥ (x 1) - (x, 0)l dx < ARy)t/q.

For the last term, we introduce the Wy interpolate of degree one of Uy (-, 0) at
the points 7, on ]-R, R[. From (16) and (17), it follows that

Iwhmle(—R,R) < |u°IL°"(R); Iwh X L 1(-R,R) < |,[Z<:,‘u’“ up1 < C(Ry).
Therefore, {wh/m} contains a subsequence {wh/':n} convergent in L'(-R,R)tow €
L”(=R, R), by using the same compactness argument as for Theorem 1 (see [1]).
Now we just have to verify that w = u, almost everywhere, since {uhu ~ } tends
to zero in L'(=R, R) when m tends to infinity.

Let ¢ € Cy(—R, R); we approach ¢ by

V() = ' = h—,l,-flixp(x)dx if x €1,

The sequence {y,,} converges to V¥ in L'(-R, R) when m tends to infinity, and if
m is great enough Y/ = Y1 = 0 (compact support of ¥), thus we have

St GOWE) &6 = T u, <[ ug@,,e)ax
I |<R hm Ix I<R

and {uh'r'n(" 0)} weakly converges to u,. Since a strong convergence to w exists al-

ready, w = u,, almost everywhere in |—R, R[. Therefore, (44) gives at the limit

ux, 1) —uy(x) dx < C(R /g if t €10, T[\E,
Ix <R
by using (45). From that we can deduce (13) immediately, and thus Theorem 2 is
proved.
Theorems 1 and 2 can be generalized for similar numerical schemes in order to

solve more general equations such as (14) or (15). Some of these generalizations are
studied in [7].

3. In this section we study various applications. We shall give Lax, Godounov
and Lax-Wendroff schemes of the form (18), and study them according to Theorems
1 and 2. Then, we shall try to give an interpretation of conditions (22) and (37).

At last, we shall consider the particular case when f is monotone (decentered scheme).
We denote by (S) the scheme of the form (18) with a}, , 12 = as?, | /2> and by (1)
the scheme with 4}, , , = q[f'(zl'.’ﬂ/z)l.

Lax Scheme. In [5], Lax proposes a scheme written with previous notations as

(46) u;H—l = (u?-;.l + u;’_l)/2 - Q[f(u?-;» 1) - f(u?—l)] /2.
The Lax scheme can be written with the form (18)

u?+l = u? _q[f(u?-'.]) _f(u?—l)]/z + (u,"l-;.l —u;')/2 - (u:l - u?—l)/2, 4



864 A. Y. LE ROUX

and corresponds to a uniform choice of coefficients
@7 VieZ, Van<N, d}y,,=1

THEOREM 3. If the stability condition of Courant-Friedrichs-Lewy (21) is veri-
fied, then the family {u,},~, of approximated solutions, built by the Lax scheme,
converges in L] (R x 10, T|) to the solution in KruZkov's sense of (1), (2).

This is not a new result; Conway and Smoller [1] state convergence to a weak
solution, and Douglis [2] as well as Oharu-Takahashi [8] prove convergence to the
solution in KruZkov’s sense. From (47), the Lax scheme contains a uniform numerical
viscosity, which has the effect of spreading shocks. The numerical solution of the
following problem

1 ifx <0,
u, +uu, =0, u(x,0)=

0 ifx>0,
u(-, 1) i Exactsolutions |
-~ \\\ E
\\ ‘ ~
LN
N i N Ax = 0.05
(Lax) N ' “N(Lax) At = 0.0125
: AN 4=025
! N\
! \
: N
' \
Solution for Solution
t=1 fort =2 |
\ |
AN :
N : N
AN (Lax) i \ (Lax)
\\ : \\\
®) S
7) | s
0 0.5 1 X

(which in KruZkov’s sense is u(x, £) = 1 if x < ¢/2 and 0 if x > #/2), has been com-
puted with the same conditions by the Lax scheme and by schemes (S) and (7))
which coincide about this example. The numerical results we obtained are reproduced
in the figure above. The Lax scheme gives better results when g is near 1, i.e. when
the inequality (21) is satisfied nearer to equality, while the other schemes do not

vary slightly. Indeed, if we change (18) into

1
uftt —ul | Tt ) - fly)

(48) qh 2h

n

_1 (haf' )“?+1‘“?_‘<Qa,, up — Uiy
h )\ g %i+12 A q G2 o (
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we notice that the coefficient of numerical viscosity of the Lax scheme is k/q, and

therefore increases when g decreases. As for schemes (S) and (T'), this coefficient is

hs?, /2> Which is independent of ¢. If we consider (48), we see that (18) is obtained

by multiplying the coefficient of numerical viscosity of the Lax scheme by a7, , j2
Godounov Scheme. Here is the way Oleinik describes the Godounov scheme

in [9]. This scheme is given by

(49) u;H- ! = u? - ‘I[f(u?.'.l/z) —f(u?—1/2)] >

where the quantities u7, /2 (j € Z) are obtained by

if f'(uf)>0and f'(§}y,,2) >0  thenuly, ), =uf,

(50) iff’(u]'-'+1)<0andf'( }1+1/2)<0 then u;l+l/2 =u;’+l’
in other cases, u]'.‘Jrl J2 1 the solution in 1"]'.'+ 12 of f'(u) = 0.

By applying this scheme to Burgers equation for the (numerical) initial condition
u? =1ifi<0and—1if i >0, we verify that Sup;,c, u}'| = 1 + n/2 (see [7]) and
observe that an instability appears near the shock. This phenomenon vanishes when
we add the following criteria to the choice of uf'y/,

when f(u]'.'ﬂ) = fu}'), we first seek “7+1/2 eIy, 1/2 @ a root of f',

(51)

and if: (u}y; — o) (Fufy,)2) - fu})) > 0, we replace it by Ulprp = U

Let us note that by taking u, | 2 = U4, at last we find the same result. (49) can
be changed into

Wt =t =L, ) PG D]+ LG ) - 276 o) + )
-1 - 216, ) + @]

and to give it the form (18), we must select a7’, ; /2 such that
(52) @y Wiy — ) = qlf @y ) = 20 @l p) + F@P].
Since u7, ;5 € I}/, we can find X € [0, 1] such that

“?+1/2 =Ny (=N

and two elements n; and n, of I'}, |, verifying

Fie) = @iy ) = F) @y — iy )
(53)
f@iy 1) = f@}) = () Wiy, jp —uf)-
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By introducing these quantities in (52), we get when u] # ul

i+1>
4 @y = all =N @) =~ N'(y)]
If uf, | = u}, then we may take af', ,,, = qlf'(§}y ,2)| (= qlf'@})]). By comparing

(36) with (53), it follows that f'(n,) < s}, 1/2 and -f'(n,) < $7y 1,25 therefore
1z <AL~ NNy yp = 087502

Then, it may happen that Theorem 2 cannot be applied. Nevertheless, Theorem
1 is applicable, provided that we choose the root of f* properly, when f'(¢,, ) is
not zero.

THEOREM 4. If the stability condition of Courant-Friedrichs-Lewy (21) is
verified, then the family {u,} of approximate solutions, built by the (revised) Godou-
nov scheme, contains a sequence {u, 1}, convergent in Ll (R x 10, T|) to a weak
solution of problem (1), (2).

Proof. 1t is sufficient to verify (22). If u}, ; = u}, the result is obvious. If

u?, | #u?, from (54) and (21), "?+1/2 <1

Iff(ng/z) > 0and f'() >0, then “?+1/2 =u},and from (52), a7y | ), =
Qf'(EiH/z) >0.

If f'(5?+1/2) > 0 and f'(u}') <0, we choose for ufy 12> the root of f' the
nearest of u?, so that f'(n,) <0. Then, from (52)

@y —ul) = qlf @iy ) = F@)] = 2q1f@fy  15) — F@P)].
and we get
atr'l+1/2 Qf(zt+l/2) 2Qf(7?2) A= ‘If(gl.'.l/z) = qvl(£?+1/2)i'
If f’(g;’ﬂ/z) = 0, then f(u}, ;) = fu}), and we use (51).
I Wy, - u;’)(f(u;'+1/2) - fw?) <0, from (52), it follows that a’, 12 =
Qlf’(‘f;l-;.l/z)l =0
If @, —u)(f@y, 1/2) = fw})) = 0, then, from (51), f(u}, 1/2) = f(u?),
and a;.’+l/2 = 0.

If (&} 1 2) <0, and f'(ufy ) > 0, we select for uf, |, the root of f* the
nearest of uf, ; in T, /5, so that f'(n;) > 0. Then from (52)

al"l+1/2(u?+l - ui) = q{f(u?) _f(ui+1)] + 2q{f(ui+ 1) _f(u?+1/2)] >
and we get
a?+1/2 == Qf,(2?+1/2) + 2(1 7\)qf (’01) Qf(gl-;.]/z) QV(£,+1/2)1'

Iff(EH_l/z) <0, and f'(u},,) <0, then “?+1/2 = u?, ,,and from (52),
a7+1/2 = qf(£l+l/2)‘

(22) is verified in each case, and thus Theorem 4 is proved.

Convergence to the solution in KruZkov’s sense is also bound to the good
choice of the root of f' in 7 12 when f'(S;’H/z) =0 and

Wiy, —uPD(@dy ) — ) <0,
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as is shown by the numerical solution of the following problem
u, + ulQu® — u, =0;  u(x, 0) = sg(x).

From (17) u? = sg(i), therefore

1 ifi=1,
Oor 162 ifi=0,
“an=) if i =1 (from (51),
-1 ifi <-2.
By taking u‘l’/2 = 0, we have u}’, ; ;, €{~1, 0, 1} hence u} = u? for all i, and step
by step, for all i, u?“ =uj =---=sg(i). The family {u,} converges to the station-

ary solution which does not satisfy the entropy condition. By taking u‘l’ 2= 12,
convergence to the solution in KruZkov’s sense seems to become true. When f' has
no root, convergence to the solution in Kruzkov’s sense is assured, since the Godounov
scheme is reduced to the decentered scheme, studied below.

Lax-Wendroff Scheme. In [11], the Lax-Wendroff scheme is described in the
following way, with 4, ; , = @ +uf, )2 foralli €Z,

uftt = uf =206 ) - )]
(53) @ e " o
+ ) [ (ui+ 1/2)(f(ui+ 1) - f(u:’)) -f (ui—l /2) (f(u:‘) - f(u?—l Nl.
We can give (55) the form (18) by taking
(56) @y ypn = W) E )

From (35) this choice can make true the convergence to a weak solution which does
not satisfy the entropy condition. On the other hand, we know that the Lax-Wen-
droff scheme is not stablein L”(R x ]0, T'[). To eliminate (to a certain extent) the
oscillations near the shocks, Lax and Wendroff [6] propose adding to the second
member of (55), a term of the form

Ly gy — ) = By — ],

where by, , /, is a function of u7, ; and u, vanishing if u] = u7, ,, for example
1 ! !
b?+1/2 = Elf(“?ﬂ) —fplf2.

This term does not alter the order of accuracy of the scheme (order 2) and efficiently
reduces the oscillations near the shock, but does not necessarily assure the convergence
to the solution in KruZkov’s sense, as is shown by the numerical solution of the fol-
lowing problem

u, +sin(miu, =0;  u(x, 0) = sg(x),
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with the numerical initial condition

) 1 ifi=0,
1 (G+1)h
u? = Z in uo(x)dx =

-1 ifi<O.
Then, for all i and j, f'®}) = 0, fu]) = f(u}). Therefore u} =u), and step by
step u?*! = u. The whole family u, converges to the stationary solution u(x, ¢) =
sg(x), different from the solution in Kruzkov’s sense given by

1 if x > at,
1 Arc sin(x/t) if —at <x <at,
u(x, t) = m
+
-1 if x <-at, witha=l Sup <1__lc_i>s_7ru>
T o<u<1 u

With the same initial condition, the numerical solution of Example 3 by the two-
step Lax-Wendroff scheme defined by

up i = @iy +u)2 - q(f@ly ) - Fu)2,

(57 n+1 n n n
u; =u; — Q(f(uH. 1 /2) - f(ui—l/2))’

leads to the weak solution u,, which is not the solution in KruZzkov’s sense. Other
schemes of second order accuracy present the same drawbacks.

Interpretation. Let h > 0,i € Z, n < N; we consider a scheme of the form
(18), and we suppose u}, ; # u}. If condition (22) is verified, then

f@iy ) — W)

n — 4
Uiy — Y

(8) @y /2 %: =

The quantity a}, , /2Ax/At can be compared to a speed; to assure convergence, it is
sufficient, from (58), that this quantity be greater than or equal to the velocity mod-
ule of a shock of intensity |, , —uf|. It is interesting, indeed, to compare (58)
with the Rankine-Hugoniot equation (5). From that, we deduce, in particular, that
the faster the shock, the greater the numerical viscosity. Condition (37) can be
written as

i fry) ~fk ") - f(k)
(59) ai+1/2%>s§’+1/2= Sup {Max(f(u:;l) (k) _f(u) )}

n _ > n _
k€112 ui, —k ui —k

which should be compared with (9), i.e. the expression of the velocity module of a
shock satisfying the entropy condition. Thus s}, , /2 EXpresses the velocity module
of a shock, the intensity of which is equal to [}, , — u}|, and which verifies the

entropy condition. Such a shock is faster than a simple shock of intensity [u], | —
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ul'l, and exists only if its speed also satisfies (5). Condition (59) means that the
quantity a7, ; ,,A%/At is superior or equal to the velocity module of such a shock. If
the condition is satisfied, then we necessarily have convergence to the solution in
KruZiov’s sense. The shock which verifies the entropy condition is faster than the
others, hence the necessity of a more important numerical viscosity. This relation be-
tween numerical viscosity and the velocity module of the shock is represented by a
figure. By reducing Az, the slope associated to the Lax scheme decreases (speed in-
creases). For the other schemes, the slope remains unaltered. Let us underline the
local nature of (58) and (59); the speed of a numerical shock is exact in general,
since this shock is spread on several intervals /;.

We can give another interpretation of s7, , /25 it is the same as introducing con-
vexity. We define on I'7, 1/2 fais the convex hull of fif u} <u}, ,, and as the con-
cave hull of fif u} >u}, . We have necessarily fe C‘(F:.’Hn), and it follows that

Ship= Sup )L

60
(60) KETTL 12

The Case of Monotone f. In this case, the decentered scheme is applicable. It
is written as

if f is nondecreasing, u]*' =u! - q[f(?) - fW?))],

(61)

if f is nonincreasing, w?*! =u? - q[f@W?, ) - fM].

This scheme is a particular case of the Godounov scheme but here the hypothesis of
monotonicity assures convergence to the solution in KruZkov’s sense, though (37) is
not always verified.
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THEOREM 5. If the stability condition of Courant-Friedrichs-Lewy (21) is veri-
fied, then the family {u,}, , of approximate solutions, built by the decentered
scheme when f is monotone, converges to the solution in KruZkov’s sense of problem

1), @.

Proof. We can give (61) the form (18) in each case. As in Theorem 4, we ob-
tain a7, ), = qlf' ¢, j2)l- As stability condition (21) is verified, Theorem 1 allows
us to conclude the convergence of a sequence {uhm}m tou €L”R x ]0, TD. A
formulation similar to (38) is also verified for the decentered scheme. Let k € R; if
M= Iuole R < |k, we multiply (18) by sg(M — k), hence (38) (see Theorem 2,
Case 0), which may change into

- k<l - k-3 (s, - B () ~ F))

(62 —sglu, — K) (i) - fR)}

+ by — U By b U

with
1 uj + Uiy,
biy1)2 = 5“?+1/233(“?+1 - “?)Sg< ) k).

When || < M we can still state (62). By introducing f(k) in (61), and by
using (39), we get

uptt —k =@} -1 - qf' () + @, ~ Kaf ki) if />0,
Wit =k =@ - R+ af ) + @y - Ca KR <0,

where all the coefficients are nonnegative. In both cases, if we take absolute values,
we have

A R B R (U R () )]
- (P y) — FRsgl, ~ K}
+ L ) ~ ey — 0~ (f) =~ FRseluf — K}

- LG - g} — ) = () ~ FRNsglu, — B,

where s = 1, when f' >0, s = —1 when ' < 0. We get (62) with a coefficient
bl /2 such that

Ba oy — 'l = B0 )~ FONsgly — ) = () = Fseles? = B,

which is verified by
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1, n n u + uy .

§ai+1/233(“i+1 —ui)sg a2 —k) ifEET 0
(63) bir12 =

2 wra, - = NEEDI fEETY, | )

where X € [0, 1] is given by k = Ml + (1 — Mu?, .

By introducing a function ¢ € C%(R x 10, T[), nonnegative, in (62), we get an
expression similar to (42), from which we deduce (12) at the limit when 4, tends to
zero, since b}, ,,, remains bounded (|b7, , ;| <5). With the same process as in the
proof of Theroem 2 (part (b)), we state (13); and therefore, the whole family {u,,},~ o
converges to the solution in Kruzkov’s sense of (1), (2), and thus Theorem 5 is proved.

When [ is monotone, the derivation of f can be performed while preserving sta-
bility. In [12], Shampine and Thompson propose the following decentered scheme,
when f is nondecreasing.

(64) ul *l=u? — qf W) @ - ul ).

If the stability condition of Courant-Friedrichs-Lewy (21) is satisfied then we can
state the estimates (28), (29) and (30), and deduce the existence of a sequence {u, }
convergent in Lj (R x ]0, T[) to a function u € L”(R x ]O, T[). But u is not "
necessarily a weak solution of (1), (2), as is shown by the following example. If f(u)
=u?/2if u >0and 0if u <0, and uy(x) = —sg(x), it follows that u? = —sg(i) and
f@®) =0ifi>0. Nowifi<-1,ul —ud =0, hence ') @ —u )=0

for all i € Z. We have u} = u) for all i, and step by step u?*! = u. The family
{u,,} converges to the stationary solution u(x, t) = uy(x), when h tends to zero, but

u does not satisfy the Rankine-Hugoniot Eq. (5) which is a necessary condition for

it to be a weak solution of problem (1), (2).
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